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Abstract

Drug discovery and development is a complex and costly process. Machine learning approaches are being investigated to help improve
the effectiveness and speed of multiple stages of the drug discovery pipeline. Of these, those that use Knowledge Graphs (KG) have
promise in many tasks, including drug repurposing, drug toxicity prediction and target gene–disease prioritization. In a drug discovery
KG, crucial elements including genes, diseases and drugs are represented as entities, while relationships between them indicate an
interaction. However, to construct high-quality KGs, suitable data are required. In this review, we detail publicly available sources suitable
for use in constructing drug discovery focused KGs. We aim to help guide machine learning and KG practitioners who are interested
in applying new techniques to the drug discovery field, but who may be unfamiliar with the relevant data sources. The datasets are
selected via strict criteria, categorized according to the primary type of information contained within and are considered based upon
what information could be extracted to build a KG. We then present a comparative analysis of existing public drug discovery KGs and an
evaluation of selected motivating case studies from the literature. Additionally, we raise numerous and unique challenges and issues
associated with the domain and its datasets, while also highlighting key future research directions. We hope this review will motivate
KGs use in solving key and emerging questions in the drug discovery domain.

Keywords: knowledge graph embeddings, disease–gene prediction, drug–target discovery

Introduction
Discovering new drugs is a complex task, requiring knowledge
from numerous biological and chemical domains. Due to this, the
process of developing a new drug and bringing it to market is
expensive and has a high chance of failure [1]. Hence, researchers
are striving to increase the probability of success for the drug
discovery process. As part of this, the field is increasingly looking
towards computational [2] and machine learning approaches to
help in various tasks within the drug discovery process [3], with
the success of approaches like AlphaFold2 being a clear example
of the trend [4]. Related to this, graphs1 have long been used for
representing data in the life sciences as they are well suited to
the complex interconnected systems often studied in the domain
[5–7].

1 Also commonly known as networks within the biological domain. In this
review we use the term graph interchangeably with network and without loss
of generality.

Recently Knowledge Graphs (KGs) have begun to be utilized to
model various aspects of the drug discovery domain as they offer a
way to integrate vast and disparate data sources into a single uni-
fied resource, which can enable the discovery of hidden patterns
and relationships [8]. KGs are heterogeneous data representations
and build upon the linked open data and semantic web principles
[9]. In a KG, both the vertices and edges can be of multiple different
types, allowing for more complex and nuanced relationships to be
captured [8]. In the context of drug discovery, the entities repre-
sent key elements such as genes, disease or drugs, with the edge
types capturing different categories of interaction between them
(An example drug discovery KG schema is displayed in Figure 3).
As an example of where having distinct edge types could be
crucial, an edge between a drug and disease entity could indicate
that the drug has been clinically successful in treating the disease.
Conversely, an edge between the same two entities could mean
the drug was assessed but ultimately proved unsuccessful. This
distinction in the precise meaning of the relationship between
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Figure 1. A homogeneous and heterogeneous graph. In homogeneous
graphs, vertices and edges are typically of only a single type. In compari-
son, heterogeneous graphs allow both vertices and edges to be of different
type (Indicated by colour in this figure).

the two entities would not truly be captured in the simple binary
option offered by homogeneous graphs, whereas a KG represen-
tation would preserve this important difference and enable that
knowledge to be used to inform better predictions. As a topical
concrete application, KGs have been utilized to address various
tasks in helping to combat the coronavirus disease 2019 (COVID-
19) pandemic [10–15]. Additionally, considering the domain as a
KG has the potential to enable recent advances in graph-specific
machine learning to be exploited [16].

However, constructing a suitable and informative KG requires
that the correct primary data are captured in the process. An
interesting aspect of the drug discovery domain, and perhaps
in contrast to others, is that there is a wealth of well-curated,
publicly available data sources, many of which can be represented
as, or used to construct, KGs [17]. Many of these are maintained
by government and international level agencies and are regularly
updated with new results [17]. Indeed, one could argue that
there is sometimes too much data available, rather than too

Figure 2. The evolution of the STRING database over major versions
showing the increase in Organisms, Interactions and Proteins.

little, and researchers working in drug discovery must instead
consider other issues when looking to use these data resources
with graph analytics. Such issues include assessing how reliable
the underlying information is, how best to integrate disparate
and heterogeneous resources, how to deal with the uncertainty
inherent in the domain, how best to translate key drug discovery
objectives into machine learning training objectives and how to
model and express data that are often quantitative and contex-
tual in nature. Despite these complications, an increasing level of
interest suggests that KGs could play a crucial role in enabling
machine learning approaches for drug discovery [16, 18, 19].

We present a review of the publicly available data sources
for drug discovery; we detail how they could be utilized in a
KG setting and analyse the existing pre-constructed graphs. To
the best of our knowledge, this is the first time these resources
have been compared and evaluated in the literature. The primary
contributions of this review are as follows:

• We detail the numerous unique research challenges posed by
the use of KGs in the drug discovery domain.

• We review key data sources within drug discovery, present a
taxonomy based on their primary biomedical area and con-
sider how amenable they are for use in KGs by detailing what
type of information could be extracted from them (relational
versus entity features).

• We perform a comparative analysis of existing public drug
discovery KGs based on their underlying data sources and
graph composition decisions.

• We detail motivating case studies of KG use within drug
discovery.

• We outline the key directions for future research and open
problems within the domain.

Our hope is that this review will enable greater, easier and more
effective use of KGs in drug discovery by signposting key resources
in the field and highlighting some of the primary challenges. We
aim to help foster a multidisciplinary and collaborative outlook
that we believe will be critical in considering graph composition
and construction in concert with analytical approaches and clar-
ity of purpose.

An open-source collection of the resources detailed in this
review has also been released. (https://github.com/AstraZeneca/
awesome-drug-discovery-knowledge-graphs)

Review organization
In the Background Section, we introduce the required background
information and detail existing work; in the Biomedical Ontologies
Section, we introduce major ontologies from the domain which
are often incorporated into KGs; the Exemplar Drug Discovery
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Figure 3. A simplified hierarchical view of a drug discovery knowledge
graph schema.

Datasets Section details key sources which could be mined to
populate a KG; the Existing Biomedical Knowledge Graphs Section
details the existing public graphs and performs a comparative
analysis of them; the Future Challenges AND Key Issues Section
explores some of the key issues still facing the domain and the
Conclusion Section concludes the work.

Background
In this section, we introduce key background concepts for the
rest of the review including subtasks within drug discovery and
KGs. We then detail prior work and explore some of the research
challenges in the domain.

Subtasks within drug discovery
It can be helpful to consider partitioning the drug discovery pro-
cess up into smaller subtasks, some of the most common being:

• Drug Repositioning—Which drugs previously tested in clinical
trials could be ascribed new indications?

• Disease Target Identification—Which molecular entities (genes
and proteins) are implicated in causing or maintaining a dis-
ease? Also known as Target Identification and Gene–Disease
Prioritization.

• Drug–Target Interaction—Given a drug with unknown interac-
tions, what proteins may it interact with in a cell? Also known
as Target Binding and Target Activity.

• Drug Combinations—What are the beneficial or toxicity conse-
quences of more than one drug being present and interacting
with the biological system?

• Drug Toxicity Predictions—What toxicities may be produced
by a drug, and in turn which of those are elicited by
modulating the intended target of the drug, and which are
from other properties of the drug? Also known as Toxicity
Prediction.

