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Abstract

Explosion of the availability of big data sources along with the development in computational methods provides a useful
framework to study drugs’ actions, such as interactions with pharmacological targets and off-targets. Databases related to
protein interactions, adverse effects and genomic profiles are available to be used for the construction of computational mod-
els. In this article, we focus on the description of biological profiles for drugs that can be used as a system to compare similar-
ity and create methods to predict and analyze drugs’ actions. We highlight profiles constructed with different biological data,
such as target–protein interactions, gene expression measurements, adverse effects and disease profiles. We focus on the dis-
covery of new targets or pathways for drugs already in the pharmaceutical market, also called drug repurposing, in the inter-
action with off-targets responsible for adverse reactions and in drug–drug interaction analysis. The current and future appli-
cations, strengths and challenges facing all these methods are also discussed. Biological profiles or signatures are an
important source of data generation to deeply analyze biological actions with important implications in drug-related studies.
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Introduction

Similarity has been widely exploited to discover and design drugs
with similar properties. Chemical similarity has shown many ap-
plications in medicinal chemistry and drug discovery [1, 2]. The
concept of similarity is highly dependent, however, on the fea-
tures used to make the comparison. With the development of
scientific fields such as bioinformatics, systems biology and
pharmacogenomics, we have access to big data sources of drug
information that are useful to extract profiles or biological signa-
tures of the drugs. These biological profiles are descriptors
through which we can compare drugs and infer new molecular
properties. Most of the approaches exploit the idea that drugs
that share properties can have similar efficacy or mechanism of
action. Advances in integrative algorithms and data analysis
have facilitated the development of this type of strategy [3].

The basic molecular structure fingerprint is a molecular rep-
resentation in which each fragment, substructure or pharmaco-
phoric feature is represented in a position of a bit vector. The
position contains binary values (1 or 0) representing the pres-
ence or absence of a particular substructure. In a similar way, as
molecular fingerprints codify the molecular structure, other bio-
logical fingerprints, profiles or signatures can follow the same
concept and codify the presence or absence of different biolo-
gical properties, such as interaction with targets, over expres-
sion of some genes, adverse drug effects or other biological
features (see Figure 1). Examples of binary fingerprints and drug
similarity approaches are provided in the literature [4–6].
Besides binary profiles, the biological signature could also con-
tain non-binary quantitative data, such as frequency of adverse
effects or different gene expression levels. Although the com-
parison of the structural similarity has been widely used, we
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focus here on the comparison between drugs, but we pay spe-
cial attention to biological signatures to infer new candidates
for drugs’ actions. We understand biological signatures as a
type of drug signature derived from the interaction between
drugs and proteins in the organism and hence, target signa-
tures, but also biological processes dependent on protein inter-
action, such as adverse effects and gene expression or
transcriptional responses. Our intention is to focus on the appli-
cation of big biological data as molecular descriptors to evaluate
similarity between drugs and describe predictive patterns based
on those biological profiles.

In this review, we describe the applicability of drug profiles
to predict important phenomena in biomedicine, such as drug
repurposing, adverse drug effects and drug–drug interactions
(DDIs). Drug repurposing has large potential in drug discovery
and development. It is the process of discovering new alterna-
tive uses for existing drugs besides the original and approved
medical indication. From discovery until final approval, mol-
ecules have to be tested from the point of view of efficacy and
safety with the associated costs and risks [7]. In fact, it has been
estimated that the cost to bring a new drug to the pharmaceut-
ical market can surpass $1 billion [8]. Because drugs already in
the market have been extensively studied, the discovery of
novel targets for existing drugs is a useful strategy that can
reduce cost and time associated with drug development proc-
esses [9]. Thus, there is an increasing interest in elaborating
new methods for drug repurposing. Moreover, pharmaceutical
companies have sets of experimental drug candidates in their
pipelines with successful safety results but not satisfactory effi-
cacy shown in Phases II and III. This fact implies that the search
with repurposing objectives includes not only drugs in the mar-
ket but also large sets of experimental drugs.

On the other hand, adverse drug reactions constitute also an
important problem in drug development and postmarketing
safety [10, 11]. Adverse drug effects are an important cause of
drug failure in the development process as well as an important
concern in patient safety once the drug is in the market.
Adverse effects can cause important harm to the population
and dramatically increase the health system cost [12, 13].
Development of methods to better detect adverse drug effects is
a priority in current research including different steps such as
preclinical development, clinical trials and postmarketing drug
safety surveillance [14, 15]. Moreover, DDIs are also an import-
ant concern in experimental and in postmarketing steps. DDIs
are the cause of many adverse drug reactions and increase pub-
lic health costs [16, 17]. In this article, we will describe the differ-
ent biological drug profiles that have been already used to
evaluate drug similarity and hence predict and generate drug

candidates for new pharmacological applications, possible ad-
verse effects and DDIs. The main flowchart of the current article
is described in Figure 2.

