
DBpred: A deep learning method for the prediction of DNA 

interacting residues in protein sequences 

Sumeet Patiyal, Anjali Dhall, Gajendra P. S. Raghava* 

Department of Computational Biology, Indraprastha Institute of Information Technology, Okhla Phase 3, 

New Delhi-110020, India. 

Mailing Address of Authors  

Sumeet Patiyal: sumeetp@iiitd.ac.in            ORCID ID: https://orcid.org/0000-0003-1358-292X 

Anjali Dhall: anjalid@iiitd.ac.in                                            ORCID ID: https://orcid.org/0000-0002-0400-2084 

Gajendra P. S. Raghava: raghava@iiitd.ac.in           ORCID ID: https://orcid.org/0000-0002-8902-2876  

 

*Corresponding Author 

Prof. Gajendra P. S. Raghava  

Head and Professor 

Department of Computational Biology 

Indraprastha Institute of Information Technology, Delhi 

Okhla Industrial Estate, Phase III, (Near Govind Puri Metro Station) 

New Delhi, India – 110020  

Office: A-302 (R&D Block) 

Phone: 011-26907444 

Email: raghava@iiitd.ac.in 

Website: http://webs.iiitd.edu.in/raghava/ 

  

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted August 6, 2021. ; https://doi.org/10.1101/2021.08.05.455224doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.05.455224


Abstract 
DNA-protein interaction is one of the most crucial interactions in the biological system, 
which decide the fate of many processes such as transcription, regulation of gene expression, 
splicing, and many more. Though many computational approaches exist that can predict the 
DNA interacting residues from the protein sequences, there is still a significant opportunity 
for improvement in terms of performance and accessibility. In this study, we have 
downloaded the benchmark dataset from method hybridNAP and recently published method 
ProNA2020, for training and validation purposes, that comprise 864 and 308 proteins, 
respectively. We have implemented CD-HIT software to handle the redundancy with 30% 
identity, and left with 646 proteins for training and 46 proteins for validation purposes, in 
which the validation dataset do not share more than 30% of sequence identity with the 
training dataset. We have generated amino acid binary profiles, physicochemical-properties 
based binary profiles, PSSM profiles, and a combination of all profiles described as hybrid 
feature. 1D-CNN based model performed best as compared to other models for each set of 
features. The model developed using amino acid binary profile achieved AUROC of 0.83 and 
0.74 for training and validation dataset. Using physicochemical properties based binary 
profile, model attained AUROC of 0.86 and 0.73 for training and validation dataset. Model 
generated using PSSM profile resulted in the better performance with AUROC 0.91 and 0.74 
for training and validation dataset. And, model developed using hybrid of all features 
performed best with AUROC of 0.91, and 0.79 for training and validation dataset, 
respectively. We have compared our method's performance with the current approach and 
shown improvements. We have included the best-performing models in the standalone and 
web server accessible at https://webs.iiitd.edu.in/raghava/dbpred. DBPred is an effective 
approach to predict the DNA interacting residues in the protein using its primary structure. 
 
Keywords: Protein-DNA interaction, 1D-CNN, Machine learning, DNA-binding residues, 