Knowledge graphs
Knowledge graphs contain distinct different types of both vertices
and edges, which can be defined as G = (V, E, R) [20, 21]. Here, V
is a set of vertices, R a set of relations and each edge is defined
by its relation type r ∈ R, meaning that edges are represented
as triplet values (u, r, v) ∈ E, u, v ∈ V [22]. The vertices are often
known as entities, with the first entity in the triple called the head
entity, connected via a relation to the tail entity. Two vertices can
be linked by more than one edge type, or even multiples of the
same type.

An example KG is presented in Figure 1b and contains some key
differences with a homogeneous graph: there are three types of
vertex (blue, purple and green) and these are linked through a mix
of directed and undirected edges of three relation types (e1, e2, e3 ∈
R). An example triple from this graph could be (v1, e1, v2) ∈ E,
stating that the entity v1 is linked to v2 via the e1 relation type.

Prior work
The area of drug repurposing has been addressed in several
reviews [23–26]. A recent work has detailed over 100 relevant drug
repurposing databases, as well as appropriate methods [23]. In
[24], a review of repurposing from the point of view of machine
learning is presented, covering methods and over 20 datasets. KG-
specific approaches for repurposing have been reviewed, with the
authors detailing suitable datasets and then choosing six to form
the KG used in their experimental evaluation [25]. In [26], the
authors review and then partition the available drug databases
into four categories based upon the type of information contained
within: raw data, target-based, area specific and drug design.

The area of drug–target interaction has been reviewed [27, 28],
both focusing upon the various methods for predicting interac-
tions, however potential data sources are also presented. Con-
versely, machine learning based approaches for predicting drug–
drug interaction have been detailed, with comparative evalua-
tions conducted [29]. The authors construct a drug–drug inter-
action KG from a subset of Bio2RDF [30]. A review of 13 drug-
related databases has been presented [31], covering a broad range
of databases detailing drugs and drug–target interactions.

One study reviews both datasets and approaches for biological
KG embeddings [32]. Although the review focuses upon the eval-
uation of different methodologies, 16 relevant databases are also
discussed. However, as the work is experimentally driven, only a
limited dataset discussion is undertaken. A different survey of the
wider biomedical area and KG use within it has been presented
[33]. Finally, a recent study presents a detailed overview of the
application of graph-based machine learning in drug discovery
[16]. The review is wide-ranging but makes no mention of suitable
public datasets. We do however feel that it strongly complements
our own review and serves as a method-focused counterpart to
our dataset overview.

Knowledge graph use in drug discovery: research
challenges
There are many challenges that arise when constructing a KG
suitable for drug discovery tasks. Some of the most interesting
research challenges are detailed below:
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• Graph Composition—Strategies are needed to define how to
convert data into information for modelling in a graph (e.g.
instantiating a node or edge versus a feature on those enti-
ties), and what scale and composition of graph(s) may be
optimal for a given task. Is a single large graph best, or should
task-specific graphs be constructed? In addition, which type
of analytical approach to use—reasoning-based, network/-
graph theoretical, machine learning or hybrid approaches.

• Heterogeneous & Uncertain—In biomedical graphs, the data
types are heterogeneous and have differing levels of confi-
dence (e.g. well-characterized and curated findings versus
NLP-derived assertions), and much of the data will be depen-
dent on numerous factors—both time and the dose of drug
used as well as the genetic background in the study. Overall,
this means edges are much less certain, and thus less trust-
worthy, than in other domains.

• Evolving Data—The underlying data sources integrated and
used in suitable KGs are also often changing over time as
the field develops, requiring attention to versioning and other
reproducible research practices. As an example of this, the
evolution of the frequently used STRING dataset is demon-
strated in Figure 22.

• Bias—There are various biases evident in different data
sources, for example negative data remain underrepresented
in some sources, including the primary scientific literature,
and some areas have been studied more than others,
introducing ascertainment bias in the graphs [34].

• Fair Evaluation—Several works have shown promise in apply-
ing machine learning techniques on a KG of drug discovery
data. However, ensuring a fair data split is used for evaluation
is perhaps more complicated than other domains, as it is easy
for biologically or chemically meaningful data to leak across
train/test splits. Thus, care should be taken to construct more
meaningful data splits, as well as considering if replicated
knowledge has been incorporated in the graph and could
potentially leak across from the train/test split. For example,
proteochemometrics approaches often employ a clustering-
based splitting of chemicals to reduce leakage of similar
chemicals between the training and testing sets [35].

• Meaningful Evaluation—While most practical applications of
link prediction only focus on a single relation type (e.g. chem-
ical modulates protein), metrics are often reported as an
aggregate over all relation types. Because bias could be intro-
duced by a large number of relations of other types either
scoring much better or worse than the target relation type on
average, leading to an inaccurate evaluation, metrics should
be reported broken down by relation type.

• Beware of Metrics—Because common metrics used in link
prediction tasks like mean rank (MR), mean reciprocal rank
(MRR) and Hits at K are not comparable on results from KGs
of different sizes, alternative metrics like the adjusted mean
rank (AMR) should be employed [36]. Different implemen-
tations of link prediction evaluation calculate metrics very
differently and caution should be observed when compar-
ing results from different packages. Further, link prediction
models built on biological KGs often influence real-world
experimentation, so discussion on evaluation metrics should
be considered with respect to how it can help achieve real-
world goals.

2 This data has been collected from https://string-db.org/cgi/access.pl?
sessionId=dbw44gRWU7Xo&footer_active_subpage=archive

Ultimately we feel there is now an interesting opportunity to
experiment at the intersection of various research fields span-
ning graph theoretic and other network analysis approaches for
molecule networks [37, 38], machine learning approaches [19] and
quantitative systems pharmacology [39].

Biomedical ontologies
This section details key biomedical ontologies which after often
incorporated in KGs to help establish relations such as links
between different disease subtypes and links between genes and
a description of their function. An ontology is a set of con-
trolled terms that defines and categorizes objects in a specific
subject area. Modern biomedical ontologies are usually human
constructed representations of a domain, capturing key entities
and relationships and distilling the knowledge into a concise
machine readable format [40]. There is a need for consistency
when discussing concepts like diseases and gene functions which
can be interpreted in multiple ways.

Ontology overviews
This section details the major ontologies which are relevant for
drug discovery tasks, detailed in Table 1. Note that a full review is
beyond the scope of this work and interested readers are referred
to a dedicated review [41].

Disease ontologies
Due to the complexities associated with properly defining, cate-
gorizing and linking diseases, a large number of ontologies have
been developed. Prominent examples include the Medical Sub-
ject Headings (MeSH) [43], Human Disease Ontology (DO) [45],
Human Phenotype Ontology (HPO) [44] and Monarch Disease
Ontology (Mondo) [42]. These typically differ in their intended
use-case, for example DO was designed to help in the linking
of different datasets, MeSH was created to aid in the indexing
of MEDLINE/PubMed articles, HPO describes the phenotypes (the
observable traits) of disease and Mondo was designed to harmo-
nize disease definitions between other ontologies.

Gene-related ontologies
The function of genes and associated products is also frequently
captured in ontologies, with common ones used in the construc-
tion of biomedical KGs such as Gene Ontology (GO) [46]. GO
focuses on defining gene activity on the molecular level, linking
genes to locations in the body where its function is performed
and establishing links between genes and biological processes. In
contrast, DTO focuses on linking gene products in relation to drug
discovery considerations such as druggability.

