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Abstract

Recent advancements in sequencing technology have led to a drastic reduction in genome sequencing costs. This develop-
ment has generated an unprecedented amount of data that must be stored, processed, and communicated. To facilitate this
effort, compression of genomic files has been proposed. Specifically, lossy compression of quality scores is emerging as a
natural candidate for reducing the growing costs of storage. A main goal of performing DNA sequencing in population stud-
ies and clinical settings is to identify genetic variation. Though the field agrees that smaller files are advantageous, the cost
of lossy compression, in terms of variant discovery, is unclear.
Bioinformatic algorithms to identify SNPs and INDELs use base quality score information; here, we evaluate the effect of
lossy compression of quality scores on SNP and INDEL detection. Specifically, we investigate how the output of the variant
caller when using the original data differs from that obtained when quality scores are replaced by those generated by a lossy
compressor. Using gold standard genomic datasets and simulated data, we are able to analyze how accurate the output of
the variant calling is, both for the original data and that previously lossily compressed. We show that lossy compression
can significantly alleviate the storage while maintaining variant calling performance comparable to that with the original
data. Further, in some cases lossy compression can lead to variant calling performance that is superior to that using the ori-
ginal file. We envisage our findings and framework serving as a benchmark in future development and analyses of lossy
genomic data compressors.
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Introduction

Recent advancements in Next Generation high-throughput
Sequencing (NGS) have led to a drastic reduction in the cost of
sequencing a genome (http://www.genome.gov/sequencing

costs/). This has generated an unprecedented amount of gen-
omic data that must be stored, processed, and transmitted. To
facilitate this effort, data compression techniques that allow for
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more efficient storage as well as fast exchange and dissemin-
ation of these data have been proposed in the literature.

Genome sequencing files, such as FASTQ and SAM/BAM, are
mainly composed of nucleotide sequences (called reads) and
quality scores that indicate the reliability of each of the nucleo-
tides. According to SAM file specifications [1] the quality scores
are stored using the Phred score, which corresponds to the num-
ber Q ¼ �10 log10P (rounded to the closest integer), where P indi-
cates the probability that the corresponding nucleotide in the
read is in error. These scores are commonly represented using
the ASCII alphabet [33: 73] or [64: 104], where the value corres-
ponds to Qþ 33 or Qþ 64, respectively.

When losslessly compressed, quality scores comprise more
than half of the compressed file [2]. In addition, it has been
shown that the quality scores are inherently noisy [2] and
downstream applications that use them do so in a heuristic
manner. For these reasons, lossy compression of quality scores
has been proposed to further reduce the storage requirements
at the cost of introducing a distortion (i.e., the reconstructed
quality scores may differ from the original ones).

Several lossy compressors of quality scores have been pro-
posed in the recent literature. These lossy compressors can be
divided into two categories depending on whether or not they
use biological information (e.g., the reads) for compression.
While the majority of the proposed algorithms do not rely on
such side information (see the survey on lossy compressors
described in [3]), examples of compressors that do are in [4–6].
Further, the lossy compressors that do not use biological infor-
mation for compression can be divided into two categories;
those that compress the quality scores read by read independ-
ently of the rest of the data (e.g., [2] and [7]), and those that com-
press the quality scores using some statistics computed on all
or part of the data (see for example [3]). Figure 1 shows a dia-
gram, following the above distinction, of the different methods
proposed in the literature for the compression of quality scores,
together with some of the most representative algorithms.

We focus on those lossy compressors that use only the qual-
ity scores for compression, as it would be too difficult to draw

conclusions about the underlying source that generates the
quality scores from analyzing algorithms like [5], where the
lossy compression is done mainly using the information from
the reads. Moreover, these read-based lossy compressors of
quality scores provide (or need to compute) a corpus to perform
the lossy compression, which yields huge memory require-
ments (usually more than 32 GB of memory are needed to run
these algorithms). This corpus is normally computed based on a
known reference, several data from the same species, or known
SNP sites. Thus, these tools are usually tailored to excel when
the data is used for variant calling, at the cost of huge memory
requirements. Note also that in these cases it is not possible to
specify a rate or a distortion to be minimized. More importantly,
read-based lossy compressors can suffer of reference-variabil-
ity, as they might be using data from the same individual in the
“training” (corpus generation) and the test set (the data being
compressed). Thus, these tools need to be used very carefully in
order to avoid over fitting when reporting results.

Traditionally, lossy compressors have been analyzed in terms
of their rate-distortion performance. Such analysis provides a
yardstick for comparison of lossy compressors of quality scores
that is oblivious to the multitude of downstream applications,
which use the quality scores in different ways. However, the data
compressed is used for biological inference. Researchers are thus
more interested in understanding the effect that the distortion
introduced in the quality scores has on the subsequent analysis
performed on the data.

To date, there is not a standard practice on how this analysis
should be performed. Proof of this is the variety of analyses pre-
sented in the literature when a new lossy compressor for qual-
ity scores is introduced (see [3, 5, 7, 8] and references therein).
Moreover, it is not yet well understood how lossy compression
of quality scores affects the downstream analysis performed on
the data. This can be understood not only by the lack of a stand-
ard practice, but also by the variety of applications that exist
and the different manner in which they use quality scores. In
addition, the fact that lossy compressors can work at different
rates and be optimized for several distortion metrics make the

Figure 1. Summary of the different methods for lossy compression of quality scores proposed in the literature.
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analysis more challenging. However, such an analysis is import-
ant if lossy compression is to become a viable mode for coping
with the surging requirements of genomic data storage.