PSSM 
 
Introduction 
In every living organism, life is entirely dependent on a particular type of molecular 
interactions, such as DNA-protein, RNA-protein, protein-protein interactions, etc. These 
interactions perform several biological functions in the cells of the living organisms [1]. The 
DNA-protein interactions are the fundamental type of interactions for almost all biological 
activities and processes, such as transcription, gene expression regulation, repair, packaging 
of chromosomal DNA, and splicing [2-5]. Several experimental methods are used to confirm 
the interactions between protein and DNA-binding residues. The availability of experimental 
data on 3D structures of protein-DNA complexes and binding residues; supports biologists 
and researchers to reveal the essential knowledge on protein-DNA interactions such as 
conformational changes of DNA molecules, the importance of hydrogen bonds, amino-acid 
properties, electrostatic, van der Waals interactions, etc [6-15].  
Due to the advancements of high-throughput sequencing a huge amount of experimentally 
curated DNA-proteins interaction data have registered in the protein data bank (PDB) [16]. 
But, identification of DNA-binding residues from the empirical data is very challenging, 
time-consuming, and costly process. Therefore, from the last few decades, several attempts 
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have been made for the prediction of DNA-binding residues using computational methods [2, 
17-19]. These tools are majorly divided into four categories, i.e., sequence-based methods 
[20], structure-based methods [21, 22], evolutionary methods [23] and hybrid methods which 
used both structure and sequence information [24, 25]. Several machine learning based 
methods like, BindN (PDNA-62 dataset) [18], BindN+ (PDNA-62 dataset) [26], BindN-RF 
(PDNA-62 dataset) [27], MetaDBSite (PDNA-316 dataset), DP-Bind (62 protein-DNA 
complexes) [20] have been developed for the identification of DNA-binding residues. But, 
the major limitation of these methods is that they build on a very small dataset of protein-
DNA complexes. Whereas, some most popular methods, such as HybridNAP [28] (19987 
DNA-binding residues), DRNApred (8791 DNA-binding residues) [29], ProNA2020 [30] 
which uses huge amount of data to develop the prediction models.  
In the current study, we use this dataset in order to generate better prediction models for the 
identification of DNA-binding/non-binding residues. We introduce a new method named 
“DBpred” which uses deep learning and machine learning approaches for the accurate 
prediction of DNA-binding residues in the protein sequence. The benchmark dataset is 
consist of 864 annotated protein sequences (i.e., 16511 interaction and 307581 non-
interacting residues) taken from hybridNAP and ProNA2020 benchmark dataset. This 
method uses amino-acid binary profiles, physicochemical binary profiles and evolutionary 
information for the development of prediction models. The machine learning models 
implemented on various classifiers, such as Random Forest (RF), Decision Tree (DT), 
eXtreme Gradient Boosting (XGB), Logistic Regression (LR), Gaussian Naive Bayes (GNB). 
Further, we have used deep learning approach (ID-CNN) for the precise prediction of DNA 
binding residues using primary sequence information. To serve the scientific community 
working in this era, we provide freely available webserver at 
https://webs.iiitd.edu.in/raghava/dbpred/ , and standalone package  at 
https://webs.iiitd.edu.in/raghava/dbpred/stand.php . 
 
Materials and Methods 
 
Dataset Creation 
We have downloaded the dataset from the hybridNAP webserver [28] and recently published 
article ProNA2020 [30], which consists of 864 and 308 annotated protein sequences, 
respectively. Then, we have utilized the CD-HIT software  [31] on these datasets to handle 
the redundancy with the standards of 30% sequence identity, and obtained 646 sequences in 
the training dataset, and 46 in the validation dataset, where the sequences in the validation 
dataset do not share more than 30% similarity with the sequences in the training dataset. 
Finally, we left with 15636 DNA-interacting and 298503 non-interacting residues in the 
training dataset, and 965 interacting and 9911 non-interacting residues in the validation 
dataset. 
 
Pattern Size 
The overlapping patterns for each sequence with length 17 are generated using in-house 
python scripts. The central or 9th residue is taken as the representative of the obtained 
patterns. The pattern is specified as a positive segment if the central residue is DNA-
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interacting, else non-interacting or negative segment. In order to handle the terminal residues, 
eight counterfeit residues using the formula (N-1)/2 (where N represents the pattern length 
which is 17), as "X" are added at both sides of the protein sequences, as shown in Figure 1 
along with the complete workflow for this study. 
 

 
Figure 1: Comprehensive workflow and feature generation. A) Feature generation for 
patterns of length 17, DNA-interacting residues are shown in red-colour (e.g. W,R,K), 
positive pattern is shown in grey colour with ‘W’ as the central residue flanked by eight 
residues in each side, and the respective overlapping negative patterns are shown in peach 
colour. a) Generation of overlapping patterns of length 17, b) generation of amino acid binary 
profile (AAB) for each pattern, c) generation of physicochemical based binary profile (PCB), 
d) generation of PSSM profile for each pattern. B) Comprehensive workflow for DBPred. 
 