Integrator ontologies
The Experimental Factor Ontology (EFO) was created by the Euro-
pean Bioinformatics Institute to provide a systematic description
of experimental variables available in its databases including dis-
ease, anatomy, cell type, cell lines, chemical compounds and assay
[47]. The Open Targets Platform uses EFO to provide the descrip-
tion, phenotypes, cross-references, synonyms, ontology and clas-
sification for annotating disease entities.

Exemplar drug discovery datasets
In this section, we introduce some of the key resources providing
information on crucial entities within drug discovery: genes and
gene products, disease and drugs, as well as sources capturing the
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Table 1. An overview of ontologies suitable for use in drug discovery

Ontology name Primary
domain

Classes Number of
properties

Max depth Licence Update
frequency

Monarch Disease Ontology
(Mondo) [42]

Diseases 24K 25 16 CC BY 4.0 Monthly

Medical Subject Headings
(MeSH) [43]

Medical
terms

300K 38 15 Custom Annually

Human Phentoype Ontology
(HPO) [44]

Disease
phenotype

19K 0 16 Custom Bimonthly

Disease Ontology (DO) [45] Diseases 19K 4 33 CC0 1.0 Monthly
Gene Ontology (GO) [46] Genes 44K 11 − CC BY 4.0 Monthly
Experimental Factor
Ontology (EFO) [47]

Integrator 28K 66 20 Apache 2.0 Monthly

Table 2. Overview of integrated drug discovery resources

Dataset First
released

Update
frequency

ELIXIR
core

Data access Commercial
use

Summary

Open Targets
Platform [49, 50]

2016 > Quarterly � GraphQL, REST,
Python, Flat files

� Resource focused for target discovery.
Contains information from 20 data
sources including UniProt, Reactome
and ChEMBL.

Pharos [51] 2014 approx
Monthly

� GraphQL � Front end for the TCRD database for
the drugable genome. Contains
information from ChEMBL, STRING
and UniProt.

Figure 4. Dataset taxonomy.

relationships between them via interactions, pathways and pro-
cesses. A taxonomy of these datasets is presented in Figure 4 and a
description of each is provided in the Supplementary Material S2.
We now detail key resources for each of these entities and explore
what information could be extracted from the datasets for use in
biomedical KGs.

Note on tables: Tables 2, 3, 5, 7, 9 and 11 compare datasets on
when they were first released, how regularly they are updated,
ELIXIR core resource [48] status (ELIXIR is a pan-European orga-
nization dedicated to detailing best practices for biomedical data
and enabling stable funding. Core resources are datasets identi-
fied as crucial to the life science industry and of high scientific

quality [48], thus we indicate those resources given this status.)
and if free commercial use is allowed.

Integrated drug discovery resources
Table 2 outlines resources which are tailored specifically for the
drug discovery field. Typically, these resources combine entity-
specific data sources and add additional information useful for
the domain. These resources can also be useful as a reference
point for some best practices with regards to data handling and
integration.

Gene and gene products
Genes and gene products (i.e. transcripts, proteins) are the key
entities related to drug discovery and as such there are numerous
rich public resources related to them. The gene and gene product
datasets are summarized in Table 3.

Table 4 summarizes the potential types of relations and fea-
tures which could be extracted from the gene and gene product
resources. The table highlights that many of these resources
contain rich information which could be mined for gene level fea-
tures, be that from the gene or protein sequence (the sequence of
nucleic or amino acids represented as base pair letters which can
be mined to form a representation [56]), structure (the structure
the protein forms once folded) or expression level (to what level
is the gene expressed in different tissue types). The table also
shows these resources to be good for extracting gene or protein
interactions, as well as links to functional annotations via links to
Gene Ontology (GO).

Interactions, pathways and biological processes
We now detail the resources specializing in the linking of the
entities through interaction, processes and pathways. The inter-
action resources are presented in Table 5, while the processes and
pathways resources are detailed in Table 7.
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Table 3. Primary data sources relating to genes and proteins.

Dataset First
Released

Update
Frequency

ELIXIR Core Data Access Commercial
Use

Summary

UniProtKB [52] 2003 8 Weeks � REST, Python,
Java, SPARQL

� Primary protein resource. Can be mined
for protein–protein interactions and
protein features.

Ensembl [53] 1999 3 Months � REST, MySQL
dump

� Primary source for gene and transcripts.
Gene–gene and gene–disease
relationships can be extracted, as well as
many gene-based features.

RNAcentral [54] 2014 3–6 Months � REST, Flat file � One of the primary sources of
non-coding transcript data.

Entrez Gene [55] 2003 Daily � Flat file � Another primary gene data resource.
Used in existing KGs for gene entity
annotations.

Table 4. Comparing gene (G) and gene product (GP) resources on what relational information and entity-level features they provide.

Potential Relations Potential Features

Dataset G/GP-G/GP Gene–Protein G/GP-GO Sequence Structure Expression

UniProtKB [52] � − � � � �
Ensembl [53] − � � � � �
RNAcentral [54] − − � � � −
Entrez Gene [55] � − � � � �

Table 5. Primary data sources relating to interactions.

Dataset First
Released

Update
Frequency

ELIXIR
Core

Data Access Commercial
Use

Summary

STRING [57] 2003 Monthly � REST, Flat file,
edgelist

� One of the most commonly used sources
for physical and functional
protein–protein interactions in existing
KGs.

BioGRID [58] 2003 Monthly � REST, Flat file,
edgelist, Cytoscape

� Contains interactions between gene,
protein and chemical entities with could
be included directly in a KG.

IntAct [59] 2003 Monthly � Flat file � Contains molecular reactions between
gene, protein and chemical entities. Uses
UniProt for identifiers.

OmniPath [60] 2016 > Annually � REST, Flat file,
Cytoscape, Python, R

� An integrator of interaction resources
that could be included in a KG via its RDF
version.

Table 6. Comparing interaction resources on what relational information and features they provide.

Potential Relations Potential Features

Dataset Gene–Gene Protein–Protein Gene–Protein Gene–Drug Protein–Drug Types Weightings

STRING − � − − − � �
BioGRID � − − � − � �
IntAct − � � − � � �
OmniPath � � � � � � �

Table 6 summarizes the potential relations types and features
which could be extracted from the interaction resources. The
table shows these data sources to be a rich potential for mining
gene–gene or protein–protein interactions, with resources like
IntAct and BioGrid also being suitable for extracting relations
between gene products and compounds. All of the resources are
also suitable for extracting features from the included weightings

between the interactions or by providing different types or levels
of interaction.

Pathways
Pathway resources comprise expert-curated subsets of inter-
actions that are relevant for a given biological processes (e.g.
apoptosis) or pathogenic mechanisms that lead to disease. There
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Table 7. Primary data sources relating to pathways and processes.

Dataset First
Released

Update
Frequency

ELIXIR Core Data Access Commercial
Use

Summary

Reactome [62] 2003 > Annually � Neo4J, Flat files � A core resource for pathways and
reactions. Amiable for graph
representation and already included
in several KGs.

WikiPathways [63] 2008 Monthly � REST, SPARQL,
RDF, Python, R,
Java

� A crowdsourced collection of
pathway resources. Also provided in
graph amiable formats.