With this in mind, in this work we propose a methodology to
analyze how lossy compression of quality scores affects the out-
put of one of the most widely used downstream applications:
variant calling, which compromises Single Nucleotide
Polymorphism (SNP) and Insertion and Deletion (INDEL) calling.
Furthermore, we use the proposed methodology to compare the
performance of the recently proposed lossy compressors for
quality scores, which to our knowledge is the first in depth com-
parison available in the literature.

For the study, we compare the output of the variant caller
when the quality scores of the original (uncompressed) data are
replaced by the reconstructed ones. Specifically, for SNP calling
we use the human dataset NA12878, which has been thoroughly
characterized by GIAB [9], and for which a gold standard (con-
sensus of SNPs) is available. To evaluate the effect of lossy com-
pression on INDEL identification, we simulated genomes that
contain biologically realistic SNPs and INDELs, creating a ground
truth dataset. We then computationally generated sequencing
reads for these genomes. In the following we assume these
INDELs and the SNPs of the gold standard are the true ones and
refer to them as the “ground truth”. This allows us to analyze
which lossy compressor, distortion metric and rate produces
the more accurate set of variants. We also show that in some
cases applying lossy compression to the quality scores instead
of lossless compression results in a set of variants that is more
accurate. This suggests that lossy compression of quality scores
can be beneficial not only for compression, but also to improve
the inference performed on the data. The results presented in
the manuscript also provide insight into the characteristics that
a lossy compressor should have so that the reconstructed qual-
ity scores from which the set of variants is inferred do not differ
much from those called based on the original quality scores.

We hope the methodology for variant calling analysis presented
in this work will be of use in the future when introducing new lossy
compressors. We leave the extensions of the investigations pre-
sented herein to other downstream applications for future work.

Methodology for variant calling

In this section we describe the methods used to test the effect
of lossy compressors on variant calling. The methodologies sug-
gested for SNPs and INDELs differ, and thus we introduce each
of them separately.

SNP calling

Based on the most recent literature that compares different SNP
calling pipelines ([10–14]) we have selected three pipelines for
our study. Specifically, we propose the use of: (i) the SNP calling
pipeline suggested by the Broad Institute, which uses the
Genome Analysis Toolkit (GATK) software package [15–17]; (ii)
the pipeline presented in the High Throughput Sequencing
LIBrary (htslib.org), which uses the Samtools suite developed by
The Wellcome Trust Sanger Institute [18]; and (iii) the recently
proposed variant caller named Platypus developed by Oxford
University [19]. In the following we refer to these pipelines as
GATK (https://www.broadinstitute.org/gatk/guide/best-prac
tices), htslib.org (More commonly referred to as samtools.
http://www.htslib.org/workflow) and Platypus, respectively.

In all pipelines we use BWA-mem [20] to align the FASTQ
files to the reference (NCBI build 37, in our case), as stated in all

best practices. For specific steps and the respective commands
we refer the reader to the Supplementary Data.

Regarding the GATK pipeline, we note that the best practices
recommends to further filter the variants found by the Haplotype
Caller by either applying the Variant Quality Score Recalibration
(VQSR) or the Hard Filter. The VQSR filter is only recommended if
the data set is big enough (more than 100K variants), since other-
wise one of the steps of the VQSR, the Gaussian mixture model,
may be inaccurate. Therefore, in our analysis we consider the use
of both the VQSR and the Hard Filter after the Haplotype Caller,
both as specified in the best practices.

INDEL detection

To evaluate the effect of lossy compression of base quality scores
on INDEL calling, we employ popular INDEL detection pipelines:
Dindel [21], Unified Genotyper, Haplotype Caller [15–17] and
Freebayes [22]. First, reads were aligned to the reference genome,
NCBI build 37, with BWA [20]. We replaced the quality scores of
the corresponding SAM/BAM file by those obtained after applying
various lossy compressors, and then we performed the INDEL
calling with each of the four tools. The Supplementary Data con-
tains the detailed description of the commands necessary to run
each pipeline. Note that several of these pipelines can be used to
call both SNPs and INDELs, but the commands or parameters are
different for each variant type.

Datasets for SNP calling

A crucial part of the analysis is the ground truth, as it serves as
the baseline for comparing the performance of the different
lossy compressors against the lossless case. Thus, for the SNP
calling analysis, we consider datasets from the H. Sapiens indi-
vidual NA12878, for which two “ground truth” of SNPs have
been released. In particular, we consider the datasets
ERR174324 and ERR262997, which correspond to a 15�-coverage
pair-end WGS dataset and a 30�-coverage pair-end WGS data-
set, respectively. For each of them we extracted the chromo-
somes 11 and 20. The decision of extracting some chromosomes
was made to speed up the computations. We chose chromo-
some 20 because it is the one normally used for assessment
(http://gatkforums.broadinstitute.org/discussion/1213/whats-
in-the-resource-bundle-and-how-can-i-get-it), and chromo-
some 11 as a representative of a longer chromosome. Regarding
the two “ground truths”, they are the one released by the
Genome in a Bottle consortium (GIAB) [8], which has been
adapted by the National Institute of Standardizations and
Technology (NIST); and the ground truth released by Illumina as
part of the Platinium Genomes project (http://www.illumina.
com/platinumgenomes). Figure 2 summarizes the differences
between the two. As can be observed, most of the SNPs con-
tained in the NIST ground truth are also included in Illumina’s
ground truth, for both chromosomes. Note also that the number
of SNPs on chromosome 20 is almost half of chromosome 11,
for both “ground truths” (As is clear from the discussion in this
subsection, the term ground truth should be taken with a grain of
salt and as such should appear in quotation marks throughout.
We omit these marks henceforth for simplicity.).

