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Abstract 14 

Advances in spatial transcriptomics enlarge the use of single cell technologies to unveil the 15 

expression landscape of the tissues with valuable spatial context. However, computational tools 16 

developed for single-cell transcriptomics have great limits in dealing with spatial transcriptomic 17 

data with high noise on detected transcript signals. Here we propose an unsupervised and manifold 18 

learning-based algorithm, STEEL, which identifies different cell types from spatial transcriptome 19 

by clustering cells/beads exhibiting both highly similar gene expression profiles and close spatial 20 

distance in the manner of graphs. Comprehensive evaluation of STEEL on various spatial 21 

transcriptomic datasets from 10X Visium platform demonstrates that it not only achieves a high 22 

resolution to characterize fine structures of mouse brain, but also enables the integration of multiple 23 

tissue slides individually analyzed into a larger one. STEEL outperforms previous methods to 24 

effectively distinguish different cell types of various tissues on Slide-seq datasets, featuring in 25 

higher bead density but lower transcript detection efficiency. Application of STEEL on spatial 26 

transcriptomes of early-stage mouse embryos (E9.5 to E12.5) successfully delineates a 27 

progressive development landscape of tissues from ectoderm, mesoderm and endoderm layers, 28 

and futher profiles dynamic changes on cell differentiation in heart and other organs. With the 29 

advancement of spatial transcriptome technologies, our method will have great applicability in 30 

high-resolution cell type identification and unbiased spatiotemporal data integration.  31 

 32 

Introduction 33 

Single cell transcriptome sequencing techniques (scRNA-seq), e.g. Drop-seq1, 2, provide 34 

detailed profiles of gene transcription to differentiate cell types in a given tissue3, as well as to 35 

monitor dynamic gene expression changes in various developmental stages with high resolution4. 36 

However, information of the locations of the cells in tissues is lost because of the procedure of 37 

tissue disruption1. This problem is solved by the advent of spatial transcriptome technologies like 38 

Visium platform of 10X Genomics and Slide-seq5, 6, which barcode 10 or 50 𝜇𝑚 beads on rubber-39 
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coated glass to obtain the spatial context in tissues before high-throughput scRNA-seq1. It makes 40 

tremendous improvement on single cell sequencing technology by providing a map of gene 41 

expression for recognition of cell identities7, 8. Alternative strategies, including single molecule 42 

fluorescence in situ hybridization9, 10, 11 and laser capture microdissection sequencing12, are also 43 

capable of recognizing cell identities with spatiotemporal variation13, 14. 44 

Each bead of spatial transcriptomic data contains information of fixed coordinate on slide and 45 

gene expression values with considerable noises and amplification biases due to the deficiency of 46 

current techniques. Clustering single cells15, 16, 17 based on transcription similarities usually 47 

requires substantial quality control on detected signals of gene expression, and dimension 48 

reduction by using PCA, tSNE18 or UMAP19 and etc. Cells/beads clustered are then identified as 49 

known cell types by well-defined marker genes before being positioned back onto the slide to 50 

illustrate their spatial patterns (methods of “clustering before projection” (CBP), Figure 1A). 51 

However, it brings great challenges for bioinformatics to correctly identify different cell types due 52 

to the disturbance of the high noise and amplification bias when dealing with high-resolution spatial 53 

transcriptomic data. Although many efforts have been made20, 21, 22, 23, 24, these methods either 54 

provide limited spatial expression patterns or are very time consuming for analyzing data from 55 

recently developed platforms, e.g. 10X Visium (104 genes × 103 beads) and Slide-seq5, 6 (104 56 

genes × 104 beads). It leads us to seek alternative strategies for accurate cell type recognition by 57 

combining information of both gene expression and spatial context of beads into the clustering 58 

procedure (Figure 1A). 59 

Here we present STEEL (Spatial Transcriptome based cEll typE cLustering, https://steel-60 

st.sourceforge.io), an unsupervised method to effectively cluster beads from 10X Visium and Slide-61 

seq5, 6 data into different groups (cell type candidates). The STEEL method adopts spatial Gini 62 

coefficient score as measurement to discover spatially varying genes based on their expression 63 

patterns on slides, and then classifies beads/cells based on a simple assumption: beads/cells of 64 

the same cell type are more likely to have both similar expression profiles and relatively close 65 

spatial distance, to reduce the noises on detected gene expressions of individual beads especially 66 

for spatial transcriptome technologies with cellular resolution. Here we define the spatial distance 67 

in a “topological” manner: each bead on a slide denotes a vertice of a graph; a pair of beads has 68 

a distance of zero if they are within the same group (connected subgraph) or of one if they belong 69 

to different groups. Two conditional probability matrixes, 𝑃 and 𝑄, are calculated to represent 70 

similarities of any pairs of beads in high-dimensional expression space and two-dimensional slide 71 

space, respectively (Figure 1A). Cross-entropy 𝐶(𝑃, 𝑄) is adopted to measure the faithfulness of 72 

modeling 𝑃 with 𝑄. In each clustering step, a pair of adjacent subgraphs (see Methods for details) 73 

with minimal increase of entropy is merged into one larger subgraph, and the clustering step is 74 

iteratively proceeded until all adjacent subgraphs are merged. The aim of STEEL is to assign 75 

beads into a number of clusters, which denotes as “clades” on the hierarchical tree of all beads, to 76 

infer cell type candidates in various resolution. Tested by sequencing data on either 10X Visium 77 
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or slide-seq5, 6 platforms, STEEL succeeds in detecting dozens of cell types with higher accuracy 78 

compared with approaches based on gene expression only. Application of STEEL on mouse 79 

embryo of various stages (E9.5 to E12.5) sequenced in this study reveals clean and prominent 80 

identification of cell types highly consistent with classic Kaufman annotation of mouse embryo 81 

development25, 26. These results suggest that benefiting from integration of spatial information into 82 

the clustering procedure, the method is capable of dealing with spatial transcriptomic data from 83 

various technologies, regardless the bead size and number, spatial distribution and gene 84 

expression level among different tissues. 85 

 86 

Results 87 

Cell type recognition on mouse brain datasets (sagittal plane) of 10X Visium 88 

Current spatial transcriptome technologies are now capable of covering a large tissue area, 89 

e.g., the entire sagittal or coronal plane of an adult mouse brain can be laid out in two slides on 90 

10X Visium platform, and cell types can be distinguished according to the spatial patterns of gene 91 

expression of thousands of beads. To verify the performance of STEEL on analyzing 10X Visium 92 

data, we utilized gene expression and bead location profiles of four mouse brain samples, including 93 

an anterior and posterior section on sagittal planes and two coronal plane samples (Table S1). 94 

After the filtering procedure (see Methods for details), the data of the anterior section contains 95 

2,690 valid beads (99.8% of the total) and 14,768 valid genes (45.7% of total), among which, a 96 

total of 508 genes with spatial Gini coefficient27 ≥ 0.5, are adopted for further cell type identification. 97 