Pharmaceutical profiles

In a similar way as chemical fingerprints codify in each bit vec-
tor position the presence or absence of structural patterns, it is
possible to codify alternative biological features in the vector,
such as interactions with targets or anatomic/therapeutic fea-
tures. We included as pharmaceutical profiles the molecular
structure fingerprints, two main types of fingerprints that codify
target features, and therapeutic profiles. On one hand, protein–
ligand interaction fingerprints codify the binding of the ligand
inside the protein pocket, i.e. important features for the inter-
action with the receptor, such as possible hydrogen bonds. On
the other hand, a second type of drug–target fingerprint codifies
the interaction or non-interaction with a set of targets described
in a pharmacological data source.

Molecular structure fingerprints

Molecular structure fingerprints have been widely used to com-
pare chemical similarity and discover new chemical entities
with diverse biological functions. Many of them have shown
great applicability in medicinal chemistry [18–21], in the detec-
tion of DDIs [22] and in the prediction of adverse effects [23–26].
We do not intend to provide an exhaustive description of all the
studies and chemical fingerprints described in the literature,
and so, we encourage the reading of some excellent protocols
and reviews already published that describe more deeply the
concept of different molecular structure fingerprints and their
application [1, 27–29]. These articles describe the different rep-
resentations, coefficients or measurements to quantify similar-
ity between fingerprints, as well as performance and
effectiveness in virtual screenings and similarity searches. We

Figure 1. Example of a drug biological signature: the different biological features,

i.e. targets, genes, etc, are codified in the drug fingerprint or signature through 1

(presence of the feature) or 0 (absence of the feature). A colour version of this fig-

ure is available at BIB online: https://academic.oup.com/bib.

Figure 2. Flowchart of the main topics described in the current article.
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have instead focused on more biological details rather than
chemical drug profiles.

Protein–ligand interaction fingerprints

The use of protein–ligand interaction fingerprints that describe
the binding of the ligands in the protein active site is a popular
approach with promising results in drug discovery. The inter-
actions described in the protein–ligand crystallized structures
or from docking calculations can be transformed in a binary
string. In each bit position the fingerprint codifies the presence
or absence of different residue–ligand interactions, such as
hydrogen bonds, hydrophobic or ionic interactions, among
others. Interaction fingerprints can have applications in priori-
tization of hypothetical binding modes extracted from molecu-
lar docking simulations, alignment of protein–ligand
complexes, virtual screening and discrimination between true
ligands and decoys [30–35]. Comparison of protein–ligand inter-
action patterns can also yield interesting results in polypharma-
cology, target prediction and drug repurposing [36]. Moreover,
applicability in the detection of adverse effects through the
study of interactions with off-targets can also be achieved with
these types of fingerprints [37]. There are some reviews that de-
scribe these approaches in detail as well as their application in
virtual screening and medicinal chemistry [38].

Target profile fingerprints

A second type of target fingerprint, which we call target profile
fingerprints, can also be used as a measure to compare similar-
ity between drugs to generate predictive models of new drug–
target interactions, drug-adverse effects associations and DDIs.
For instance, Napolitano et al. [39] proposed a drug repurposing
approach computing drug similarity based on molecular targets.
Each drug is represented as a bit vector that codifies in each
position the presence or absence of the targets described in
DrugBank [40]. The Tanimoto coefficient (TC) was calculated to
quantify the degree of similarity between pairs of fingerprints.
The authors integrated other types of similarity, such as chem-
ical and gene expression similarity, to generate an integrative
predictor.

Biological spectra analysis relating biological activity profiles
with molecular structures can also be developed. Fliri et al. [41]
compared activity profiles tested at single ligand concentrations
to establish a relationship between structure and biological ef-
fects. Their method allows the prediction of simultaneous inter-
actions between ligands and multiple proteins. The biological
spectrum analysis was linked to an adverse effect spectrum ex-
tracted from drug labels to provide a predictive mechanism of
clinical effects of medicines [42]. Another example of target
profiling and its role in the prediction of off-targets and adverse
drug effects detection is described by Liu et al. [43]. They inte-
grated protein targets along with other biological and chemical
profiles to predict adverse effects using machine learning meth-
ods. In their study, each drug is represented as a bit vector co-
difying information about chemical (molecular substructures),
biological (protein targets, transporters, enzymes and path-
ways) and phenotypic (adverse effects) profiles. They showed
that the integration of chemical information with biological sig-
natures yielded high performance. Our research group also cal-
culated target interaction signatures and developed predictive
models to enhance the signal detection in pharmacovigilance of
adverse drug effects [44]. We applied different similarity-based
models, among them target similarity models, to the drug

candidates extracted from a medication-wide association study.
Our modeling provided a new ranking for the adverse drug ef-
fect candidates and prioritized the signals extracted from
healthcare data analysis. Besides target information from drug-
protein sources, similar biological profiles can be extracted tak-
ing into account pathways or bioassay data to study adverse
drug reactions [45].