Datasets for INDEL detection

To evaluate the effect of lossy compression on INDEL detection,
we simulated four datasets. Each dataset was composed of one
chromosome with approximately 3000 homozygous INDELs. To
mimic biologically realistic variants, we generated distributions
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of INDEL sizes and frequencies, and insertion to deletion ratios,
all conditioned on location (coding vs non-coding) using the
Mills and 1000Genomes INDELs provided in the GATK bundle.
We drew from these distributions to create our simulated data.

We generated �30� coverage of the chromosome with 100bp
paired-end sequencing reads (using an Illumina-like error pro-
file) for these simulated datasets using ART [23].

Performance metrics

The output of each of the pipelines is a VCF file [24], which con-
tains the set of the called variants. We can compare these vari-
ants with those contained in the ground truth. True Positives
(T.P.) refer to those variants contained both in the VCF file under
consideration and the ground truth (a match in both position and
genotyping must occur for the call to be declared T.P for SNP,
while for INDELs the criteria were more lenient: any INDEL within
10bp of the true location was considered a T.P., methods similar
to [13]); False Positives (F.P.) refer to variants contained in the VCF
file but not in the ground truth; and False Negatives (F.N.) corres-
pond to variants that are present in the ground truth dataset but
not in the VCF file under consideration. The more T.P. (or equiva-
lently the fewer F.N.) and the fewer F.P. the better. To evaluate
the impact of lossy compression on variant calling, we compare
the number of T.P. and F.P. from various lossy compression
approaches to the number of T.P. and F.P. obtained from lossless
compression. Ideally, we would like to apply a lossy compressor
to the quality scores, such that the resulting file is smaller than
that of the losslessly compressed, while obtaining a similar num-
ber of T.P. and F.P. We will show that not only is this possible, but
that in some cases we can simultaneously obtain more T.P. and
fewer F.P than with the original data.

To analyze the performance of the lossy compressors on the
proposed pipelines, we employ the widely used metrics sensitivity

and precision, which include in their calculation the true positives,
false positives and false negatives, as described below:

- Sensitivity: measures the proportion of all the positives
that are correctly called, computed as T:P:

ðT:P:þF:N:Þ.
- Precision: measures the proportion of called positives that

are true, computed as T:P:
ðT:P:þF:P:Þ.

Depending on the application, one may be inclined to boost
the sensitivity at the cost of slightly reducing the precision, in
order to be able to find as many T.P. as possible. Of course, there
are also applications where it is more natural to optimize for
precision than sensitivity. In an attempt to provide a measure
that combines the previous two, we also calculate the f-score:

- F-score: the harmonic mean of the sensitivity and preci-
sion, computed as 2�Sensitivity�Precision

ðSensitivityþPrecisionÞ .

In the discussion above we have considered that all the vari-
ants contained in a VCF file are positive calls. However, another
approach is to consider only the subset of variants in the VCF file
that satisfy a given constraint to be positive calls. In general, this
constraint consists of having the value of one of the parameters
associated with a variant above a certain threshold. This approach
is used to construct the well-known Receiver Operating Curves
(ROC). In the case under consideration, the ROC curve shows the
performance of the variant caller as a classification problem. That
is, it shows how well the variant caller differentiates between true
and false variants when filtered by a certain parameter.
Specifically, it plots the False Positive Rate (F.P.R.) versus the True
Positive Rate (T.P.R.) (also denoted as sensitivity) for all threshold-
ing values. Given an ROC plot with several curves, a common
method for comparing them is by calculating the area under the
curve (AUC) of each of them, such that larger AUCs are better.

There are several drawbacks with this approach. The main
one, in our opinion, relates to how to compare the AUC of different
VCF files. Note that in general, different VCF files contain a differ-
ent number of calls. Thus, it is not informative to compute the
ROC curve of each VCF file independently, and then compare the
respective AUCs. A more rigorous comparison can be performed
by forcing all the VCF files under consideration to contain the
same number of calls. This can be achieved by computing the
union of all the calls contained in the VCF files, and adding to
each VCF file the missing ones, such that they all contain the
same number of calls. In [5] they followed this approach to per-
form pair-wise comparisons. However, this does not scale very
well for a large number of VCF files. Moreover, after performing
the analysis, if one more VCF file is generated, all the AUC files
must be re-computed (assuming the new VCF file contains at least
a call not included in the previous ones). The other main draw-
back that we encountered relates to the selection of the threshold-
ing parameter. For instance, in SNP calling, when using the GATK
pipeline, the QD (Quality by Depth) field is as valid a parameter as
the QUAL field. Different choices of the thresholding parameters,
result in different AUCs, as shown in the Supplementary Data.
Given the above discussion, we believe that this approach is
mainly suitable to analyze the VCF files that contain a clear
thresholding parameter, like those VCF files obtained by the GATK
pipeline after applying the VQSR filter, since in this case there is a
clear parameter to be selected, namely the VQSLOD.