KEGG Pathways [64] 1995 Bi-Annually � REST, R, Python � A highly influential resource for
pathways. Free use is limited to
academic work only.

Table 8. Comparing pathway resources on what relational information and features they provide.

Potential Relations Potential Features

Dataset Protein–Protein Gene–Pathway Drug–Pathway Graph
Representation

Text Description

Reactome � � � � �
WikiPathways − � − � �
KEGG Pathways − � � � �

Table 9. Primary data sources relating to disease.

Dataset First
Released

Update
Frequency

ELIXIR Core Data Access Commercial
Use

Summary

KEGG DISEASE [65] 2008 Monthly � REST, Flat file � A comprehensive disease resource for
viewing disease as part of a biological
system. Access is restricted for industrial
use.

DISEASES [66] 2015 Daily � Flat file � A resource detailing links between genes
and diseases. Already commonly used in
drug discovery KGs.

DisGeNET [67] 2010 Annually � REST, SPARQL,
SQL, Flat tile,
R, Cytoscape

� One of the most frequently used disease
sources in existing KGs. Contains a mix of
resources including experimental and
text-mined data.

OMIM [68] 1987 Daily � REST, Flat file � One of the oldest disease databases,
focusing upon mendelian disorders. Can
provide gene-disease relationships.

GWAS Catalog [69] 2008 Biweekly � REST, Flat file � Contains the results from GWAS studies
which could be used to provide less studied
links between genes and diseases into a KG.

are implicit biases in the definitions which have been shown to be
mitigated by harmonizing and combining their definitions when
possible [61].

Table 8 summarizes the potential types of relations and fea-
tures which could be extracted from the pathway resources. The
table shows all resources can be mined for gene-pathway links,
with Reactome and KEGG Pathway also providing links from drugs
to affected pathways. The table also highlights how all of the
resources contain text descriptions of the pathways, as well as
a graph-based representation which could further be mined for
features.

Diseases
Key resources containing information on diseases are detailed in
Table 9.

Table 10 summarizes the potential relations and features
which could be extracted from the disease resources. The table
shows that unsurprisingly establishing gene to disease links is
the primary focus of these resources. However, KEGG DISEASE
could also be used to extract links from disease to both drugs
and pathways, while DisGeNET also provides disease–disease
similarity links. All of the resources provide some level of evidence
for the links, while KEGG DISEASE and OMIM contain text
descriptions which could be mined for features.

Drugs and compounds
Key datasets containing information relating to drugs and com-
pounds are detailed in Table 11.

Table 12 summarizes potential relations and features which
could be extracted from the drug resources. The table shows
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Table 10. Comparing disease resources on what relational information and entity-level features they provide.

Potential Relations Potential Features

Dataset Disease–Disease Disease–Gene Disease–Drug Disease–Pathway Text Description Evidence

KEGG DISEASE − � � � � �
DISEASES − � − − − �
DisGeNET � � − − − �
OMIM − � − − � �
GWAS Catalog − � − − − �

Table 11. Primary data sources relating to drugs.

Dataset First
Released

Update
Frequency

ELIXIR
Core

Data Access Commercial
Use

Summary

ChEMBL [70] 2009 > Annually � REST, SQL
dump, SPARQL

� One of the primary resources for drug-like
molecules. Could provide relational information
between gene and drugs.

PubChem [71] 2004 As Sources
Are

� REST, Flat file,
SPARQL

� A comprehensive integrator of other chemical
resources provided in RDF format, enabling easy
incorporation into a KG.

DrugBank [72] 2006 > Annually � REST, Flat file � A rich source of drug, disease and gene information.
Free use is limited to academic work only.

DrugCentral [73] 2016 Annually � SQL, Flat file � A collection of drug information extracted from
literature and other sources. A potential source of
drug features.

BindingDB [74] 1995 Weekly � REST, Flat file � A data resource of target protein and compound
information. Already incorporated in existing KGs.

RepoDB [75] 2017 No Set
Schedule

� Flat file � A resources of drug to disease links containing both
successful and failed examples. A rare source of
negative information.

Table 12. Comparing drug resources on what relational information and entity-level features they provide.

Potential Relations Potential Features

Dataset Drug–Drug Drug–Gene Drug–Disease Drug–Pathway Text Description Structure Attributes

ChEMBL − � − − − � �
PubChem � � − � � � �
DrugBank � � − − � � �
DrugCentral − � � − − � �
BindingDB − � − − � � �
RepoDB − � − − − − −

all the resources focus on providing links between drugs and
genes, with PubChem and DrugBank being sources of drug–drug
interactions and DrugCentral providing potential drug–disease
linkages. Almost all of the resources provide compand structure
information (Usually in SMILES format which can be used to learn
a representation [76]) and numerical attributes (molecular weight
for example). KEGG DISEASE and OMIM also provides text-based
descriptions of the drugs which could be mined.

Dataset evaluation
We now summarize the key comparison points we have identified
in our consideration of the highlighted datasets.

Data trust
Table 13 highlights the different types of information in the
resources, in addition to information pertaining to the level of
annotation available. Resources are compared as to whether
they are curated by human experts, if information is taken from

some form of experimental evidence or predicted and automated
pipelines, and if the dataset contains information extracted
from other primary resources. Resources are also compared
if the province of the information is available (linking to the
original manuscript or source), if any form of confidence weight
is provided on the information and the directionality of potential
edges that could be mined. The table shows that many of the
covered resources have some level of human curation but it
should be noted that this does not guarantee the accuracy of
the information, as human bias and error can still be a factor. The
table also highlights that predicted and automatically derived
data are contained within many key resources such as STRING
and DisGeNET, something to be cognizant of when including these
in a KG. There are also various integrator resources available, like
Omnipath and PubChem, which aggregate other primary datasets.
While caution is needed around potential replicated knowledge,
they offer a way for KGs to incorporate diverse information from
a single resource.
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Table 13. Comparing sources and annotations for the primary resources.

Data Sources Annotations

Dataset Expert Curated Experimental
Evidence

Predicted and
Automated

Integrator
Resource

Provenance Confidence Directionality

UniProtKB � � � − � � Undirected
Ensembl − � � − � − Undirected
RNAcentral − − − � � − Mix
Entrez Gene � � − − � − Undirected
STRING � � � − � � Undirected
BioGRID � � − − � � Mix
IntAct � � − − � � Undirected
OmniPath − − − � � − Mix
Reactome � � � − � � Mix
WikiPathways � � − − � − Mix
KEGG Pathways � � − − � − Mix
KEGG DISEASE � � − − � − Mix
DISEASES � � � − � � Undirected
DisGeNET � � � − � � Undirected
OMIM � � − − � − Undirected
GWAS Catalog � � − − � � Undirected
ChEMBL � � � − � � Undirected
PubChem � � − � � − Mix
DrugBank � � − − � − Undirected
DrugCentral � � � − � − Undirected
BindingDB � � − � � � Undirected
RepoDB − � − − � − Undirected

Relation mining
Figure 5 shows how the different resources covered in this review
could be used to link key entities within a KG. The figure highlights
how certain relation types are overrepresented by the datasets,
with Gene–Gene and Gene–Drug having many potential sources.
Care should be taken to avoid duplicated edges if many of
these resources are used in graph composition. The figure also
highlights where information is lacking, with Disease–Pathway
links only being present in one source. It is also interesting
to note that many of the resources detailed here are already
provided in some form that is amenable for ingestion into a KG—
either as edgelists or by providing RDF versions. This reduces the
complexity of incorporating the resources as any issues arising
from parsing and formatting process are avoided.