According to annotations of the Mouse Brain in Stereotaxic Coordinates28 and the Allen Mouse 98 

Brain Atlas29, STEEL clearly and efficiently clusters these beads into known cell types of olfactory 99 

bulb (8 groups), cortex (10 groups), olfactory area (11 groups), stratium (6 groups), white matter 100 

(4 groups), etc. (Figure 2A, Supplementary Figures S1 and S2), which are further identified by the 101 

expression of multiple marker genes (Table S2). For example, the cluster denoting mitral, nerve 102 

and granular layers of olfactory bulb (clusters A17-A18, A9 and A19 in Supplementary Figure S2) 103 

displays high consistency with beads expressing Doc2g, S100a5 and Gng4, respectively (Table 104 

S2). Similarly, the expression of Abi3bp and Cartpt (Supplementary Figure S1) well supports the 105 

cluster denoting piriform cortex (cluster A31 in Supplementary Figure S2, deep blue beads in check 106 

mark shape in Figure 2A). 107 

We further apply STEEL on the dataset of the posterior section covering 3,284 valid beads 108 

(99.8% of the total) with 14,567 valid genes after quality control. Armed with 1,066 spatially varying 109 

genes with high Gini coefficient score, the posterior section is clearly classified into 41 groups 110 

(clusters P1-P41): cortex (4 groups), hippocampus (6 groups), thalamus (2 groups), olfactory area 111 

(2 groups), cerebellum (5 groups), white matter (8 groups), brain ventricle (4 groups), midbrain (5 112 

groups), and others (5 groups) (Figure 2A). These groups are well supported by the distribution 113 

patterns of cell type specific genes (Table S2). Taking cerebellum as an example, Purkinje cells, 114 

though with only one layer of beads (cluster P41, Supplementary Figure S3), are clearly recognized 115 
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by many marker genes including Car8, Ppp1r17, Pcp2 etc. (Table S2). Other well-known cell types, 116 

e.g. granules, oligodendrocytes and molecular layers, are also clearly classified (clusters P37-P39, 117 

Supplementary Figure S3). The presence of tissue specific genes, as well as many more genes 118 

preferentially expressed in two or more types of cells (Table S2), greatly contributes to the 119 

successful classification of beads, e.g. Tnnt1 is specifically expressed in thalamus, and Tcf7l2 is 120 

preferentially expressed in both thalamus and middle brain. 121 

To compare the performance between STEEL and commonly used methods, clustering 122 

results yielded from Seurat15, 16, Mclust17, BayesSapce24 and STEEL are evaluated by considering 123 

number of outliers, which refers to beads classified into a different group from that of any of its 124 

neighbors on the same slide (see Methods for details). Seurat15, 16, Mclust17 and BayesSapce24 125 

exhibit 56-97 outliers in the 20-group classification upon the anterior dataset, and increases to 134-126 

156 outliers in the 40-group classification (Figure 2B). In contrast, only 17 outliers are observed in 127 

the clustering results of STEEL in the 20-group classification and the number slightly increases to 128 

22 in the 40-group classification. Similar observations are found on the analyses upon the posterior 129 

dataset, with 104-348 outliers for Seurat, Mclust and BayesSapce, and 31-39 for STEEL (Figure 130 

2B and 2C). These results suggest that the noises on detected gene expressions of individual 131 

beads can be effectively reduced when the information of spatial context is involved in the 132 

clustering procedure. In addition, STEEL shows better performance on sharpening the edges of 133 

the adjacent groups (Figure 2B and 2C, see Methods for details) compared with the other three 134 

methods, especially when the datasets are divided into 30 or more groups (Supplementary Figures 135 

S4 and S5). For example, STEEL clearly recognizes stratium as two larger groups in the center 136 

denoting caudate putamen and accumbens nucleus, surrounded by four other single-bead layers 137 

(Figure 2A), while the other three methods classify stratium into subgroups with beads spreading 138 

in overlapping areas, lacking support from marker gene expression. A particular group in the 139 

stratium cluster (probably an olfactory tubercle layer, purple beads at the bottom), though spatially 140 

separated from the other groups by cells of olfactory area, exhibits higher gene expression 141 

similarity with other stratium groups, supported by Gpr88, Adora2a, Lrrc10b, Rgs9 and many other 142 

marker genes (Table S2). 143 

Integration of spatial context enables STEEL to discover fine structures of hippocampus30 144 

consistent with H&E stain (Figure 2D): field CA1 of hippocampus, composed of soma (cluster P28, 145 

Supplementary Figure S3) and neuropil (P27); CA3 in two groups (P33 and P36); dentate gyrus 146 

neurons (DG) in one group but in two spatially separated regions (P34). To further quantify the 147 

performance of different methods, we selected three genes preferentially expressed in CA1, CA3 148 

or DG of hippocampus. Spink8, a known marker gene in CA1 (also in CA2), is expressed among 149 

22 of 23 beads of Cluster P28 in the posterior section (3 reads per bead on average), exhibiting 150 

an AUC value (area under the curve of ROC) of 0.95 (Figure 2E). Similar observations are found 151 

in Bok (AUC=0.93, a marker gene of CA3, Figure 2F) and C1ql2 (AUC=0.99, a marker gene of 152 

DG, Figure 2G). It is worth noting that the expressions of these genes are also detected on beads 153 



 5 

of cortex, white matter or other areas, bringing noises for accurate cell type identification. 154 

Consistently, these genes are observed in dispersed area on the tSNE plot (left panels of Figure 155 

2E-2G), suggesting it would be difficult to clearly group beads from CA1, CA3 and DG without 156 

taking into account the information of spatial context in the clustering procedure. 157 

Performance evaluation using internal and external validation metrics 158 

We performe comprehensive evaluations on the segmentation results of Seurat15, 16, Mclust17, 159 

BayesSapce24 and STEEL by using six metrics, of which three are employed for internal validation 160 

based on gene expression and the other three for external validation based on annotated cell types 161 

of mouse neural system31. Baseline methods, e.g. random segmentation of beads, grouping 162 

according to amount of sequencing reads (UMI counts), and K-means algorithm are involved in 163 

the comparisons to provide calibrations. 164 

 To evaluate the classified structures of different methods, a cross-entropy test is performed 165 

to evaluate the similarity between beads and segmentation clusters by considering expression of 166 

all spatially varying genes (bootstrap resampling 1000 times). As for the anterior section, It turns 167 

out that STEEL outperforms the other three methods by giving the lowest average cross-entropy 168 

as 0.71, followed by Seurat (0.78), K-means (0.85), Mclust (0.92), BayesSpace (0.93), UMI 169 

thresholds (2.61) and random segmentation (3.61) (Figure S6A, upper panel). Here as for STEEL, 170 

an average cross-entropy of 0.71 indicates that the probability of assigning a bead to the labeled 171 

cluster is as high as 0.49, while the summed probabilities to all the other 39 clusters is only 0.51. 172 