Percent Composition 
In order to explore the nature of amino acid residues involved in the interaction with DNA, 
we have calculated the amino acid composition, residue propensity, and physicochemical 
properties-based composition. The percent amino acid composition was calculated using 
equation 1, which tells the abundance of residues in interaction. The residues propensity is 
computed using equation 2, which indicates the preference or non-preference of the particular 
type of residues in the DNA binding site. The functionality of residues is based on their sole 
physicochemical properties, and hence we have determined physicochemical properties-
based composition for 25 distinct properties using equation 3. The properties that we have 
considered are positively charged, negatively charged, neutrally charged, polar, non-polar, 
aliphatic, cyclic, aromatic, acidic, basic, hydrophobic, hydrophilic, hydroxylic, sulphur-
content, helix, strands, coil, buried, exposed, intermediate solvent accessibility, tiny, small, 
and large. All the percent compositions were calculated using the Pfeature package [32].  
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where, AACi, RPi, and PCPi is amino-acid composition, propensity score of residue i, 
respectively; PCPi is composition of physicochemical property of type i; 
Ri denotes the number of residues of type i; 
T denotes the total number of residues; 
Ti denotes the total number of residues of type i (DNA-interacting and non-interacting); 
Ei denotes number of residues possessing physicochemical property of type i. 
 
Binary Profile 

We have calculated two varieties of binary profiles for each pattern, such as amino acid 
binary profile (AAB) and physicochemical properties based binary profile (PCB). The 
features were calculated by modifying Pfeature [32] scripts. In AAB, each amino acid is 
represented by the vector size of length 21, for instance, A is described as 
1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0; which comprises of 20 natural amino acids and one 
dummy variable, whereas X is denoted as 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 [33]. 
Therefore, each pattern is represented by the vector size of 357 (17*21). In PCB, each amino 
acid is designated by the vector of size 25; for instance, A is denoted by 
0,0,1,0,1,1,0,0,0,0,1,1,0,0,0,0,1,0,0,1,0,0,1,1,0; where each position exhibits a particular 
physicochemical property, and each element denotes the presence (1) or absence (0) of that 
property. Therefore, the resulting vector for each property is of length 425 (17*25), whereas 
for X, all the elements are 0. 

 
PSSM Profile 
The third feature that we have used is the evolutionary or Position-Specific Scoring Matrix 
(PSSM) profile [34]. The PSSM profile was generated employing PSI-BLAST [35] by using 
the SwissProt database [36], against which each sequence is searched. The Parameters used 
for running PSI-BLAST were three iterations, with e-value as 1e-3. Further, the profile was 
normalized using equation 4. The final matrix for each sequence is of dimension Nx21, 
where N is the length of the protein sequence, and each pattern is depicted as the vector of 
length 357 (17*21). 
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where, PSSMN normalized value, x is the PSSM score. 
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Machine Learning Predictors 
We have implemented the python library scikit-learn based traditional machine learning and 
a one-dimensional CNN-based classifier using the TensorFlow library to develop the 
prediction models. In the conventional approach, we have implemented various classifiers, 
such as Random Forest (RF), Decision Tree (DT), eXtreme Gradient Boosting (XGB), 
Logistic Regression (LR), and Gaussian Naive Bayes (GNB), to develop the prediction 
model.  
 
Five-Fold Cross-Validation and Performance Evaluation 
In order to avoid overfitting, biasness and to evaluate the performance of the generated 
prediction models, we have implemented the five-fold cross-validation. In this method, all the 
dataset is divided into five non-overlapping sets, four out of five sets are used for the training 
purpose, and the fifth set is kept for testing. The same process is repeated five times so that 
each set gets the chance to be used as the testing dataset only once. The overall performance 
would be the mean of the performances of five iterations [37-39]. 
In this study, we have calculated various threshold-dependent and threshold-independent 
parameters in order to evaluate prediction models. Threshold -dependent parameters include 
sensitivity (sens, equation 5), which signify the percentage of correctly predicted DNA-
interacting residues; specificity (spec, equation 6) explains the proportion of correctly 
predicted DNA non-interacting residues; accuracy (acc, equation 7) defines the percentage of 
correctly predicted DNA-interacting and non-interacting residues; and Matthews Correlation 
Coefficient (MCC, equation 8), which exhibits the correlation between observed and 
predicted values. On the other hand, the threshold‐independent parameter includes Area 
Under Receiver Operating Characteristics (AUROC), which is the plot between True Positive 
Rate (TPR) and False Positive Rate (FPR). The module of the R named "pROC" was used to 
plot the AUROC curve [40]. The equations for threshold dependent parameters are as 
follows: 
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Where FP, FN, TP, and TN are false positive, false negative, true positive, and true negative, 
respectively. 