Lossy compressors

To our knowledge, and based on the results presented in [3],
RBlock, PBlock [7] and QVZ [3] are the algorithms that perform

Figure 2. Difference between the GIAB NIST “ground truth” and the one from

Illumina, for (A) chromosome 11 and (B) chromosome 20.
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better among the existing lossy compressors that solely use the
quality scores to compress. Therefore, those are the algorithms
that we consider for our study. In addition, we consider
Illumina’s proposed binning (http://www.illumina.com/docu
ments/products/whitepapers/whitepaper_datacompression.pdf),
which is implemented both by DSRC2 [25] and CRAM [26]. In
the Results section we refer to the performance of DSRC2. Next,
we describe the aforementioned lossy compressors in more
detail.

P/R-Block

The PBlock and RBlock algorithms were introduced in [7]. Both al-
gorithms represent quality scores by separating them into
blocks of variable size, such that all the quality scores contained
in a block can be replaced by the same representative value
without violating a given distortion constraint. The algorithms
then store for each block its length and the representative value,
which are losslessly compressed. What differs between the al-
gorithms is the distortion constraint, that we specify next.

Given a block of quality scores, Qmax and Qmin denote the
largest and smallest quality scores within the block, respect-
ively. In PBlock, the quality scores contained in a block should
satisfy Qmax - Qmin � 2p, where p is a user specified parameter.
On the other hand, in RBlock the quality scores contained in a
block should satisfy Qmax/Qmin � r2, where r is a user specified
parameter.

The main difference between the two algorithms is related
to the maximum absolute distance allowed between a quality
score and its representative (the new quality score). Whereas in
PBlock this distance is constant for every quality score, in
RBlock a low quality score will in general be closer to its repre-
sentative than a high quality score. That is, the algorithm is
more precise in representing low quality scores than high ones.
Finally, note that in both algorithms the maximum absolute dis-
tance between a quality score and its representative is con-
trolled by the user.

QVZ - Quality Values Zip

QVZ was introduced in [3], and it allows the user to choose the
rate and the distortion to be minimized (the built in distortions
are Mean Square Error (MSE), Lorentzian and L1). QVZ assumes
a Markov model of order 1 for compression, and it computes the
statistics at each position empirically from the data. In brief,
given those statistics, the distortion to be minimized and the
rate, the algorithm makes use of the Lloyd-Max algorithm [27]
to compute the best quantizers. Note that at each position there
are as many quantizers as different values in the previous pos-
ition (due to the Markov assumption). A quantizer is composed
of decision regions and the representatives of each region. Once
all the quantizers are computed, QVZ assigns each quality score
to the corresponding decision region, which is then losslessly
compressed by an adaptive arithmetic encoder. In order to im-
prove the rate-distortion performance, QVZ has the option of
clustering the data prior to compression.

Illumina’s Binning

Illumina’s proposed binning reduces the alphabet size by apply-
ing an 8 level mapping. The specific mapping performed by
DSRC2 is summarized in Table 1 (the actual binning performed
by Illumina may differ slightly, as it may depend on the specific
machine and model used for sequencing). As can be inferred
from the table, the applied mapping is more precise in

representing high quality scores than low ones (based on the
size of the bins). Also, note that the maximum distance between
an original quality score and the new one is always upper
bounded by 5.

COMPARISON OF LOSSY COMPRESSORS

There are some important differences between the lossy com-
pressors introduced above. For example, the compression
scheme of Illumina’s proposed binning does not depend on the
statistics of the quality scores, whereas QVZ and P/R-Block do.
Also, in both Illumina’s proposed binning and P/R-Block the
maximum absolute distance between a quality score and its re-
constructed one (after decompression) can be controlled by the
user, whereas in QVZ this is not the case. The reason is that
QVZ designs the quantizers to minimize a given average distor-
tion based on a rate constraint, and thus even though on aver-
age the distortion is small, some specific quality scores may
have a reconstructed quality score that is far from the true one.
Also, note that whereas Illumina’s proposed binning applies
more precision to high quality scores, R-Block does the opposite,
and P-Block does it equally among all the quality scores. Finally,
in Illumina’s proposed binning and P/R-Block the user cannot
estimate the size of the compressed file in advance, whereas
this is possible in QVZ.

Another important point to be made regarding the lossy
compressors is the comparison of the final file size. Note that in
general, algorithms for lossy compression perform two oper-
ations: computing the new quality scores, and compressing
these new values. Thus the final compression ratio is both a
product of the data transform and the encoding method used to
compression. Some algorithms may not have an advanced
encoding method, and as a result the achieved compression
ratio may not reflect the true potential in terms of size reduc-
tion. Thus the results in terms of size reported in the results
section should not be taken as written in stone.