Graph enrichment
There are many primary data sources which capture more infor-
mation about key entities within drug discovery than just rela-
tional interactions. UniProtKB, for example, details numerous
sequence and functional properties of proteins which may not
be captured by relations alone. However, thus far, this wealth of
information is under-explored and could be used to greatly enrich
a KG with more domain knowledge. Of course this would come
at the potential cost of some level of manual feature engineering
being required—an often complicated, domain-specific and iter-
ative process by itself, and one that much of the research into
representation learning is attempting to avoid [77, 78].

Untapped resources
Finally, there are resources specific to drug discovery, such as
OpenTargets and Pharos, which have thus far not been incorpo-
rated into any public KG. However, they are not currently provided
in a format enabling easy incorporation into a KG, meaning that
some manual conversion process is required. Yet, they still hold

great potential as a way to create a more drug discovery focused
resource.

Existing biomedical knowledge graphs
This section highlights the few existing KGs covering various
aspects of the drug discovery process. A selection of the most
relevant resources is summarized in Table 14. A selection of other
biomedical graphs and construction resources is detailed in Sup-
plementary Material S3.

Biomedical knowledge graphs overviews
Hetionet v1.0. One of the first attempts to create a holistic KG
suitable for various tasks within drug discovery was Hetionet [18].
Hetionet was developed as part of project Rephetio, a study look-
ing at drug purposing through the use of KG-based approaches.
The graph is publicly available3 and is provided as a Neo4j [83]
dump, as well as in JSON and edge list. The underlying data
are mined from sources including Entrez Gene [55], DrugBank
[84], DisGeNET [85], Reactome [62] and Gene Ontology [86]. The
thresholds for the edges are not included in the graph, instead the
preselected values are detailed in the accompanying paper [18].

From the time of writing, Hetionet has not been updated since
2017, although a project called the Scalable Precision Medicine
Oriented Knowledge Engine (SPOKE) [87] looks to update Hetionet
with extra data sources. However, to date, this updated resource
has not been made publicly available, thus it has been excluded
from our review.

Drug Repurposing Knowledge Graph. The Drug Repurposing
Knowledge Graph (DRKG) [13] is a resource which builds upon
Hetionet by integrating several additional data resources and was
originally developed as part of a project for drug repurposing to

3 https://het.io/
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Figure 5. Dataset usage for relations to link entity types in a simplified drug discovery knowledge graph schema.

Table 14. Pre-existing knowledge graphs suitable for use in various drug discovery applications.

KG Dataset Design Usecase Entities Triples Entity
Types

Relation
Types

Contains
Features

Constituent
Datasets

Version
Info

Last
Update

Hetionet [18] Repurposing 47K 2.2M 11 24 � 29 � 2017
DRKG [13] Repurposing 97K 5.7M 13 107 molecular

embeddings
34 � 2020

BioKG [79] General 105K 2M 10 17 categorical 13 � 2020
PharmKG [80] Repurposing/Target

Prediction
7.6K 500K 3 29 continuous 7 � 2020

OpenBioLink [81] Benchmark 184K 4.7M 7 30 � 17 � 2020
Clinical Knowledge Graph [82] Personalized

Medicine
16M 220M 35 57 � 35 � 2020

target COVID-19 [88]. The dataset is aligned with the Deep Graph
Library (DGL) package for graph-based machine learning [89], with
pre-trained embeddings being provided from the package with the
dataset. The data are publicly available (https://github.com/gnn4
dr/DRKG.) and provided in edgelist format.

DRKG has enriched Hetionet with recent COVID-19 related
data from STRING [57], DrugBank [84] and GNBR [90]. DRKG also
includes pre-computed GNN-based embeddings for molecules,
however no other entities have associated features.

BioKG. BioKG is a project for integrating various biomedical
resources and creating a KG from them [79]. As part of the
project, various tools are provided to enable a simplified KG
construction process. A public pre-made version of the graph is
available (https://github.com/dsi-bdi/biokg) , as well as the code
for building it.

The data which make up BioKG is taken from 13 different data
sources, including UniProt [52], Reactome [62], OMIM [68] and
Gene Ontology [86]. One interesting aspect of BioKG is that a small
number of categorical features are provided with some of the

entities. For example, drug entities are enriched with information
pertaining to any associated negative side effects.

PharmKG. The PharmKG project had the goal of designing
a high-quality general purpose KG and associated GNN-based
model for use within the drug discovery domain [80]. Table 14
shows that compared with others highlighted in this section,
PharmKG is compact, containing entities of just three types:
chemical, gene and disease.

The data are integrated from seven sources including OMIM
[68], DrugBank [72], PharmGKB [91], Therapeutic Target Database
(TTD) [92], SIDER [93], HumanNet [94] and GNBR [90]. A filtering
process is then applied to ensure that only high-quality knowl-
edge is kept. One unique aspect is that numerical features are
provided with all the entities. Such features include chemical
connectivity and other physiochemical features for the chemi-
cal entities, the use of BioBERT [95] to create features for the
disease entities and a reduced expression matrix to create a
feature vector for gene entities. The unfiltered PharmKG graph
is available to download (https://github.com/MindRank-Biotech/
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Figure 6. Sankey diagrams showing relationship between entity and relations in the KGs. Line thickness equates to entity volume. Note that for the
relations, the value is the sum of all relation types between the two entities.

PharmKG), however at the time of writing, the entity features
vectors have been released.

OpenBioLink. OpenBioLink (OBL) is a project to allow for
easier and fairer comparison of KG completion approaches
for the biomedical domain [81]. As part of the project, a
benchmark KG has been created covering aspects of the drug
discovery landscape. The dataset is publicly available (https://
zenodo.org/record/3834052) and is provided in edgelist and RDF
formats.

Data are taken from 17 datasets including STRING [57], Dis-
GeNET [85], Gene Ontology [86], CTD [96], Human Phenotype
Ontology [97], SIDER [93] and KEGG [98], among other resources.
Of interest is that OpenBioLink contains additional true negatives
for a selection of relation types, meaning that this relation was
explicitly detailed not to exist. This can be used to avoid the
issues inherent with the choice of negative sampling strategy
when training KG embedding models [99].

Clinical Knowledge Graph. The Clinical Knowledge Graph
(CKG) builds upon previous benchmark KGs but with additional
focus on -omics data [82]. Its relations come from 25 databases and
10 ontologies, many of which overlap with previous examples
but notably include protein state information such as post-
translational modifications from PhosphoSite [100]. The CKG
GitHub repository (https://github.com/MannLabs/CKG/) not
only provides code for rebuilding the graph, but also tools for
uploading it into Neo4J as well as visualization and exploration in
Jupyter Notebooks. However, CKG cannot redistribute many of its
constituent datasets because of licensing restrictions.

Comparative analysis of KG resources
We now present a comparative analysis of the KGs by considering
graph composition choices, dataset usage and documentation
levels. (Note that we exclude CKG from much of this analysis
due to licensing limitations.) This analysis is undertaken to better
understand the types of drug discovery problems each graph is
suitable for addressing, as well as allowing interpretation of the

level of trust that can be placed in each graph through explo-
ration of dataset province. We believe this is the first time these
resources have been compared and contrasted in the literature.