Results 

Compositional Analysis 
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We have performed the compositional analysis to understand the interactions of the DNA to 
the protein residues. We have analyzed the amino acid composition of DNA-interacting and 
non-interacting residues in DNA interacting proteins. As shown in Figure 2, DNA-interacting 
residues are rich in H, K, N, R, and Y, whereas, A, D, I, L, and P are abundant among non-
interacting residues. In order to explore the preference of residues in the DNA-binding site, 
we have calculated the propensity of each residue, which exhibits that K, R, W, and Y are 
most favoured in the DNA-binding site, as shown in Figure 3. We have also analyzed the 
residues' properties involved in interaction with DNA and found that positively charged, 
basic, hydrophilic, possessing helix secondary structure, and large are more abundant in 
DNA-interacting residues shown in Figure 4. 

 

Figure 2: Percent composition of DNA-interacting and non-interacting residues 
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Figure 3: Normalized propensity scores DNA-interacting and non-interacting residues 

 

Figure 4: Percent composition of physicochemical properties in DNA-interacting and non-
interacting residues 

Performance based on Amino Acid Binary Profile 

In order to develop the prediction models, we have generated amino acid binary profile, as it 
captures the compositional as well as positional information of each residue. We have 
generated the binary profile for the training dataset consisting of 15636 patterns for DNA-
interacting and 298503 non-interacting patterns; and the validation dataset comprises 965 
DNA-interacting and 9911 non-interacting patterns. The best result for each classifier is 
shown in table 1. As shown in Table 1, the one-dimensional CNN-based classifier performed 
best among all the other classifiers with AUROC 0.83 and MCC 0.25 for training dataset, and 
AUROC 0.74 and MCC 0.21 for the validation dataset. 

Table 1: Performance of various classifiers using amino acid binary profile 

Classifier 
Training Dataset Validation Dataset 

Sens Spec Acc AUROC MCC Sens Spec Acc AUROC MCC 

DT 15.85 93.45 89.58 0.55 0.08 12.62 92.81 85.61 0.53 0.06 

RF 67.31 70.46 70.30 0.76 0.18 67.05 65.29 65.45 0.72 0.19 

LR 69.05 69.48 69.46 0.76 0.18 68.19 66.59 66.73 0.74 0.21 

XGB 67.25 70.92 70.73 0.76 0.18 67.15 68.17 68.08 0.73 0.21 

GNB 67.19 66.88 66.89 0.73 0.16 66.22 63.19 63.46 0.70 0.17 

1D-CNN 77.64 74.31 74.30 0.83 0.25 70.67 66.54 66.00 0.74 0.21 

#DT: Decision Tree; RF: Random Forest; LR: Logistic Regression; XGB: eXtreme Gradient Boosting; GNB: 
Gaussian Naive Bayes; 1D-CNN: One-Dimensional Convolutional Neural Network; Sens: Sensitivity; Spec: 
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Specificity; Acc: Accuracy; AUROC: Area under the receiver operating characteristic curve; MCC: Matthews 
correlation coefficient 

 

Performance based on Physicochemical Properties Binary Profile 

We have also used the binary profiles based on physicochemical properties for the first time 
in the literature to develop the prediction models. As shown in Table 2, 1D-CNN based 
model has outperformed all the other classifiers with AUROC 0.86 and MCC 0.27 for the 
training dataset, and AUROC 0.73 and MCC 0.20 on the validation dataset. 