RESULTS

We analyze the output of the variant caller (i.e., the VCF file) for
each of the introduced pipelines when the quality scores are
replaced by those generated by a lossy compressor. We focus on
the following lossy compressors: QVZ, PBlock, RBlock and
DSRC2. Recall that in QVZ parameters include the distortion,
the rate and the number of clusters, and in PBlock and RBlock
the parameters p and r, respectively. DSRC2 uniquely performs
Illumina’s proposed binning. Thus, except for DSRC2, we run
each of the algorithms several times with different parameters,
generating different quality scores for each run. Specifically, we
used QVZ with 1 and 3 clusters, rates ranging from 0 to 1, and
the three built-in distortions MSE, L1 and Lorentzian (we refer to

Table 1. Illumina’s proposed 8 level mapping as performed by DSRC2

Quality score bins New quality score
N (no call) N (no call)

2-9 6
10-19 15
20-24 22
25-29 27
30-34 33
35-39 37
>39 40
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them as M, A and L, respectively). For PBlock we considered val-
ues of p ranging from 1 to 32, and for RBlock values of r ranging
from 3 to 30.

Due to space constraints, here we show the results for QVZ
with MSE distortion and three clusters, denoted as QVZ-Mc3,
RBlock and the Illumina proposed binning. We selected these as
they are good representatives of the overall results. We refer the
reader to the Supplementary Data for the results with all the
aforementioned parameters.

SNP calling

Figures 3 and 4 show the average sensitivity, precision and f-
score, together with the compression ratio (in bits per quality
score), over the 4 datasets and for the three pipelines when the
golden standard is that of NIST and Illumina, respectively. For
ease of visualization, we only show the results obtained with the
lossless compressed data, and the one lossily compressed with
QVZ (applied with 3 clusters and MSE distortion), RBlock, and
Illumina’s proposed binning. We chose to show the results on
these algorithms because we found the results to be very repre-
sentative. The lossless compressed rate is computed using QVZ
in lossless mode (which, as shown in [3], performs similarly to
the state-of-the-art lossless compressors for quality scores).

When reading the results, it is important to note the ground
truth that was used for the evaluation, as the choice of ground
truth can directly affect the results. Recall that, as shown in
Figure 2, Illumina’s ground truth contains the majority of the
SNPs contained in the NIST-GIAB, plus some more. Thus, assum-
ing both ground truths are largely correct, a SNP caller is likely to
achieve a higher sensitivity with the NIST ground truth, while
the precision will probably be lower. Vice versa, when comparing
the output of a SNP caller against the Illumina ground truth, we
will probably obtain a lower sensitivity and a higher precision.

We further define the variability observed in the output of the
different SNP calling pipelines as the methodological variability, and
the variability introduced by the lossy compressor within a pipe-
line as the lossy variability. We show that the lossy variability is

orders of magnitude smaller than the methodological variability;
this indicates that the changes in calling accuracy introduced by
lossy compressing the quality scores are negligible.

As shown in the figures, the variability obtained between dif-
ferent variant callers (methodological variability) is significantly
larger than the variability introduced by the lossy compressors
(for most rates), i.e., the lossy variability. Specifically, for rates
larger than 1 bit per quality score, we observe that the effect that
lossy compressors have on SNP calling is several orders of magni-
tude smaller than the variability that already exists within the
different variant calling pipelines. For smaller rates, we observe a
degradation in performance when using QVZ, and the lossy vari-
ability becomes more noticeable in this case. Recall that QVZ
minimizes the average distortion, and thus at very small rates
some of the quality scores may be highly distorted. If the highly
distorted quality scores happen to play an important role in call-
ing a specific variant, the overall performance may be affected.
On the other hand, RBlock permits the user to specify the max-
imum allowed individual distortion, and less degradation is ob-
tained in general for small rates. Note also that for rates higher
than 1 bit per quality score the performance of both QVZ and
RBlock is similar. Illumina’s proposed binning achieves around
1 bit per quality score on average, and achieves a performance
comparable to that of QVZ and RBlock. Finally, we found that
swapping the original quality scores with ones generated uni-
formly at random (Results not shown.), or with all set to a fixed
value (Q40 in the figure), significantly degraded the performance.
These observations demonstrate that the quality scores are ac-
tively used in all the pipelines when calling variants, and thus
discarding them is not a viable option.

Regarding the selection of the ground truth, we observe a
higher sensitivity with the NIST ground truth, and a higher pre-
cision with the Illumina’s ground truth. Note that these results
are in line with the above discussion regarding the choice of
ground truth.

To gain insight into the possible benefits of using lossy com-
pression, we show the distribution of the f-score difference
between the lossy and lossless case for different lossy

Figure 3. Average sensitivity, precision and f-score of the four considered datasets using the NIST ground truth. Different colors represent different pipelines, and dif-

ferent points within an algorithm represent different rates. Q40 denotes the case of setting all the quality scores to 40.
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compressors and rates (thus a positive number indicates an im-
provement over the lossless case). The distribution is computed
by averaging over all simulations (24 values in total; 4 datasets,
3 pipelines and 2 ground truths). Figure 5 shows the box-plot
and the mean value of the f-score difference for six different
compression rates. Since QVZ performs better for high rates, we
show the results for QVZ-Mc3 with parameters 0.9, 0.8 and 0.6
(left-most side of the figure). Analogously, for high compression
ratios we show the results of RBlock with parameters 30, 20, and
10 (right-most side of the figure).

Remarkably, for all the rates the median is positive, which
indicates that in at least 50% of the cases lossy compression im-
proved upon the uncompressed quality scores. Moreover, the
mean is also positive, except for the point with highest com-
pression. This suggests that lossy compression may be used to
reduce the size of the quality scores without compromising the
performance on the SNP calling.