Similarly, STEEL shows better performance by yielding an average cross-entropy of 0.86 on the 173 

posterior section (Figure S6A, lower panel), while those of the other methods range from 0.96 174 

(Seurat) to 3.96 (random classification). 175 

To further quantitatively assess the performance of different methods, we employ an atlas of 176 

central and peripheral neural system of mouse built by Zeisel et al.31, which covers 265 cell types 177 

and includes most of the known cell types of mouse brain with manual annotation based on the 178 

Allen Mouse Brain Atlas29. Compared with annotated beads of the anterior section, STEEL exhibits 179 

the highest Adjusted Rand Index (ARI) scores of 0.63, 0.66 and 0.47 for segmentations with 180 

different cluster numbers (Figure S6B, upper panel), followed by Mclust (0.42, 0.33 and 0.24), 181 

Seurat (0.40, 0.32 and 0.24) and BayesSapce (0.37, 0.26 and 0.25). A similar observation is found 182 

in another external validation metric Fowlkes-Mallows Index (FMI) (Figure S6C). The evaluation 183 

based on Normalized Mutual Information (NMI) (Figure S6D) shows that all four methods perform 184 

well on the anterior section with STEEL displaying slightly higher scores (0.71 ~ 0.73 for different 185 

cluster numbers) than other methods (0.64 ~ 0.69). The same situation goes for the posterior 186 

section of which STEEL outperforms the other methods on 30 and 40 groups classification based 187 

on ARI and FMI, and all methods show a similar performance on the NMI metric. 188 

Integration of multiple slides of mouse brain datasets (sagittal and coronal planes) 189 

Dealing with large tissue specimens requires investigation and integration of cell types on 190 

multiple slides. Though the anterior and posterior datasets might have been neither collected from 191 
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the same plane of the same brain sample nor sequenced in the same run, not to mention that they 192 

are classified separately, many tissues flanking the border are identified as same types based on 193 

the similarity of gene expression profiles (Supplementary Figure S7). The paired/clustered groups 194 

include those of corpus callosum (clusters A2, A6, P4 and P5, Supplementary Figures S2, S3 and 195 

S7), field CA3 of hippocampus (clusters A33 and P36), white matter (clusters A1 and P1), cortex 196 

and olfactory area. 197 

STEEL is further applied on two mouse brain samples of coronal plane: one has 2,895 valid 198 

beads (99.7% of the total) with 14,567 valid genes (44.3% of the total), the other has 2,803 valid 199 

beads (99.9% of the total) with 14,035 valid genes (43.5% of the total). The clustering procedures 200 

are implemented separately for both sections, resulting in a 35-group cluster for each sample. 201 

Although no information was shown that the two sections came from the same slide of the mouse 202 

brain, yet the section staining of the two samples displayed close if not the same anatomical 203 

position, and the clusters of the two slides also show highly consistent brain structures, e.g. groups 204 

of cortex (10 groups vs. 7 groups), hippocampus (7 vs. 7), thalamus (2 vs. 2), hypothalamus (1 vs. 205 

1) and olfactory area (8 vs. 10) white matter (1 vs. 2), choroid plexus (2 vs. 2), stratium (2 vs. 1) 206 

are well displayed (Supplementary Figures S8, S9 and S10) according to previous annotations28, 207 

29. As expected, integration of the two sections shows that 24 group pairs form a one-to-one 208 

correspondence based on gene expression similarity (Supplementary Figure S11) and are further 209 

identified by tissue-specific genes (Supplementary Figure S8B and Table S2). For example, the 210 

clusters denoting thalamus (CI6 vs. CII6, CI3 vs. CII7) are highly consistent with the expression 211 

areas of Prkcd and Ctxn3. Similar cases go to choroid plexus with Ecrg4 and Pltp; stratium with 212 

Gpr88; white matter with the wide expression of Mbp and Mobp. 213 

STEEL gives out a list of cell type specifically or preferentially expressed genes evaluated by 214 

spatial Gini coefficient. The similar expression patterns across samples/slides of individual genes 215 

enables the recognition of the anatomical positions of the anterior plane as 1.44mm according to 216 

annotated structure of mouse brain28, the posterior plane as 1.68mm (upside) and 2.16mm (bottom 217 

side), and the coronal planes as 1.74mm. These results suggest that the clustering results of 218 

multiple individual slides detected by STELL can further combined to effectively reconstruct the 219 

overall structure of larger tissues. We compared the highly variable genes (HVGs) adopted by 220 

Seurat with the spatially varying genes by STEEL upon a 10X Visium dataset of the posterior 221 

section. Among the 1,066 genes with spatial Gini coefficient ≥ 0.5, 806 of them are included in the 222 

top 2,000 HVGs by Seurat (Supplementary Figure S12), suggesting that the selection of 223 

informative genes based on spatial Gini score is more stringent than that used by Seurat. For 224 

example, there are four genes shared by the top-10 Gini scores of STEEL and the top-10 HVGs 225 

of Seurat: Ttr and Ecrg4 are specifically expressed in choroid plexus, Car8 in Purkinje cells and 226 

Trh in olfactory area. Although there is no standard for threshold of spatial Gini coefficient, a score 227 

of 0.4~0.5 or higher is usually considered as distribution with high variance. To facilitate the 228 
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analysis on spatial transcriptomic data, STEEL provides an option “--gini=” to employ different Gini 229 

cut-off values. 230 

STEEL works well on highly noisy and sparse Slide-seq datasets of high resolution 231 

Spatial transcriptome technologies, e.g. Slide-seq with beads of 10 𝜇𝑚, though are making 232 

improvements in detecting the fine structures of tissues in cellular resolution, yet currently are only 233 

able to provide datasets with less gene numbers and coverage but higher noise (Figure 3A and 234 

3B). It brings more difficulties in dealing with larger amount of data, particularly in accurate 235 

clustering and identification of cell types with sparse and fluctuate read counts. We downloaded 236 

the datasets of two samples, hippocampus (Puck_200115_08) and olfactory bulb 237 

(Puck_200127_15), to compare the performance of Seurat15, 16, Mclust17, BayesSapce24 and 238 

STEEL on analyzing Slide-seq V2 data6. 239 

The high-resolution hippocampus sample contains detailed information of sequenced tissues 240 

in cellular base, waiting to be revealed by bioinformatics approaches. It is not difficult to recognize 241 

tissues like CA1, DG and choroid plexus, but it is most challenging to distinguish different CA 242 

tissues and thin layers like ependymal cells. It turns out that STEEL uncovers more cell types than 243 

the other methods, and is the only method that could successfully identify almost all major tissues 244 

of hippocampus30, namely CA1, CA2, CA3, hilus, DG and fasciola cinereum (FC) (Figure 3C, 245 