Table 2: Performance of various classifiers using physicochemical properties based 
binary profile 

Classifier 
Training Dataset Validation Dataset 

Sens Spec Acc AUROC MCC Sens Spec Acc AUROC MCC 

DT 12.79 95.45 91.34 0.54 0.08 09.32 94.82 87.24 0.52 0.05 

RF 64.48 70.48 70.18 0.74 0.16 63.11 63.67 63.62 0.69 0.16 

LR 68.92 69.34 69.32 0.76 0.18 68.39 66.50 66.67 0.73 0.21 

XGB 66.64 72.25 71.97 0.77 0.19 63.32 68.98 68.48 0.72 0.19 

GNB 66.60 65.76 65.80 0.73 0.15 67.46 58.87 59.64 0.68 0.15 

1D-CNN 80.84 75.04 75.33 0.86 0.27 67.08 67.86 67.79 0.73 0.20 

#DT: Decision Tree; RF: Random Forest; LR: Logistic Regression; XGB: eXtreme Gradient Boosting; GNB: 
Gaussian Naive Bayes; 1D-CNN: One-Dimensional Convolutional Neural Network; Sens: Sensitivity; Spec: 
Specificity; Acc: Accuracy; AUROC: Area under the receiver operating characteristic curve; MCC: Matthews 
correlation coefficient 

Evolutionary information based performance 

As shown by the literature in the past, evolutionary information captures more information 
than any other method. We have described the evolutionary information as the PSSM profile. 
We have developed various prediction models by using normalized PSSM profile as the input 
feature, and the performance of each classifier is exhibited in Table 3. 1D-CNN-based 
classifier exceeded other classifiers' performance, 0.91 AUROC and 0.34 MCC for the 
training dataset, and AUROC of 0.74 and MCC of 0.21 for the validation dataset. 

Table 3: Performance of various classifiers using PSSM profile 

Classifier 
Training Dataset Validation Dataset 

Sens Spec Acc AUROC MCC Sens Spec Acc AUROC MCC 

DT 20.31 95.67 91.92 0.58 0.16 13.26 94.47 87.27 0.54 0.09 

RF 73.47 71.69 71.78 0.81 0.21 73.06 62.46 63.41 0.74 0.21 

LR 72.92 71.94 71.99 0.80 0.21 69.33 67.98 68.10 0.75 0.22 
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XGB 76.78 73.96 74.10 0.84 0.24 72.12 67.51 67.92 0.77 0.24 

GNB 66.68 63.56 63.71 0.70 0.14 64.87 56.24 57.01 0.63 0.12 

1D-CNN 88.09 79.45 79.88 0.91 0.34 64.89 69.87 69.43 0.74 0.21 

#DT: Decision Tree; RF: Random Forest; LR: Logistic Regression; XGB: eXtreme Gradient Boosting; GNB: 
Gaussian Naive Bayes; 1D-CNN: One-Dimensional Convolutional Neural Network; Sens: Sensitivity; Spec: 
Specificity; Acc: Accuracy; AUROC: Area under the receiver operating characteristic curve; MCC: Matthews 
correlation coefficient 

 

Performance based on combined features 

The combined features were generated by concatenating the amino acid binary profile, 
physicochemical properties-based binary profile, and PSSM profile in the column-wise 
manner for each pattern, which generated a vector of length 1175. A wide range of classifiers 
was used to develop the prediction method, and the 1D-CNN-based classifier performed best 
among all the classifiers with 0.91 AUROC and 0.37 MCC on the training dataset, and 0.79 
AUROC and 0.32 MCC on the validation dataset, as shown in Table 4. 

Table 4: Performance of various classifiers using combined features 

Classifier 
Training Dataset Validation Dataset 

Sens Spec Acc AUROC MCC Sens Spec Acc AUROC MCC 

DT 16.81 95.49 91.57 0.56 0.12 15.34 94.91 87.84 0.55 0.18 

RF 74.27 72.04 72.15 0.81 0.22 70.98 63.02 63.73 0.75 0.20 

LR 74.28 73.36 73.40 0.81 0.23 70.88 69.18 69.33 0.77 0.29 

XGB 68.69 67.38 67.44 0.74 0.17 69.95 62.62 63.27 0.72 0.19 

GNB 69.99 68.11 68.20 0.75 0.18 66.84 62.70 63.06 0.70 0.17 

1D-CNN 83.74 83.50 83.51 0.91 0.37 70.78 78.40 77.72 0.79 0.32 

#DT: Decision Tree; RF: Random Forest; LR: Logistic Regression; XGB: eXtreme Gradient Boosting; GNB: 
Gaussian Naive Bayes; 1D-CNN: One-Dimensional Convolutional Neural Network; Sens: Sensitivity; Spec: 
Specificity; Acc: Accuracy; AUROC: Area under the receiver operating characteristic curve; MCC: Matthews 
correlation coefficient 