The above reported results show that lossy compression of
quality scores (up to a certain threshold on the rate) does not af-
fect the performance on variant calling. Moreover, the box plot
of Figure 5 indicates that in some cases an improvement with
respect to the original data can be obtained. We now look into
these results in more detail, by focusing on the individual per-
formance of each of the variant calling pipelines.

We choose to show the results using tables as they help
visualize which lossy compressors and/or parameters work bet-
ter for a specific setting. We color in red (will appear as a shaded
cell) the values of the sensitivity, precision and f-score that im-
prove upon the uncompressed. We also generated a table for
each pipeline and/or ground truth that contains the average be-
havior of each of the algorithms with the different data sets. We
provide excel files (.xlsx) as Supplementary Data that contain all
the generated tables.

Table 2 shows the results for algorithms RBlock, QVZ-Mc3
(MSE distortion criteria and 3 clusters) and Illumina binning-

DSRC2 for the GATK with hard filtering pipeline when using the
NIST ground truth. The two columns refer to the average results
of Chromosomes 11 and 20 of the ERR262996 and ERR174310
datasets, respectively. We refer to the Supplementary Data
(.xlsx) for the results of QVZ using other distortions and rates,
and for PBlock, as well as for the results of individual chromo-
somes. The results for the htslib.org and Platypus pipelines are
also contained in the Supplementary Data, but we comment on
the results here as well.

It is worth noting that with the GATK pipeline, several com-
pression approaches improve simultaneously the sensitivity,
precision, and f-score when compared to the uncompressed
(original) quality scores. For example, in the 30�-coverage data-
set, RBlock improves the performance while reducing the size
by more than 76% (PBlock manages to boost the compression to
more than 80%, see Supplementary Data (.xlsx)). In the 15�-
coverage dataset QVZ improves upon the uncompressed and re-
duces its size by 20%. With the htslib.org pipeline, it is interest-
ing to see that most of the points improve the sensitivity
parameter, meaning that they are able to find more T.P. than
with the uncompressed quality scores. Finally, with the
Platypus pipeline, the parameters that improve in general are
the precision and the f-score, which indicates that a bigger per-
centage of the calls are T.P. rather than F.P. Some points also
improve upon the uncompressed. Similar tables when the
ground truth is provided by Illumina are contained in the
Supplementary Data (.xlsx). In that case, with the GATK pipe-
line, R/P-Block improves mainly the sensitivity and f-score, with
PBlock improving the precision as well in the 30� coverage
dataset. QVZ seems to perform better in this case, improving
upon the uncompressed for several rates. It also achieves a per-
formance better than that of Illumina’s proposed binning for a
similar compression rate. With the htslib.org pipeline R/P-Block
improve mainly the sensitivity, while QVZ improves the preci-
sion and the f-score (in the 30� coverage dataset). The

Figure 4. Average sensitivity, precision and f-score of the four considered datasets using the Illumina ground truth. Different colors represent different pipelines, and

different points within an algorithm represent different rates. Q40 denotes the case of setting all the quality scores to 40.
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performance on Platypus is similar to the one obtained when
the NIST ground truth is used instead.

In summary, the performance of QVZ with 3 clusters is in
general better than with 1 cluster, especially for small rates. In
terms of the distortion metric that QVZ aims to minimize, MSE
works significantly better for small rates (in most of the cases),
whereas for higher rates the three analyzed distortions offer a
similar performance. Thus the compression rate seems much
more significant to the variability in the performance than the
choice of distortion criterion. RBlock offers in general better per-
formance than PBlock for similar compression rates. Finally, in
most of the analyzed cases, Illumina’s binning is outperformed
by at least one other lossy compressor, while offering a similar
compression rate. Overall, for high compression ratios (30–70%),

RBlock seems to perform the best, whereas QVZ is preferred for
lower compression rates (>70%).

In the previously analyzed cases we have assumed that all
the SNPs contained in the VCF file are positive calls, since the
pipelines already follow their “best practice” to generate the cor-
responding VCF file. As discussed in the Methodology, another
possibility is to select a parameter and consider positive calls
only those whose parameter is above a certain threshold.
Varying the threshold results in the ROC curve. We believe this
approach is of interest to analyze the VCF files generated by the
GATK pipeline followed by the VQSR filter, with thresholding
parameter given the VQSLOD field, and thus we present the re-
sults for this case. For completeness, we also generated the ROC
curves of the remaining cases (see Supplementary Data).
Figure 6 shows the ROC curve of chromosome 11 of the 30�
coverage dataset (ERR262996), with the NIST ground truth. The
results correspond to those obtained when the quality scores
are the original ones (lossless), and the ones generated by QVZ-
Mc3 (MSE distortion and 3 clusters), PBlock with parameter 8,
RBlock with parameter 25 and the Illumina binning (as the re-
sults of applying the DSRC2 algorithm). As shown in the figure,
each of the algorithms outperform the rest in at least one point
of the curve. This is not the case for the Illumina Binning, as it is
outperformed by at least one other algorithm in all points.
Moreover, the AUC of all the lossy compressors except that of
the Illumina Binning outperform that of the lossless case.

INDEL detection

We show that lossy compression of quality values leads to
smaller files while enabling INDEL detection algorithms to
achieve accuracies similar to the accuracies obtained with data
that has been compressed losslessly.