Supplementary Figures S13 and S14). Moreover, single cell layer of ependymal and the central 246 

ventricle are also revealed by STEEL suggesting the method is capable to reveal very fine 247 

structures when dealing with data featuring in higher bead density but lower transcript detection 248 

efficiency. Many known gene markers for different fields of hippocampus, exhibiting relatively high 249 

spatial Gini coefficient value, provide evidence for the verification of detected cell types, e.g. Pcp4 250 

for CA2 and FC, Ccdc153 for ependymal layer and Rab3c for the central ventricle (Figure 3C). 251 

Similarly, STEEL successfully divides the beads of the olfactory bulb sample into clear clusters of 252 

different cell types, easily recognized as external plexiform, granule, anterior commissure, 253 

leptomeninges and glomeruli (Figure 3D, Supplementary Figures S15 and S16). Likewise, these 254 

clusters can be verified by known markers genes, e.g. Omp for glomerular layer, Igf2 for 255 

leptomeninges, Nrsn1 for outer plexiform layer, Doc2g for mitral layer, Gng4 for granular layer, 256 

Sox11, Nrep and Macrod2 for core regions (Figure 3D).  257 

Evaluations on the 667 spatially varying genes of the hippocampus dataset show that STEEL 258 

exhibits cross-entropy values lower than those of the other methods (Figure S17A, upper panel). 259 

Further evaluations based on three external validation metrics (Figure 4D) using annotated cell 260 

types as benchmark, demonstrate that STEEL exhibits more advantages on dealing with sparse 261 

and fluctuate Slide-seq V2 data of higher resolution. Another evaluation on the olfactory bulb 262 

dataset further shows that STEEL identifies cell types in a clean and prominent manner, highly 263 

consistent with previous annotations (Figure S17). 264 

In a more challenging condition of Slide-seq V15 with high fluctuation in RNA detection 265 

efficiency, and most of genes exhibiting binary signals (0 or 1 read per bead), STEEL successfully 266 
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recognizes cell types of granule, Purkinje, cerebellar nucleus, cochlear nucleus, oligodendrocyte 267 

and ependymal in the cerebellum sample (Supplementary Figure S18A); CA1, DG, choroid plexus 268 

and others, in hippocampus sample (Supplementary Figure S18B); proximal convoluted tubule, 269 

distal convoluted tubule, etc. in kidney sample (Supplementary Figure S18C); pericentral and 270 

periportal cells in liver sample (Supplementary Figure S18D). 271 

Spatiotemporal atlas of organogenesis in mouse embryo development 272 

Although mouse organogenesis starts at earlier stage, the buds of most of the major organs 273 

form at stage E9.5 to E12.5, during which time a great many essential genes have been extensively 274 

studied32, 33. Therefore, it is of great interest to explore the tissue development and the 275 

spatiotemporal variation and distribution of identity determining genes spanning these stages using 276 

spatial transcriptome technology. We performed spatial transcriptome sequencing of C57BL/6 277 

mouse embryos at the stages of E9.5, E10.5, E11.5 and E12.5 on 10X Visium platform (Figure 4A) 278 

to provide spatial cell atlas of mouse organogenesis and to discover the spatiotemporal expression 279 

patterns of cell type-specific genes. 280 

As for the E9.5 sample, the discovery of 1,031 genes with spatial Gini coefficient score > 0.5 281 

enables STEEL to classify 243 beads into 19 cell types, representing brain tissues, dorsal neural 282 

cells, heart, aorta and gut tissues (Figures 4B and Supplementary Figure S19). More genes (1,789-283 

3,385) either preferentially expressed in specific tissues or with comprehensive expression 284 

patterns are detected in E10.5 (1,043 beads, yielding 25 groups, Figures 4B and Supplementary 285 

Figure S20), E11.5 (1,642 beads, 35 groups, Figures 4B and Supplementary Figure S21) and 286 

E12.5 (2,778 breads, 45 groups, Figures 4B and Supplementary Figure S22), suggesting a rapid 287 

cell type differentiation during embryonic development. The “pseudo-process” of tissue 288 

development is then illustrated in PCA analysis of the recognized groups of all four stages based 289 

on expression similarity of 4,564 spatially varying genes. Clusters of E9.5 are gathered at the 290 

corner, adjacent to those of E10.5 then those of E11.5 and E12.5 at the farthest away end. 291 

Altogether, 1,413 of the 4,564 genes (30.9%) exhibit high spatial coefficient scores in a single 292 

stage among the samples (Supplementary Figure S23). For example, SOX10, a transcription 293 

factor essential for neural crest development34, shows high spatiotemporal variation across the 294 

four stages. It is worth noting that these samples are sequenced in the same slide to avoid batch 295 

effect influence in subsequent cross-stage comparisons. Furthermore, neural tissues of E9.5 296 

including forebrain (group 13, Figure 4C and Supplementary Figure S19), hindbrain (group 14), 297 

dorsal neural cells (group 11) and two regions of brain vesicles (groups 4 and 19) appear at the 298 

top of PCA plot, together with similar tissues of E10.5, E11.5 and E12.5 (e.g. groups 37-45, Figure 299 

5C and Supplementary Figures S19-S22). On the other hand, mesoderm originated tissues spread 300 

at the bottom, including heart and arteries (groups 1 and 15 of E9.5, groups 17, 18 and 19 of E11,5, 301 

groups 6, 8, 9 and 33 of E12,5). These results display a complex scenario of gene expression 302 

similarities among various cell types, revealing the expression patterns correlated with both 303 

different developmental stages and the orientation of different germ layers. 304 
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Expression heterogeneity among beads within clusters allows STEEL to further investigate 305 

sub-cell types or populations by involving more spatially varying genes for each stage. In the 19-306 

group clustering results of the E9.5 sample, atria and ventricle have been recognized as two 307 

groups (Figure 4B) denoted by specifically expressed markers Smpx and Myh6 (Figure 5A). 308 

Consistently, beads of heart tissue of E10.5, E11.5 and E12.5 are further divided into 2-3 subtypes 309 

(Figure 5A), with clearly clustered beads for atria and ventricle and an additional population, 310 

possible as outflow tracts of ventricles according to Kaufman annotation25, 26, supported by specific 311 

expression of Clu (Figure 5A), Kcne1 and many other markers. Trajectory analysis upon the three 312 

subtypes across different stages by Monocle35 reveals that beads related to atria, ventricle and 313 

outflow tracts own a common start point at stage E9.5, while are differentiated via branched paths 314 

during development. Atrial beads begin to show intermediate trajectory at E10.5, and many of them 315 

reach to their relative maturation point at E11.5, and complete the transition at E12.5 (Figure 5A). 316 

Ventricular beads exhibit a similar transition pattern in the opposite branch. These observations 317 

provide information for more detailed exploration of heart tissue development. 318 