Comparison with the existing methods 

In order to concede the newly developed method, its comparison with the existing methods is 
of uttermost importance. The comparison conveys the merits and demerits of the newly 
developed method. Since there are many existing methods for predicting DNA-binding 
residues in a protein [26-28, 30], a comprehensive comparison is must to understand the 
benefits of the newly developed method "DBPred". We have calculated Physico-chemical 
properties based binary profile as the new feature in DBPred, other than amino acid binary 
profile and evolutionary information, but its performance is equivalent to the performance 
using the amino acid binary profile. We have developed models on individual features and 
their combination; the model developed on the combined feature outperforms the models 
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developed on the individual features mentioned in Tables 1, 2, 3, and 4. The performance of 
existing methods along with the datasets used is shown in table 5. The performances are 
reported in terms of AUROC and accuracy. In some of the methods, such as BindN-RF [27], 
DBindR [41], BindN+ [26], DNABR [42],  and PDNASite [43], the performance is relatively 
higher, which could be due to the overfitting of the model, since the used datasets are smaller 
in size. On the other hand, recent methods like TargetDNA [44], HybridNAP [28], 
funDNApred [45], iProDNA-CapsNet [46], and ProNA2020 [30] have used larger datasets as 
compared to the previous methods; the DBPred had used the equivalent dataset to the 
recently developed methods and outperformed them. As shown in Table 5, most methods 
have provided the webserver facility, but many are non-functional now. Like most of the 
existing methods, DBPred has furnished the webserver service, which incorporates many 
facilities for the users, such as, they can provide multiple sequences at a time for the 
prediction, various modules have been provided based on the types of feature used to develop 
models. The website is designed using an HTML5 responsive template, which is compatible 
with all the latest devices, such as mobile, iPad, tablets, laptops, and desktops. This is the age 
of genomics where a user can wish to predict the DNA-binding residues in the whole 
proteome, which is quite heavy for the webserver to handle; hence we have developed the 
python- and Perl-based standalone that can be downloaded and run on the local machines 
irrespective of their operating systems and can be used in the absence of internet. 

Table 5: Comparison of performance of various existing methods with DBPred 

Method Year Dataset Redundancy AUROC Accuracy MCC Webserver/ 
Standalone 

DBS-Pred [47] 2004 62 25% - 64.00% - W* 

DBS-PSSM  [48] 2005 62 25% - 67.10% - W* 

Pro-DNA [49] 2005 115 - - 79.00% - W* 

BindN [18] 2006 62 25% 0.75 70.31% - W* 

DP_Bind [50] 2006 62 25% 0.84 76.00% 0.45 W# 

DNABindR [51] 2006 171 30% - 78.00% 0.28 - 

DP-Bind [20] 2007 62 25% - 77.20% - W# 

BindN-RF [27] 2009 62 25% 0.86 78.20% - W* 

DBindR [41] 2009 374 25% 0.91 91.41% 0.70 W* 

BindN+ [26] 2010 62 25% 0.86 79.00% 0.44 W* 

MetaDBSite [52] 2011 316 30% - 77.00% 0.32 W* 

DNABR [42] 2012 337 25% 0.88 93.04% 0.66 W* 

DNABind [24] 2013 206 25% 0.81 - 0.38 W# 

SPOT-Seq (DNA) [53] 2014 179 35% - 88.00% 0.52 W# 

Wang et. al  [54] 2014 272 30% 0.86 85.40% 0.72 - 

PDNASite [43] 2016 286 25% 0.93 85.11% 0.58 W* 

TargetDNA [44] 2017 543 30% 0.82 76.42% 0.30 W# 

HybridNAP [28] 2017 864 - 0.69 - 0.19 W# 

funDNApred [45] 2018 864 - 0.72 84.50% 0.19 W# 

iProDNA-CapsNet [46] 2019 543 30% 0.83 76.02% 0.29 W# 
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ProNA2020 [30] 2020 308 20% - 81.00% 0.42 W#/S 

DBPred 2021 692 40% 0.91 83.51% 0.37 W#/S 

# AUROC: Area under the receiver operating characteristic curve; MCC: Matthews correlation coefficient; W*: 
Non-functional webserver; W#: Functional webserver; W#/S: Functional webserver and Standalone 

Web server implementation 

In order to serve the scientific community, we have developed and executed our best models 
in the webserver "DBPred", to predict the DNA-interacting residues in a protein using its 
primary structure information. The facilities provided by the webserver are available in 
various modules such as "Sequence," "PSSM profile," "Hybrid," and "Standalone." The 
description of each module is as follows. 