We simulated four datasets that each consisted of the CEU
major alleles for chromosome 22 [28, 31] with approximately
3000 homozygous INDELs that were biologically realistic in
length, location, and insertion-to-deletion ratio. VCF files con-
taining the ground truth variants and BAM files containing the
associated simulated 100bp paired-end Illumina HiSeq reads
are available at http://web.stanford.edu/�iochoa/dataset1.tar.gz

Table 2. Sensitivity, precision, f-score and compression ratio for the 30� and 15� coverage datasets for the GATK pipeline, using the NIST
ground truth

Note: Table entries colored in red represent an improvement with respect to the lossless data.

Figure 5. Box plot of f-score differences between the lossless case and six lossy

compression algorithms for 24 simulations (4 datasets, 3 pipelines and 2 ground

truths). The x-axis shows the compression rate achieved by the algorithm. The

three left-most boxes correspond to QVZ-Mc3 with parameters 0.9, 0.8 and 0.6,

while the three right-most boxes correspond to RBlock with parameters 30, 20

and 10. The blue line indicates the mean value, and the red one the median.
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(Dataset 1 is available for direct download. However, due to the
size of the datasets, the remaining ones are available upon
request.).

Figure 7 shows the sensitivity, precision, and f-score
achieved by each INDEL detection pipeline using input data
from the aforementioned compression approaches, together
with the compression ratio in bits per quality score. Note that
the figure displays the means across the four simulated data-
sets (see Supplementary Data for individual values). In terms of
sensitivity, all four INDEL detection pipelines (HaplotypeCaller,
UnifiedGenotyper, Dindel, and Freebayes) resulted in a lossy
variability, as described above, that does not exceed the meth-
odological variability. All compression algorithm and INDEL de-
tection pipeline combinations had high precision (all but 1
obtained precision> 0.995). Besides the DSRC2 compression

approach applied to HaplotypeCaller, lossy compression did not
result in variability in precision.

Table 3 displays the sensitivity for an example INDEL detec-
tion pipeline, Dindel; results are shown for each compression
approach for each simulated dataset individually, along with
the mean and standard deviation across datasets. The mean
sensitivity for the lossless compression was 0.9796.
Interestingly, RBlock (with R parameter set to 8 or 10) achieves a
slightly higher average sensitivity of 0.9798. The remaining
pipelines have mean sensitivities ranging from 0.9644 to 0.9796.
The standard deviation across pipelines was low, ranging from
0.0016 to 0.0033.

Discussion

We have shown that lossy compressors can reduce file size at a
minimal cost - or even benefit - to sensitivity and precision in
SNP and INDEL detection.

We have analyzed several lossy compressors introduced re-
cently in the literature that do not use any biological informa-
tion (such as the reads) for compression. The main difference
among them relates to the way they use the statistics of the
quality scores for compression. For example, Illumina’s pro-
posed binning is a fixed mapping that does not use the underly-
ing properties of the quality scores. In contrast, algorithms like
QVZ are fully based on the statistics of the quality scores to de-
sign the corresponding quantizers for each case.

Based on the results shown in the previous section, we con-
clude that in many cases lossy compression can significantly re-
duce the genomic file sizes (with respect to the losslessly
compressed) without compromising the performance on the
variant calling. Specifically, we observe that the variability in
the calls output by different existing SNP and INDEL callers is
generally orders of magnitude larger than the variability intro-
duced by lossy compressing the quality scores, specially for
moderate to high rates. For small rates (around less than 1 bit
per quality score), lossy compressors that minimize the average

Figure 6. ROC curve of chromosome 11 (ERR262996) with the NIST ground truth

and the GATK pipeline with the VQSR filter. The ROC curve was generated with

respect to the VQSLOD field. The results are for the original quality scores

(uncompressed), and those generated by QVZ-Mc3 (MSE distortion and 3 clus-

ters), PBlock (p¼8) and RBlock (r¼25).

Figure 7. Average (of four simulated datasets) sensitivity, precision and f-score for INDEL detection pipelines. Different colors represent different pipelines, and differ-

ent points within an algorithm represent different rates.
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distortion, such as QVZ, get a degradation in performance. This
is due to some of the quality scores getting highly distorted. We
believe a boost in performance in the low-rate regime is pos-
sible, and that it deserves more investigation. For example, a
good clustering of the quality score sequences prior to compres-
sion could group together sequences of similar statistics, yield-
ing smaller distortion in each of the cluster, and thus reducing
the overall distortion. At high rates, the analyzed lossy com-
pressors perform similarly, except for Illumina’s proposed bin-
ning, which is generally outperformed by the other lossy
compressors. This suggests that using the statistics of the qual-
ity scores for compression is beneficial, and that not all datasets
should be treated in the same way.

The degradation in performance observed when setting the
quality scores to a random value or all to maximum, demon-
strates that the quality scores do matter, and thus discarding
them is not a viable option in our opinion. We recommend
applying lossy compression with moderate to high rates to en-
sure the quality scores are not highly distorted. In algorithms
such as PBlock and RBlock, the user can directly specify the
maximum allowed distortion. In algorithms that minimize an
average distortion, such as QVZ, we recommend to employ at
least one bit per quality score.