Graph composition: entities
Table 15 highlights which entity types are included in the KGs as
well as offering a fine-grained view of how larger concepts like
gene-products are modelled, while Figure 6a shows the amount of
these different entities present across the KGs. These show that
the KGs take differing approaches to how entities are modelled
and the volumes included, which in turn could determine for
which task they are best suited. Overall, the different KGs share
only three common entities: gene products (be that genes or
proteins), compounds and disease. As these are the core entities
involved in drug discovery, this is no surprise. Pathways are also
frequently included, with only PharmKG leaving them absent.
BioKG and CKG are the only resources to model at the level of
proteins instead of genes, while BioKG is the only resource to
split genetic disorders from diseases. It can also be seen that
Hetionet (and DRKG by virtue of it being an expanded Hetionet)
captures more ancillary information compared with other KGs in
the form of entities such as drug side effects, disease symptoms
and various gene-level annotations, and thus might be well suited
for tasks which could benefit from more fine-grained information.

Table 16 highlights the identifiers used by the KGs for key
entities. Typically, entities of a certain type are represented using
one of the two choices of identifier, with pathways having the
lowest level of consistency. Knowing which identifiers are used
allows additional sources of information to be joined onto the
graphs with greater ease.

Graph composition—relations
Table 17 shows the number of different relationship types in the
KGs between key entity pairs. The table highlights the different
nuance with which the relationships are modelled. It is clear that
there is a large variation in what an edge between entity pairs is
actually representing. However, note that the values for DRKG are

D
ow

nloaded from
 https://academ

ic.oup.com
/bib/advance-article/doi/10.1093/bib/bbac404/6712301 by C

halm
ers U

niversity of Technology / The M
ain Library user on 21 O

ctober 2022

https://github.com/MindRank-Biotech/PharmKG
https://zenodo.org/record/3834052
https://zenodo.org/record/3834052
https://github.com/MannLabs/CKG/


12 | Bonner et al.

Table 15. Comparison of a subset of entity types named across the knowledge graphs.

Gene Products Compounds Disease

KG Dataset Gene Proteins Transcripts Drugs Chemicals Disease Genetic
Disorder

Anatomy Pathways Side Effect Symptoms

Hetionet � − − � − � − � � � �
DRKG � − − � − � − � � � �
BioKG − � − � − � � − � − −
PharmKG � − − � � − − − −
OpenBioLink � − − � − � − � � − −
CKG � � � � − � − − � − −

Table 16. Entity identifiers used in the different knowledge graphs. Multiple IDs being present means all are used as entity identifiers
within the graph.

KG Dataset Gene/Products Compound Disease Pathways

Hetionet Entrez GeneID DrugBank AN DOID Custom
DRKG Entrez GeneID DrugBank AN MeSH Custom
BioKG UniProt DrugBank AN MeSH Reactome/KEGG
PharmKG Entrez GeneID PubChem ID MeSH �
OpenBioLink Entrez GeneID PubChem ID DOID Reactome/KEGG

Table 17. The number of relation types between entities across the KGs.

KG Dataset Gene–Gene Gene–Disease Gene–Drug Drug–Drug Drug–Disease

Hetionet 3 3 3 1 2
DRKG 32 15 34 2 10
BioKG 1 1 5 1 1
PharmKG 1 6 7 1 6
OpenBioLink 10 1 10 � 1

inflated as the data source is captured in the relationship name.
Considering the relation granularity can further help guide on KG
task suitability. For example Hetionet and OpenBioLink both have
multiple relationship types between gene entities, while other KGs
have only one, perhaps indicating these to be good choices if a
complex understanding of gene interaction is required, whereas
OpenBioLink would not be the graph to use if interaction between
drugs was crucial to the task as it has no drug–drug edges.
Overall, some general trends are observable regarding relation
modelling choices. For example, BioKG tends to use only a single
relation type, while PharmKG, despite its smaller overall size,
often chooses to have multiple types. Additionally, it can be seen
in Table 17 that drug entity pairs are consistently modelled as only
a single relation type across the graphs.

Figure 6b displays the volume of each relation category con-
tained within the graphs and shows a marked difference between
the KGs. For example, DRKG has a large number of both Gene–
Gene and Drug–Drug edges in comparison with other types, while
OpenBioLink chooses to include more gene interactions and BioKG
has a large number of drug interactions. Overall, Gene–Gene
and/or Drug–Drug relations form the majority in many of the
KGs. This has the potential to cause issues for tasks like target
discovery, which relies on gene to disease connections, as there
tend to be fewer examples in the graph. Thus, any model training
on top of these graphs will have fewer to learn from, potentially
leading to suboptimal predictive performance.

Underlying dataset use
Figure 7 represents dataset use in the KGs for a series of key
relationship types, where the typed edges indicate relations are

Figure 7. The relationship between drug discovery knowledge graphs and
underlying data sources. Relationships are presented for five major rela-
tion categories: Gene–Gene (σ ), Gene–Disease (μ), Gene–Drug (λ), Drug–
Drug (θ ) and Drug–Disease (γ ).

taken from that dataset. PharmKG and CKG are missing as it
was not possible to determine the data sources used for the
relations. The figure shows that the KGs utilize many of the same
underlying datasets, with DrugBank for example being used in
the majority of the graphs, with often multiple relationship types
being extracted from it.

Considering the difference in dataset usage, we can see some
of the choices made during the composition pertaining to the
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KGs intended use cases. For example, DRKG extracts four dif-
ferent relationship types from the text mining-based GNBR [90]
dataset, while no other KG uses any. The creators of DRKG must
have deemed these lower confidence edges useful for discovering
potential repurposing candidates for COVID-19. It can also be seen
that Hetionet tends to use multiple smaller datasets to build a
single relation type, the gene–disease edges use three for example.
Hetionet also differs in that its drug–disease edges do not come
from larger aggregator resources DrugBank or DrugCentral used
by the other KGs. In contrast, OpenBioLink has a one-to-one
mapping between dataset and relation type and makes use of
larger resources like STRING and STITCH, perhaps showing its
intended benchmark use.

Figure 7 also highlights some of the pitfalls of mining multiple
resources for relations of the same type. DRKG extracts gene–
gene interaction edges from both IntAct and STRING, which could
result in duplicated edges being present as both datasets contain
many of the same interactions. Without care during the compo-
sition and evaluation process, this could lead to situations where
training edges used in a model could also potentially be used for
evaluation.

Evaluation of documentation quality and reproducibility
Table 18 presents our evaluation of the documentation quality (be
that from the original paper, supplementary material, code reposi-
tory or website) and overall reproducibility of the KGs. The graphs
are evaluated using the following criteria, where the documen-
tation quality categories are scored from one to three—Schema
Overview: Is the graph schema design well explained and justified?
A score of three means all entity and relation types detailed in full,
two means the schema is outlined but not fully justified and one
means only basic details are provided. Dataset Filtering: Is there a
clear description of how the underlying datasets were filtered? A
score of three indicates filtering thresholds detailed enough for
reproducibility, two means that some description is provided but
not enough to reproduce the work and one means that only a
limited amount of information is provided. Relation Explanation:
Is the meaning behind relations well explained? A score of three
indicates each relation type is fully explained and linked to the
source dataset, two means that either a full relation explanation
or source dataset mapping was missing and one means that
no mappings were provided. Updates: Are any future planned
updates detailed? Data-Relation Mappings: Is it possible to map
edges directly back to the underlying data sources? Construction
Code: Is code available to construct the graph? Licence Info: Are
underling dataset licences detailed?