Sequence Module 

In this module, the user is allowed to predict the DNA interacting residues in the query 
protein sequences by providing them in the FASTA format. This module enables users to 
choose the type of input features such as amino acid binary profile (AAB) and 
physicochemical properties based binary profile (PCB), with the desired threshold value vary 
between 0 and 1. The sequence module provides the facility to either paste or upload 
sequence(s) in the FASTA format. On the result page, DNA-interacting residue(s) in the 
protein sequence(s) are shown in red, whereas non-interacting residues are shown in black. 
The results are downloadable in different formats. 

PSSM Module 

The PSSM module produces a PSSM profile for the query proteins, which is used as the input 
feature to predict the DNA-interacting potential of the residues in the submitted protein 
sequences. This module also authorizes the users to vary the probability threshold. The PSSM 
module permits the users to either paste the sequence(s) in the provided area or upload the 
file of sequences in the FASTA format. The result page exhibits the query protein sequences, 
where DNA-interacting residues are shown in red colour, and it also provides the facility to 
download the result in either txt, png, or pdf format. 

Hybrid Module 

This module implements the hybrid of the features mentioned in the above modules, such as 
AAB, PCB, and PSSM, to predict the DNA-interacting residues in the query protein 
sequence(s). This module also provides the facilities granted by the above modules, such as 
selecting the desired probability threshold, single or multiple sequences at a time, and paste 
or upload file alternatives. The DNA-interacting residues would be shown in red colour with 
bigger font in the protein sequence(s), on the result page, with the option of downloading the 
results in either pdf, txt, or png format. 

Standalone 
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Other than the web server, we have also developed the Perl-and python-based standalone, 
which can be used in offline mode. These standalone versions have the best models executed 
in the back-end. The standalone takes the sequence(s) in the FASTA format as the input and 
provides the annotated file as output. This module permits the users to download the 
standalone versions, and it also provides the stepwise execution of the standalone in the 
docker. 

Discussion 

Methods with the ability to identify the DNA-interacting sites on protein can broadly be 
classified into one of the three classes such as sequence-based, structure-based, and hybrid 
approaches [23, 55]. The limitation of the structure-based or hybrid methods is their 
dependency on the protein structural information, which limits their application, as 
determination of the protein structure is a costly, time-consuming, and very complex process 
[33]. On the other hand, sequence information in various databases is growing exponentially, 
enhancing the application of sequence-based methods with reliable performance. In this 
study, we have made a systematic attempt to develop a prediction method that can predict the 
DNA-interacting residues in a protein sequence. We have explored various properties of 
DNA-interacting residues such as amino acid composition, physicochemical properties 
composition, propensities of the residues and developed different prediction models using 
multiple machine learning classifiers such as DT, RF, XGB, LR, GNB, and 1D-CNN. 1D-
CNN-based method using a combination of amino acid binary profile, physicochemical 
properties based binary profile, and PSSM profile as input features performed best among the 
other classifiers. To the best of our knowledge, our approach has exceeded the performance 
of the existing methods, such as hybridNAP has reported AUROC 0.69 whereas our method 
is exhibiting AUROC of 0.91; similarly recently published method ProNA2020 has shown 
the accuracy of 81% while DBPred is showing the accuracy of 83.51%. We believe that 
DBPred can be an efficient tool for correctly predicting DNA-interacting residues in a protein 
sequence. To serve the scientific community, we have developed the standalone and web 
server "DBPred" to assist biologists in the finding of DNA-interacting residues for the sake 
of annotation and functional analysis. DBPred is freely available and accessible on 
https://webs.iiitd.edu.in/raghava/dbpred/ . 
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