Another case comes from descending aorta (group 6 of E12.5, Supplementary Figure S22) 319 

with three layers of beads, in which Tagln shows the variation of expression in radial direction with 320 

stronger signals in outer layers than in the center (Figure 5B). Further classification on the 321 

descending aorta beads yields two subgroups, one for vascular wall with continuous 322 

developmental trajectory and the other for blood cells with more homogeneity in global gene 323 

expression. It’s worth noting that STEEL adopts a hierarchical clustering strategy, leading adjacent 324 

beads with similar gene expression profiles to be clustered prior to those with less-similar profiles. 325 

Thus, the beads of vascular wall own higher depth on the clustering tree than those of blood cells, 326 

and exhibit higher expression of Tagln (Figure 5C). The cluster denoting for vertebral column 327 

(group 27 of E12.5, Supplementary Figure S22) shows a more complex pattern: a list of 184 genes 328 

including Sox9 shows an expression gradient in both radial direction with beads in the inner layer 329 

owning higher expression of Sox9 and deeper depth on the clustering tree, and axial direction with 330 

higher expression in anterior end than in posterior end (Figure 5B and 5D). Consistently, beads of 331 

vertebral column are further classified into four groups by STEEL: one subtype occupying beads 332 

in the outer layer, associated with preferential expression of Twist1 essential for normal 333 

development of mesoderm originated cells; the rest beads in the center of vertebral column are 334 

divided into three subtypes along with anteroposterior axis, consistent with the expression pattern 335 

of the 184 genes (Figure 5D). 336 

 337 

Discussion 338 

These results demonstrate that STEEL is effective and robust for analyzing both 10X Visium and 339 

Slide-seq data of various tissues, in which the number, spatial distribution and gene expression 340 

level of different cell types vary dramatically. We further examine the performance of STEEL on 341 

different hyper-parameter perplexity, which measures the number of neighbors of each bead in 342 
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high-dimensional expression space, with different values. STEEL displays robust classification on 343 

10X Visium datasets when choosing the perplexity from 10 to 40 for the anterior and posterior 344 

sections of the sagittal plane, and the two sections of the coronal plane. Setting the perplexity with 345 

smaller values may yield more fragmented groups compared with those adopting larger 346 

perplexities, e.g. four cortex layers are yielded when perplexity = 10 while only two layers for 347 

perplexity = 40 in the 26-group classification. Another parameter which might affect the final 348 

clustering results is the quality control procedure in the first step of STEEL. By default, STEEL 349 

ignores those beads with 0.5% or lower of the total expressed genes. Under these thresholds, 350 

almost all beads (99.7% to 99.9%) of the four 10X Visium datasets pass the filtering procedure, 351 

while only 70.2% to 78.7% of the total beads of the two Slide-seq V2 datasets6 are used for further 352 

clustering. When using a more stringent parameter, e.g. ignoring beads with 1% or less of the total 353 

expressed genes, there are only 55.7% to 61.4% of the total beads retained in the two Slide-seq 354 

V2 datasets6, leading to the missed detection of some layers, e.g. oligodendrocytes, however, this 355 

parameter barely affects the analyses on the four 10X Visium datasets. 356 

In general, STEEL presents effective and efficient performance on various spatial 357 

transcriptome technologies of various bead sizes. It takes STEEL only 1.2 minutes to analyze a 358 

10X Visium dataset (the posterior section of the sagittal plane of mouse brain), similar to Seurat 359 

(2.1 minutes) and Mclust (1.4 minutes), must faster than BayesSpace (11.3 minutes) 360 

(Supplementary Figure S24A). Similar observations are found when applying the four methods on 361 

a Slide-seq V2 dataset (Puck_200127_15): 4.5 minutes for Mclust, followed by STEEL (6.5 362 

minutes), Seurat (8.4 minutes) and BayesSpace (51.1 minutes). STEEL requires 176 Mb memory 363 

to perform the analysis of the 10X Visium dataset, much fewer than the other methods (3.2 to 4.8 364 

Gb), while the analysis for the Slide-seq V2 data requires 2.0 Gb memory for STEEL, and 2.4 – 365 

9.4 Gb for the other methods (Supplementary Figure S24B). STEEL can classify hundreds of 366 

thousands of beads/cells with affordable time, meeting the requirements of spatial transcriptome 367 

technologies with sharp increase of bead number and decrease of bead size, to recognize detailed 368 

structures of tissues with cellular resolution. 369 

It is worth noting that cellular information contained in Hematoxylin and Eosin (H&E) staining 370 

is not utilized in this method. Integration of tissue structures recognized from H&E images through 371 

machine learning algorithms may enhance the accuracy of cell type identification by providing 372 

information independent of gene expressions, especially for those cells from narrow layers or on 373 

the border between different cell types. In addition, excessive pursuit of reducing outliers in the 374 

classification may lead to false identification of cell types in tissues with cell infiltration, and it may 375 

limit the applicable range of the method. Alternative strategies, e.g. using recognized cell types by 376 

STEEL as “a reference” to re-evaluate the identity of each bead according to similarities on gene 377 

expressions, may provide possible solutions to identify cells with dispersed pattern on tissues. 378 

Furthermore, alternative efforts have been made to detect spatial information by fluorescence in 379 
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situ hybridization, e.g. seqFISH36 and MERFISH37, and can be integrated into bioinformatics 380 

methods for spatial transcriptome analysis in future studies. 381 

 382 

Methods 383 

Mouse embryo dissection and spatial transcriptome sequencing on 10X Visium platform 384 

C57BL/6 mice were obtained from the animal facility of School of Life Sciences, Fudan University. 385 

All procedures were approved by the Ethics Committee of School Life Sciences, Fudan University, 386 

and were carried out in accordance with guidelines for the Care and Use of Laboratory Animals of 387 

Shanghai Municipality, PR China. The protocol was approved by the Science and Technology 388 

Commission of Shanghai Municipality (Permit Number: SYXK(hu)2020-0011). The morning of the 389 

vaginal plug was defined as E0.5. Dissections were performed and embryos of E9.5-E12.5 were 390 

immediately frozen in liquid nitrogen-cooled isopentane and were embedded in pre-cooled OCT. 391 

Tissue preparation and optimization were performed on 10X Visium platform, including tissue 392 

sectioning, H&E staining, tissue permeabilization, fluorescent cDNA synthesis and imaging, 393 

according to the manufacturer’s protocol. cDNAs of samples were sequenced on Illumina novaseq 394 

platform and were subjected to 150 cycles of paired-end (2 × 150 bp) sequencing. 395 

The mouse reference genome (UCSC version mm10) and corresponding gene annotation 396 

models were adopted for the mapping of NGS short reads and measurement of gene expression. 397 