Table 18 highlights that, despite being the oldest resource,
Hetionet remains the KG with the highest overall level of docu-
mentation quality. Regarding reproducibility, two of the KGs did
not provide code to recreate the graphs from the source datasets.
It was also interesting to note that none of the resources provided
any details on whether they would be updated going forward.
Overall, it is clear that further work needs to be undertaken to
improve documentation and reproducibility which will aid in both
increasing trust and also ease of use of future KG resources.

Shortcomings of existing KG resources
When looking at these existing KG as a whole, we can identify the
following shortcomings:

• Lack of Updates—None of the detailed KGs have any form of
maintenance or update schedule in place. This means they

will become increasingly out of date as the underlying data
resources continue to evolve.

• Lack of Detailed Documentation—Some of the resources are not
properly documented, missing clear justifications for some
of the design choices, not including crucial information for
reproducibility such as threshold information and lacking
clear mappings back to the source datasets. This makes the
graphs more challenging to use in tackling real-world prob-
lems.

• No Dataset Version Information—Many of the resources do not
detail from which version or year of a certain dataset the
information has been collected.

Case studies
In this section, we highlight case studies from the literature,
detailed in Table 19, where KGs have been successfully exploited
in drug discovery. We detail the successes, as well as analyse areas
for further improvement. Note that an extra study is given in
Supplementary Matetial section 4.

Polypharmacy prediction
The problem of adverse side effects that arises through the use of
Polypharmacy (the use of more than one drug simultaneously to
treat one or multiple conditions) has been modelled through the
use of a KG and a novel GNN-based model entitled Decagon [19].

Graph Composition. The KG constructed was actually bipartite,
containing only drug (over 900 unique entities) and protein (over
19K unique entities) entities [19]. These are linked through 964
unique edge types between drug–drug pairs, representing the
various types of adverse side effects and a single edge type
used to represent drug–protein and protein–protein interactions.
Compared with the existing public KGs (Section 5), this graph
places a lot of its complexity in the relation types, which has the
potential drawback of limiting the amount of each seen during
model training. Also, unlike the existing public KGs, the graph is
limited to just two entity types, suggesting disease or pathway
information was deemed unimportant.

Underlying Datasets. Data were extracted from protein-centric
databases like BioGRID [103], STRING [57], STITCH [104], as well as
drug-centric resources like SIDER [93], OFFSIDES and TWOSIDES
[105], with much of the processed data being available in the
BioSNAP project. Additionally, the graph is enriched with features
on only the drug vertices containing descriptive single drug side-
effect information.

Model. The model encoder, similar to a Relational Graph Con-
volutional Network (R-GCN) [106], uses a separate parameter
matrix for each edge type to learn relational aware vertex level
embeddings. These embeddings are then input into a tensor
factorization-based decoder to directly predict potential negative
drug–drug interactions via link prediction. The presented results
show that compared with non-graph specific and homogeneous
models, Decagon is better able to predict existing, and even pro-
pose novel, drug–drug interactions.

Gene–disease prioritization
The task of gene prioritization has been addressed via the use
of a KG [102]. The overall approach, entitled Rosalind, details the
construction of a knowledge graph and the choosing of a suitable
model. The work proposes that the disease–target identification
problem can be modelled as a link prediction task where the
prediction of an edge between a disease and a gene entity would
indicate possible association between the two.
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Table 18. Comparing documentation levels and reproducibility across the KGs. Documentation quality is scored on scale of 1 to 3.

Documentation Reproducibility

KG Dataset Schema
Overview

Dataset
Filtering

Relation
Explanation

Updates Overvierw Data-Relation
Mappings

Construction
Code

Licence
Info

Hetionet ��� ��� ��� � Graph creation process
well documented and
design choices well
explained.

� � �

DRKG �� � �� � Dataset usage well
documented but graph
creation details lacking.

� � �

BioKG �� � �� � Overall good, could be
improved by more details
on construction choices

� � �

PharmKG � �� �� � Dataset to relation
mapping not detailed but
graph creation process
explained.

� � �

OpenBioLink ��� �� �� � Well documented but
relations could be better
explained.

� � �

Table 19. An overview of drug discovery related approaches in the literature employing the use of KGs.

Dataset Information

Approach Domain Model Prediction
Task

Entites Relations Entity Types Relation
Types

Num Datasets
in Graph

Decagon [19] Drug–Drug
Interactions

Relational
GCN with
tensor
factorization
decoder

Link
Prediction

19.6K 5.3M 2 964 ≈7

TriModel [101] Drug–Target
Interactions

Tensor
factorization

Link
Prediction

5K 12K 11 26 3

Rosalind [102] Disease–Gene
Prioritization

Tensor
factorization

Link
Prediction

319K 2.6M 5 11 ≈15

Graph Composition. The Rosalind KG comprises five entity type
(genes, compounds, diseases, bio-processes and pathways) linked
via 11 relation types. As such, Rosalind most closely resembles
existing KGs like Hetionet and BioKG in structure. Of note is that it
captures some of the subtlety around disease–gene prioritization,
as ideally the model would predict which genes have some causal
effect on the disease, not just an association. In Rosalind, they use
two different types of edge between disease and gene entities—
one indicating association and the other therapeutic links (a drug
exists targeting the gene to help alleviate disease). However, to
date, the authors have not released the KG, making reproducibility
challenging.

Underlying Datasets. The Rosalind KG is constructed from many
of the datasets detailed in this review. For example, the graph
incorporates disease information from resources like DisGeNET,
OMIM and GWAS Catalog, interaction information from BioGRID,
pathway information from Reactome and compound information
from ChEMBL.

Model. The model chosen for the work is the ComplEx ten-
sor factorization approach [107]. The evaluation of the approach
demonstrates that it outperforms competing methods, including

OpenTarget [50], by as much as an extra 20% of recall when
predicting potential gene–disease relationships over 198 diseases.
Model performance is evaluated only on this therapeutic edge
type. Additionally, results are presented on a time-slices graph,
where the model is trained on historical data and predictions are
made on future edges. This is attempting to replicate the task
we would ideally want performed—using the currently available
knowledge to predict currently unknown information, in this case,
unknown relationships between genes and diseases.

Evaluative summary
These case studies have highlighted the potential and successes of
KGs aiding in a diverse set of drug discovery tasks. However, there
are still areas for improvement regarding aspects of underlying
data use and graph composition. Thus, we make the following
observations:

• Composition. The composition of the KGs in these studies
varies dramatically regarding entity and relation type quanti-
ties. This suggests there is not yet a consensus on the optimal
way to compose drug discovery KGs for use in ML pipelines.
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• Dataset Usage. These studies use many of the datasets covered
in this review to build their KGs. However there is still variety
in where common relationship types are extracted from and
usually no justification as to why a certain source was cho-
sen.

• One graph to rule them all? It is striking that none of
the approaches utilize an existing KG. Instead, custom
task-specific graphs are still typically created, perhaps
highlighting the challenge in creating a single KG to address
all possible tasks within drug discovery.

Future challenges and key issues
While there has been significant progress made in the field, there
are still numerous open challenges and issues to be addressed.
In this section, we detail major areas still needing improvement,
which could help produce better drug discovery KGs.