Finally, in several cases we have observed that lossy com-
pression actually leads to superior results compared to lossless
compression, i.e., they generate more true positives and fewer
false positives than with the original quality scores, when com-
pared to the corresponding ground truth. This behavior is con-
sistent with observations from the recent literature (see for
example [3, 5]). One important remark is that none of the ana-
lyzed lossy compressors make use of biological information for
compression, in contrast to other algorithms such as the one
introduced in [5]. We believe this is of importance, as one could
argue that the latter algorithms are tailored towards variant
calling, and thus a careful read of the results should be made.
The fact that we are able to show improved variant calling per-
formance in some cases with algorithms that do not use any
biological information further shows the potential of lossy com-
pression of quality scores to improve on any downstream
application.

Our findings put together with the fact that, when losslessly
compressed, quality scores comprise more than 50% of the com-
pressed file [2], seem to indicate that lossy compression of qual-
ity scores could become an acceptable practice in the future for
boosting compression performance or when operating in

bandwidth constrained environments. The main challenge in
such a mode may be to decide which lossy compressor and/or
rate to use in each case. Part of this is due to the fact that the re-
sults presented so far are experimental, and we have yet to de-
velop theory that will guide the construction or choice of
compressors geared toward improved inference. One reason is
that the statistics of the noise inherent in the quality scores
have yet to be understood and thus it is not possible to design
lossy compressors tailored to them. Moreover, the results that
show that lossy compression can lead to inference that im-
proves upon the uncompressed suggest that the data could be
denoised. In that regard, an understanding of the statistical
characteristics of the noise would enable the design of deno-
isers that remove part of the noise (see for example [33]), thus
improving the subsequent analysis performed on it. Moreover,
removing part of the noise would result in quality scores with
lower entropy, that when lossless compressed would yield bet-
ter compression results than those obtained with the noisy
quality scores (original data).

Evidently, for lossy compression of quality scores to become
a standard practice, further research is called for. It should in-
clude improved modeling of the statistics of the noise, construc-
tion of lossy compressors and denoisers tuned to such models,
and more experimentation on real data with additional down-
stream applications. Further, the phenomenon observed here
where lossy compression of the quality scores can actually
boost the performance of the downstream applications is high-
lighting not only the potential in lossy compression of quality
scores, but also the need for revisiting the design of the down-
stream applications to make more principled use of the quality
scores (with and without compression). For example, variant
detection methods utilize base quality values to various de-
grees. Some variant detection methods do not utilize the infor-
mation conveyed by quality scores at all. In particular, Pindel
[34] results for indel calls did not change at all when lossy com-
pression was applied to the quality values (results not shown).
We believe the performance could be improved by using the in-
formation conveyed in quality values in more meaningful ways.

Conclusion

Recently there has been a growing interest in lossy compression
of quality scores as a way to reduce raw genomic data storage
costs. However, the genomic data under consideration is used
for biological inference, and thus it is important to first

Table 3. Sensitivity for INDEL detection by dindel pipeline with various compression approaches for 4 simulated datasets

Sensitivity

Compression Approach Dataset 1 Dataset 2 Dataset 3 Dataset 4 Mean Standard
Deviation

Lossless 0.9817 0.9788 0.9805 0.9775 0.9796 0.0019
Illumina - DSRC2 0.9661 0.9662 0.9666 0.9621 0.9652 0.0021
Mc3 - 0.3 0.9776 0.9737 0.9747 0.9696 0.9739 0.0033
Mc3 - 0.7 0.9817 0.9775 0.9799 0.9758 0.9787 0.0026
Mc3 - 0.9 0.9817 0.9788 0.9805 0.9764 0.9794 0.0023
Pblock - 2 0.9817 0.9788 0.9805 0.9775 0.9796 0.0019
Pblock - 8 0.9810 0.9778 0.9802 0.9775 0.9791 0.0017
Pblock - 16 0.9654 0.9662 0.9652 0.9607 0.9644 0.0025
Rblock - 3 0.9817 0.9788 0.9805 0.9775 0.9796 0.0019
Rblock - 8 0.9817 0.9788 0.9805 0.9781 0.9798 0.0016
Rblock - 10 0.9817 0.9788 0.9805 0.9781 0.9798 0.0016
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understand the effect that lossy compression has on the subse-
quent analysis performed on it. To date, there is no clear meth-
odology to do so, as can be inferred from the variety of analyses
performed in the literature when new lossy compressors are
introduced. To alleviate this issue, in this paper we have
described a methodology to analyze the effect that lossy com-
pression of quality scores has on variant calling, one of the
most widely used downstream applications in practice. We
hope the described methodology will be of use in the future
when analyzing new lossy compressors and/or new datasets.

Specifically, the proposed methodology considers the use of
different pipelines for SNP calling and INDEL calling, and data-
sets for which true variants exist (“ground truth”). We have
used this methodology to analyze the behavior of the state-of-
the-art lossy compressors, which to our knowledge constitutes
the most complete analysis to date. The results demonstrate
the potential of lossy compression as a means to reduce the
storage requirements while obtaining performance close to that
based on the original data. Moreover, in many cases we have
shown that it is possible to improve upon the original data, cor-
roborating the belief that the quality scores are noisy and thus
they can be denoised (in our case via compression).

Our findings and the growing need for reducing the storage
requirements suggest that lossy compression may be a viable
mode for storing quality scores. However, further research
should be performed to better understand the statistical proper-
ties of the quality scores, as well as the noise underlying their
generation, to enable the principled design of lossy compressors
and/or denoisers tailored to them. Moreover, methodologies for
the analysis on other important downstream applications
should be developed.

Supplementary data

Supplementary data are available online at http://bib.oxford
journals.org/.
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