Sequenced reads were trimmed by SpaceRanger of 10X Genomics 398 

(https://support.10xgenomics.com/spatial-gene-expression/software/overview/welcome) and 399 

mapped to reference genome using STAR38. Unique molecular identifiers (UMIs) for each spot 400 

were counted to remove PCR duplicates. STEEL and Seurat15, 16 were applied on the expression 401 

matrix for further analyses. 402 

Identification of cell types from spatial transcriptomic datasets by STEEL 403 

The nature of this algorithm is to cluster beads of spatial transcriptomics to their most likely cell 404 

types in an unsupervised way by combining information of gene expression and spatial context of 405 

tissues. We employ the following strategies to perform the clustering procedure: 1) spatial Gini 406 

coefficient is estimated for each gene, and only those with coefficient higher than or equal to 0.5 407 

are adopted for further analyses; 2) expression similarity is calculated for any pairs of beads and 408 

is then represented as conditional probability ; 2) neighborhood of each bead on a slide is 409 

determined and only adjacent beads are possible to be clustered; 3) in the beginning of the 410 

clustering procedure, each bead represents a single sub-graph; in a certain step of clustering, a 411 

probability 𝑄 is calculated according to the partition of sub-graphs, and the cross-entropy 𝐶(𝑃, 𝑄) 412 

is calculated to represent the fitness of 𝑄 to 𝑃; 4) if two adjacent sub-graphs are merged into one, 413 

a new entropy 𝐶′ is obtained and only the sub-graph pairs with minimal increase of entropies are 414 

combined; 5) the clustering procedure proceeds until all adjacent sub-graphs are grouped and 415 

construct a “phylogenetic tree”, in which the clades on the top levels are output for further inferring 416 

of cell type candidates; 6) genes preferentially presented in one or more sub-graphs are obtained. 417 
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1. Calculation of spatial Gini coefficient to discover spatially varying genes 418 

STEEL first filters out genes with bead occupancy lower than 0.05%, and removes beads with 419 

gene occupancy lower than 0.5%. After the filtering procedures, all beads are divided into different 420 

cells on a grid by their positions on the slide. The size of each cell in the grid is calculated 421 

automatically according to the rectangular area covered by valid beads with square root of total 422 

beads as expected values for each cell. For each gene, a spatial Gini coefficient in forms of relative 423 

mean difference27 is estimated by  424 

𝐺𝑖𝑛𝑖 = ∑ ∑ 0𝐸! − 𝐸"0"#!!(𝑛 − 1)∑ 𝐸!!

 425 

where 𝐸! is sum of expression values of all beads in the 𝑖$% cell of grid and 𝑛 is total number of 426 

cells. Genes exhibiting spatial Gini coefficient < 0.5 or exhibiting maximum read count < 10 is 427 

ignored on the procedure of bead clustering. 428 

2. Similarity among beads in the space of gene expression 429 

STEEL then calculate Euclidean distance 𝑑!"  between each pair of beads 𝑖  and 𝑗 in the high-430 

dimensional space of gene expression as described in the tSNE method18. Denote the similarity 431 

of bead 𝑗 to bead 𝑖 as the conditional probability 𝑝"|!, and 432 

𝑝"|! = 𝑒𝑥𝑝 9− 𝑑!"'2𝜎!'<∑ 𝑒𝑥𝑝 9− 𝑑!('2𝜎!'<()!

 433 

Here we define 𝑃! = =𝑝"|!>, representing the collection of conditional probability of other beads to 434 

bead 𝑖. The variance of distance between bead 𝑖 and the others, denoted by 𝜎!, is determined by 435 

a hyperparameter perplexity, as defined in tSNE18. 436 

3. Similarity among beads in the space of spatial context of tissues 437 

Euclidean distance between each pair of beads in the low-dimensional space of spatial context of 438 

tissues is obtained. For each bead, its distance to the 𝐾 − 𝑡ℎ closest beads is collected. A median 439 

value of 𝐾 − 𝑡ℎ  distances across all beads is obtained to determine a common radius of 440 

neighborhood 𝑅. We then build a graph, in which each bead represents a vertex and only beads 441 

with distance shorter than 𝑅 are potentially connected by an unweighted edge.  442 

Suppose the graph is partitioned into a number of sub-graphs, among which 𝛿! is the sub-graph 443 

containing bead 𝑖, we then define the conditional probability of bead 𝑗 to bead 𝑖 in the graph as 444 

𝑞"|! = ⎩⎨
⎧ 1(𝑁 − |𝛿!|)𝛼 + |𝛿!| 𝑖𝑓	𝑗 ∈ 𝛿! 	𝛼(𝑁 − |𝛿!|)𝛼 + |𝛿!| 𝑖𝑓	𝑗 ∉ 𝛿!  445 

where 𝛼 ≪ 1. It means 𝑞"|! is close to 1 if beads 𝑖 and 𝑗 belong to the same group, while 𝑞"|! is 446 

close to 0 if not. 447 

4. Calculation of cross-entropy between 𝑃 and 𝑄 448 
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For bead 𝑖 , the cross-entropy (or Kullback-Leibler divergence) between two probability 449 

distributions 𝑃! and 𝑄! is 450 

𝐾𝐿(𝑃! , 𝑄!) =R𝑝"|!𝑙𝑛 9𝑝"|!𝑞"|!<
"

=R𝑝"|!𝑙𝑛T𝑝"|!U
"

−R𝑝"|!𝑙𝑛T𝑞"|!U
"

 451 

Since 𝑝"|! is a constant value in the clustering procedure, the cross-entropy is simplified as 452 

𝐾𝐿(𝑃! , 𝑄!)~ −R𝑝"|!𝑙𝑛T𝑞"|!U
"

 453 

= −R𝑝"|!𝑙𝑛 W 1(𝑁 − |𝛿!|)𝛼 + |𝛿!|X
"∈+!

−R 𝑝"|!𝑙𝑛 W 𝛼(𝑁 − |𝛿!|)𝛼 + |𝛿!|X
"∉+!

 454 

= 𝑙𝑛[(𝑁 − |𝛿!|)𝛼 + |𝛿!|] − R 𝑝"|!𝑙𝑛(𝛼)
"∉+!

 455 

~𝑙𝑛(𝑁𝛼 + |𝛿!|) − [1 −R𝑝"|!
"∈+!

\ 𝑙𝑛(𝛼) 456 

 457 

where 𝑁 is the total number of beads. The sum of the cross-entropies of all beads is  458 

𝐶 =R𝐾𝐿(𝑃! , 𝑄!)
!

=R𝑙𝑛(𝑁𝛼 + |𝛿!|)
!

+RR𝑝"|!
"∈+!!

𝑙𝑛(𝛼) − 𝑁𝑙𝑛(𝛼) 459 

5. Grouping the pair of sub-graphs with minimal increment of entropy 460 

We define two sub-graphs,	𝐴 and 𝐵, adjacent to each other only when there is at least one pair of 461 

beads, 𝑖 ∈ 𝐴 and 𝑗 ∈ 𝐵, which have Euclidean distance in the space of spatial context in tissues 462 

shorter than the common radius of neighborhood 𝑅. 463 

Suppose two sub-graphs, 𝐴 and 𝐵 in step 𝑛 − 1, is clustered as 𝐴 ∪ 𝐵 in step 𝑛, we have increase 464 

of entropy as 465 

 	466 𝐶- − 𝐶 = (|𝐴 ∪ 𝐵|)𝑙𝑛(𝑁𝛼 + |𝐴 ∪ 𝐵|) − |𝐴|𝑙𝑛(𝑁𝛼 + |𝐴|) − |𝐵|𝑙𝑛(𝑁𝛼 + |𝐵|)467 

+[RR𝑝"|!
"∈.!∈/

+RR𝑝"|!
"∈/!∈.