Graph Composition. Constructing a useful KG for use in the
drug discovery domain is still a challenging problem, especially
when performed by non-domain experts. Many choices must be
made when transforming a data source into a graph, especially
if it is not relational by nature. Here, there is however great
scope for interdisciplinary collaborations between domain scien-
tists and KG and machine learning researchers. Additionally, we
would like to see more high-quality pre-constructed KGs, designed
and validated by domain scientists, be made available for use
by researchers. Further, creating graph construction toolkits, in
which source datasets can be parsed in a unified and reproducible
manner, would enable simpler creation of bespoke KGs. Addition-
ally, the field should consider establishing common composition
workflows with associated quality metrics. Such metrics could
include a measure of triple uniqueness to help assess the impact
for information bleed and adherence to included ontology hierar-
chies.

New Data Modalities. The continued evolution of computa-
tional methods means that new types of data modalities are being
generated which could potentially be incorporated into a drug
discovery KG. For example, predictions resulting from AlphaFold2
[2] could be converted into relational data and included in a graph.
How best to combine predictions from these new modalities
with existing relational resources is an open research question
however.

Data Value. The availability of massive datasets has been
partially credited with enabling the success of recent neural
network models in areas such as computer vision [108]. It might
be tempting then to incorporate as much data as possible into a
drug discovery KG. However, much work still needs to be done in
assessing the benefit of incorporating different data modalities.
The consideration of value can also be extended to a financial
view point: data collection, storage and processing can be expen-
sive, especially if larger datasets do not improve performance in
the task of interest. Another question is whether a single super
graph should be created, which captures all knowledge around
drug discovery, or whether smaller, more task-specific, projections
enable better predictions overall. Ultimately, the value in the
use of a particular dataset will be driven by its contribution
to some downstream objective and as such will require careful
experimentation by practitioners.

Better Metadata. As highlighted throughout the review, many
of the core data resources are typically updated and refined at
frequent intervals. However, many of the pre-existing KGs do not
capture which dataset versions were used during its construction.
Storing this information might allow for better reproducibility, as

well as measure any change in predictive performance as the
underlying knowledge is updated over time. Further, the incor-
poration of a time stamp on each edge capturing the year the
particular interaction was established could allow for interesting
opportunities in model validation and trend prediction. Improved
metadata could also capture if the relationship was taken from an
expert curated, or automated pipeline. Additionally, graphs could
provide common alternative identifiers (for example including
both Entrez and Ensembl identifiers for gene entities) as proper-
ties to enable easier incorporation of additional resources. More
generally, KGs should be managed in accordance with FAIR prin-
ciples [109] to help enable wider sharing and reuse of existing
resource.

Graph Compatibility. In addition to the underlying data
sources adhering to FAIR principles, steps could be taken to
increase their utility for KG practitioners. For example, primary
data sources could expose any relational data in RDF or
other amiable open-source graph formats. Where this is not
possible, example instructions and code could be provided to
demonstrate how the data can be parsed into such formats.
Good documentation, clearly describing the resource and any
associated schemas, is also an invaluable tool in aiding simpler
incorporation into KGs. As previously mentioned, mappings
between any internal identifies and commonly used ones should
be provided. Finally, clear descriptions of changes between dataset
versions can aid practitioners when updating KGs.

Incorporation of Features. Typically many existing KGs are
provided as little more than edge lists, with models trying to make
predictions using this relational information alone. Throughout
this review, we have attempted to highlight where data resources
may be used to add additional features for entities and relations.
However, it is easier to imagine suitable features for certain
entities (proteins and chemicals for example, where structural
information could be incorporated) than others. Additionally, any
potential benefits of incorporating these extra features would
need to be assessed fairly. Nevertheless, we feel that there is scope
for the incorporation of features to enable graph-specific neural
models to be better exploited in the domain, with some recent
promising work being demonstrated in the literature [80].

Addressing Bias. Many biases will be present in a drug
discovery KG and any model being trained upon it may have
its predictive performance skewed away from underrepresented,
but potentially crucial relationships. Even manually curated
resources may incur bias from the person performing the
curation. Practitioners should be aware of these issues and steps
could be taken to mitigate them by, for example, reweighing
the model training process. Additionally, users could consider
removing over represented entities if they are confident that they
are not required in the area of study. The lack of true negative
samples in many graphs also means that the negative sampling
strategy employed can bias the results. Recent inclusion of true
negative samples in a benchmark graph [81] is encouraging,
however where they are not possible to collect, more domain-
aware sampling strategies should be investigated.

Careful Evaluation. Due to the combinatorial ingestion process
used to construct KGs, it is common for edges to be duplicated
if the relationship is captured in more than one source. This can
cause obvious issues when it comes to creating train/test splits for
evaluation if the issues are not considered. Further, the presence
of trivial inverse relationships, many of which may be present,
can also skew performance metrics [110]. It may also be more
useful to assess model performance on more biologically meaningful
data splits, for example by splitting on disease or protein family.
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It could help move the field forward if meaningful splits for key
tasks within drug discovery could be created by experts and made
available for public use.

Uncertainty. So much of the data represented in a biological
KG is uncertain, either due to the nature of the experiment that
generated it, or because it has been automatically mined from the
literature. Yet, this uncertainty is rarely represented in the graph
itself, perhaps leading to a false sense of trust being created by
the presence of certain relationships. We feel that more should be
done to incorporate any uncertainty directly inside the KG. This
could allow methods to directly learn from this information, thus
creating better and more robust predictions.

Reproducibility. As in many areas of machine learning [111–
113], reproducibility of results is still a major issue in the KG field
[114]. It is common for many papers to publish results without
also providing the exact graph constructed to generate them.
We believe further improvements in this area are essential for
continued development in the field.

Conclusion
The use of KGs, combined with machine learning techniques, has
the potential to help address key challenges in the field of drug
discovery, with promising early applications already being demon-
strated in the tasks of drug repositioning, drug–drug interactions
and gene prioritization. In this review, we have presented an
overview of the various key related datasets which could provide
some of the fundamental building blocks for a hypothetical drug
discovery KG. The review has also detailed and evaluated the
range of pre-existing public KGs in the drug discovery domain.
Additionally, we have highlighted the many pitfalls and chal-
lenges of working with drug discovery-based data and signposted
key issues practitioners should consider when choosing suitable
sources.

Our hope is that this review of suitable data sources, combined
with recent works evaluating graph-specific machine learning
models in the context of drug discovery [16], can help guide
researchers from across the KG mining and machine learning
fields in applying state-of-the-art techniques in the field. Overall,
we hope this review can serve as a catalyst in making the drug
discovery domain more accessible, sparking new thought and
innovation, while allowing researchers to more easily address
key tasks within the domain, ultimately helping to improve and
extend human life through new medicines.

Key Points

• Knowledge graphs offer a unified way to exploit the
inherent interconnected nature of the drug discovery
domain and can be used to help inform predictions
about diverse drug discovery tasks including drug repur-
posing and target prioritization.

• However for these knowledge graphs to be truly useful,
they need to be populated with high-quality information
and constructed in a task-specific and suitable manner.

• We detail key data sources, suggest how these could be
utilized to construct high-quality graphs and highlight
potential pitfalls unique to the domain.

• We also present a comparative analysis of the existing
public drug discovery KG resources along with motivat-
ing case studies.

• We conclude with highlighting promising future
research directions for the field.
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