\ 𝑙𝑛(𝛼) 468 

then we have  469 

𝐶- − 𝐶 = |𝐴|	𝑙𝑛 9𝑁𝛼 + |𝐴| + |𝐵|𝑁𝛼 + |𝐴| < + |𝐵|	𝑙𝑛 9𝑁𝛼 + |𝐴| + |𝐵|𝑁𝛼 + |𝐵| < + [RR𝑝"|!
"∈.!∈/

+RR𝑝"|!
"∈/!∈.

\ 𝑙𝑛(𝛼) 470 

The first two items suggest the clustering “cost”, which is proportional to the bead number of the 471 

two sub-graphs	𝐴 and 𝐵. The last item suggests the clustering “benefit”: the more similar between 472 

paired beads, 𝑖 ∈ 𝐴 and 𝑗 ∈ 𝐵, the more benefit is obtained (please note that 𝑙𝑛(𝛼) < 0). 473 

6. iterative clustering of beads 474 

In the first step of clustering, each sub-graph includes a single bead. The pair of adjacent beads 475 

with distance smaller than 𝑅, is grouped into a larger sub-graph if exhibiting minimal increase of 476 
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cross-entropy, 𝐶- − 𝐶. The clustering continues until all the adjacent sub-graphs are grouped. In 477 

the late stage of clustering, two clusters, if both have bead numbers larger than 𝑠𝑞𝑟𝑡(𝑁), are 478 

allowed to be merged even when they are not adjacent (no beads from the two groups have 479 

distance shorter than 𝑅). This step enables sub-graphs of the same cell type with distant spatial 480 

locations being clustered. In the late clustering step, e.g. when 𝑚 sub-graphs remain (usually 2 ≪481 𝑚 ≪ 40), a profile is built for each of the 𝑚 sub-graphs by summarizing expression values of all 482 

beads in the sub-graph. A 𝑐𝑜𝑠𝑖𝑛 similarity is calculated by using gene expression of each bead 483 

and each profile. A bead is re-labeled by the highest 𝑐𝑜𝑠𝑖𝑛 similarity and is output as the final 484 

clustering result in the current step (𝑚 sub-graphs). Gene preferentially presented in one or more 485 

groups is measured by using chi-square test using packages in Numerical Recipes in C39. 486 

Evaluation on public spatial transcriptomic datasets 487 

1. 10X Genomics Visium datasets 488 

Under the approval of 10X Genomics, we downloaded four spatial transcriptomic datasets of 489 

mouse brain and kidney from the official website of 10X Genomics: 490 

(https://www.10xgenomics.com/) 491 

After analyzing each sample separately, we selected a slide of sagittal anterior section, one 492 

of posterior section and two coronal sections of mouse brain samples. The method is then applied 493 

on all four samples with default parameters: bead occupancy of genes higher than 0.05%, gene 494 

occupancy of bead higher than 0.5%, number of neighbors is 20; perplexity as 35. The evaluation 495 

of time and memory consuming were performed on a workstation with 32 cores and 512Gb 496 

memory by using linux command “time” and “top -n 1000 -d 10 | grep <process ID>” 497 

A list of 37 mitochondrial genes were removed from analyses on slide-seq datasets by an option 498 

of “--excluded=” of STEEL. The names of these mitochondrial genes are available at Mouse 499 

Genome Informatics (http://www.informatics.jax.org/sequence/marker/MGI:102492). 500 

2. Slide-seq datasets 501 

We downloaded two datasets of Slide-seq V26: hippocampus (Puck_200115_08) and olfactory 502 

bulb (Puck_200127_15); and four datasets of Slide-seq V15: cerebellum (Puck_180430_1), 503 

hippocampus (Puck_180413_7), kidney (Puck_180528_23) and liver (Puck_180803_8) from the 504 

Broad institute’s single-cell repository: 505 

(https://singlecell.broadinstitute.org/single_cell/study/SCP815/sensitive-spatial-genome-wide-506 

expression-profiling-at-cellular-resolution#study-summary) and 507 

 (https://singlecell.broadinstitute.org/single_cell/study/SCP354/slide-seq-study) 508 

For each sample, processed slide-seq data includes two files, “Puck*.digital_expression.txt” 509 

(or “MappedDGEForR.csv”) for gene expression of beads and “Puck*.bead_locations.csv” (or 510 

“BeadLocationsForR.csv”) for bead location on slides, and both files are adopted as input of 511 

STEEL. The method is then applied on all samples with default parameters. 512 

3. Evaluation of clustering results 513 
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Clustering results of a spatial transcriptomic dataset are evaluated by number of outliers and edge 514 

strength between adjacent clusters.  515 

Outlier number and edge strength: Briefly, the spatial context of beads in each cluster is denoted 516 

by a gray-scale image, on which beads within the cluster is labeled as 1 while the others as 0. An 517 

approximation of Laplace operator, with kernel as g−1 −1 −1−1 8 −1−1 −1 −1g, is adopted on the image to 518 

detect outliers, whose Laplacian equals to 8. In other words, an outlier is defined as a bead 519 

classified into a group which is different from any of its neighbors on spatial context. The number 520 

of outliers are counted for each cluster and are summarized for performance comparison among 521 

different methods. In addition, beads on the edge of each cluster are then detected by applying 522 

the Laplacian on Gaussian-smoothed image. For each bead on the edge, the gradient magnitude 523 

is obtained by convolving the image with Sobel operator, 𝐺0 = g−1 0 1−2 0 2−1 0 1g  and 𝐺1 =524 

g−1 −2 −10 0 01 2 1 g. The gradient magnitude of the bead is given by |𝐺| = i𝐺0' + 𝐺1'. An average of 525 

gradient magnitude of beads on the edge of all clusters is calculated for evaluation. 526 

Cross-entropy validation: a cross-entropy test is performed to measure segmentations by 527 

considering expression of all spatially varying genes. Briefly, (1) Given a segmentation of 𝑁 beads 528 {𝑏2, 	𝑏', ⋯ 𝑏3} to 𝑀 clusters {𝑐2, 	𝑐', ⋯ 𝑐4}, let 𝑥!" denote the expression value (log-transformed UMI) 529 

of gene 𝑔" on bead 𝑏!; (2) For a group 𝑐(, calculate mean expression value 𝜇(" for each gene 𝑔"; 530 

(3) Calculate distance between bead 𝑏! and cluster 𝑐(, 𝑑!( = p∑ T𝑥!" − 𝜇("U'" q"#, and then use the 531 

softmax function to convert distance to probability of bead 𝑏!  assigning to cluster 𝑐( , as 𝑝!( =532 

5$%!&

∑ 5$%!&&

; (4) Calculate cross-entropy of the probabilities of bead 𝑏!  to all 𝑀  clusters and the 533 

segmentation of the bead (a one-hot encoded vector); (5) Calculate mean cross-entropy across 534 

all beads; (6) Bootstrap resampling of genes is repeated 1000 times to test the robustness of cross-535 

entropy values. 536 

External validation based on annotated cell types: Zeisel et al.31 sequenced central and 537 

peripheral neural system of mouse, yielding gene expressions of 160,796 cells, and clustered 265 538 

cell types with manual annotation based on the Allen Brain Atlas (http://mousebrain.org/). 539 

Expression values of genes per clusters are adopted as “references” to validate segmentations of 540 

baseline and ST methods. The ground truth is built by a K-NN like procedure as follows: (1) Collect 541 

expression values of all spatially varying genes for each annotated cell type; (2) Assign each bead 542 

to a cell type owning the highest Pearson's correlation coefficient; (3) Calculate Pearson's 543 

correlation coefficient for each pair of beads to determine their similarities; (4) Reassign each bead 544 

to a cell type according to the plurality vote of its K neighbors (here K=20) to build a ground truth 545 

for a given dataset; (5) Three metrics, ARI, FMI and NMI, are adopted to compare the ground truth 546 
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and segmentations by using function “compart” in the R package “flexclust” and functions 547 

“mutinformation” and “entropy” in package “infotheo”. Among the 265 cell types by Zeisel et al.31, 548 

22 types of spinal cord are ignored from analyses. Lists of 244 cell types are adopted for 549 

benchmarking the sagittal sections of mouse brain datasets, 60 types for hippocampus dataset 550 

and 15 types for olfactory bulb dataset. For Slide-seq datasets with sparse read counts, gene 551 

expression values of each bead are averaged according to its nearest 20 neighbors. All source 552 

codes and analyzed results are provided at SourceForge to facilitate validation by readers 553 

(https://sourceforge.net/projects/steel-st/files/Materials/Evaluation/). 554 

 555 

Data availability 556 

All spatial transcriptomic data of mouse embryo samples (E9.5, E10.5, E11.5 and E12.5) are 557 

available at NCBI Gene Expression Omnibus with accession number GSE178636 558 

(https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE178636). 559 

 560 

Code availability 561 

STEEL is a stand-alone C++ program, and its source code and binary tool files are available at 562 

SourceForge (https://steel-st.sourceforge.io), and are also deposited at CodeOcean platform 563 

(https://codeocean.com/capsule/2852687/tree). To facilitate the reproduction of analyses in this 564 

study, results of STEEL upon all datasets are available at SourceForge. 565 
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 705 

Figure 1. Schematic diagram of two strategies for analyzing spatial transcriptomic data. (A) The pipelines 706 

of the CBP strategy (clustering before projection) and SCP (spatial clustering and projection). (B) Noise in detected 707 

gene expression values might lead to different classification results by different strategies. (C) Validation metrics 708 

for quantitative evaluation. 709 

  710 
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 711 

Figure 2. Performance comparisons of Seurat, Mclust, BayesSpace and STEEL on 10X Visium datasets of 712 

two sagittal sections (anterior and posterior) of mouse brain. (A) Illustration of 40 detected cell types in anterior 713 

and posterior sections by the four methods, respectively. (B) and (C) Lists of outlier numbers (upper panel) and 714 

average edge gradient (lower panel) for performance comparisons on the two datasets. (D) Illustration of the 715 

identified cell types of hippocampus on the posterior dataset by Seurat and STEEL. (E), (F) and (G) Beads with 716 

detected expression of three markers genes, Spink8, Bok and C1ql2, are shown on tSNE map (left) and spatial 717 

expression map (middle). AUC evaluation of classification accuracy of Seurat, Mclust and STEEL based on 718 

expression level of the three marker genes is shown on the right. BayesSpace is not involved in AUC evaluation 719 

as fields of hippocampus are not distinguished from those of cortex and olfactory area. 720 

  721 
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 722 

Figure 3. Application of STEEL for cell type detection on a cerebellum dataset by Slide-seq V2. (A) Cartoon 723 

representing the difference of bead densities and transcript detection efficiency between 10X Visium and slide-seq 724 

V2. (B) Comparison of gene number and UMI number per bead between 10X Visium (coronal dataset) and slide-725 

seq V2 (Puck_200115_08). Detected UMIs of six marker genes of hippocampus by the two technologies are listed 726 

in the lower panels. (C) Comparison of clustering results (20 groups) by Seurat, Mclust, BayesSpace and STEEL 727 

on a hippocampus sample (Puck_200115_08) of Slide-seq V2. Fields of CA2, Hilus, FC, ependymal layer and the 728 

central ventricle are displayed in three insets. Heatmaps on the bottom denote for spatial expression of Pcp4, 729 

Ccdc153 and Rab3c. (D) Comparison of clustering results (9 groups) by the four methods on an olfactory bulb 730 

sample (Puck_200127_15). Spatial expression of Omp, Igf2, Nrsn1, Doc2g, Gng4 Sox11, Nrep and Macrod2 are 731 

displayed for evaluation of detected cell types of glomeruli, leptomeninges, outer plexiform, mitral cells, granule, 732 

and core regions, respectively.  733 
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 734 

Figure 4. Reconstruction of organogenesis in early developmental stages of mouse embryo. (A) A workflow 735 

for sampling and sequencing of stages E9.5 to E12.5 of mouse embryo on 10X Visium platform. (B) Illustration of 736 

discovered cell types on the four stages (19 to 45 clusters) using STEEL, placing over corresponding H&E stain 737 

images. Bead numbers for each cluster are shown on the left. (C) Similarity of 118 detected cell types originated 738 

from three germ layers is displayed on PCA plot. 739 
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 741 

Figure 5. Discovery of subtypes on selected tissues of mouse embryo. (A) Heart tissues of E9.5-E12.5 are 742 

further classified into 2-3 groups by STEEL. Spatial expression patterns of three genes, Smpx, Clu and Myh6, are 743 

shown on lower left. Pesudo-time estimation of cell-cycle progression for each sub-type of E9.5-E12.5 is shown on 744 

the right. (B) Spatial expression patterns of Tagln and Sox9 (E12.5), which are preferentially expressed in 745 

descending aorta and vertebral column. (C) Illustration of sub-types of descending aorta of E12.5 discovered by 746 

STEEL, and display of node depth for each bead on the tree of hierarchical clustering. (D) Sub-types and node 747 

depth for beads of vertebral column of E12.5. Expression patterns of 184 genes preferentially expressed in 748 

vertebral column are shown in the heatmap along with antero-posterior axis. Pseudo-time estimation and 749 

correlation between expression variation and node depth are shown on the right panel of (C) and (D). 750 

 751 
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