DDIs were also studied using approaches that take into ac-
count protein profiles to describe the drugs. There are some ex-
amples of integration of similarity data from different sources,
among them target-genomic data, to generate heterogeneous
networks to predict DDIs through machine learning techniques
[46]. Our group developed methods applicable at large scale to
detect DDIs based on different similarity measures [47], such as
target profile fingerprints. The method implemented drug simi-
larity into a reference standard of well-established DDIs ex-
tracted from DrugBank [40]. The models showed excellent
performance, pointed out new DDI candidates and integrated
the pharmacological-biological effect into the DDI outcome.
This similarity-based method using biological profiles was also
applied to predict DDIs related to arrhythmias [48] extracted
from TWOSIDES [49], a pharmacovigilance database with DDI
candidates generated from mining FAERS [50]. Similarity was
useful in improving signal detection and provided a decision-
making mechanism to help drug safety researchers look for
possible DDIs.

Besides ChEMBL [51] or PubChem [52], there are extensive
sources where researchers can collect a large set of drug–target
interactions and generate target fingerprints [40, 53–57]. Some
of the databases are summarized in Table 1 along with the dif-
ferent drug profiles described in the article. A different type of
drug profile derived from interactions between drugs and pro-
teins is the DDI profile. The available DDIs for a drug under
study in sources such as DrugBank can be represented as a bit
vector in a fingerprint. Following this concept, a study was re-
cently published [115] describing DDI profiles to develop a
multi-DDI predictor. The model used DDI fingerprints to calcu-
late similarity between pairs of drugs and infer novel putative
interactions from the non-intersecting DDIs described in the
pair. The system also provided a pharmacological effect associ-
ated to the novel interactions.

Anatomical Therapeutic Chemical profiles

Anatomical Therapeutic Chemical (ATC) classification system
[116] organizes the drugs in different levels according to their
anatomical (organ or system), therapeutic, pharmacological and
chemical properties. Based on this fact, it is feasible to assess
drug similarity comparing ATC profiles. For instance, drug
therapeutic similarity was studied by Cheng et al. [58] based on
ATC codes extracted from DrugBank. The authors described a
computational system to predict drug–target interactions on a
network of 621 approved drugs and 893 target proteins by using
different drug similarity inference methods, including chemical,
side effects and therapeutic space (ATC classification). In an-
other example with applicability in drug safety, the different
ATC levels were represented in a fingerprint, and similarity be-
tween drugs was calculated through the TC to develop models
to predict sets of adverse effects, such as acute renal failure,
acute liver failure, acute myocardial infarction and upper
gastrointestinal ulcer [44]. Similar protocol was developed to
introduce a model to predict DDIs that caused arrhythmias [48].
In both cases the modeling focused on the prioritization of sig-
nals extracted from healthcare data. Instead of using ATC codes
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as a means to generate drug profiles and predict drug proper-
ties, the inverse procedure can also be followed, i.e. drug classi-
fication or drug ATC profiles can be predicted and hence,
associate new ATC classifications for drugs. Dunkel et al. [117,
118] predicted the medical indication area described in the ATC
codes based on molecular structure and created the SuperPred
Web server. The system also predicts novel targets for drugs
and has applications in drug repurposing and safety.

Gene expression signatures

Advances in genome expression profiling, linked to the develop-
ment of DNA microarrays [119], were a key factor to provide a
tool for genome functional analysis. Gene expression signatures
are derived from the fact that depending on the cell state, some
genes can be over- or under-expressed. The cell state and hence
the gene expression profile can be altered as a response by a dis-
ease, the action of a chemical or processes such as cell division.
By comparing the expression levels of sets of genes (up- or
down-regulated) in an altered state (samples with disease or
after drug administration) with the expression levels at normal
state (samples without disease or drug exposure), it is possible to
generate a gene expression signature for the disease or the drug
[59, 60]. As an example, when a drug is administered to a patient,
the drug can interact with different targets in the organism,
causing a disruption of different biological pathways that could
be implicated in the regulation of the gene expression. For this
reason, after drug administration, it is possible to observe a
change in gene expression profiles and hence, infer possible bio-
logical actions for the drugs. Gene expression profiles or signa-
tures can be useful to characterize molecular effects caused by
drugs [61–64]. In fact, gene expression signatures are promising
techniques to study the effects of drugs with great potential in
drug repurposing and safety. There are two main research strat-
egies (see Figure 3) taking into account gene expression signa-
tures: (1) Reverse signature, in which gene expression profiles of
a drug and a disease are compared looking for inverse correl-
ations. The method is based on the idea that if drug and disease
signatures are inversely correlated, then the effect of the drug at
the transcriptome level is the opposite of the disease and hence,
the drug could treat the disease; (2) Drug signature comparison,
where pairs of drug–gene signatures are compared and new tar-
gets or pathways are inferred (guilt-by-association). Both meth-
ods are discussed in more detail and illustrated with different
examples in the current review.

Already in 2000, Hughes et al. [65] constructed a compen-
dium database of expression profiles in Saccharomyces
cerevisiae from diverse mutations and chemical treatments. The

compendium was useful to study gene functions and pharma-
cological perturbations. The authors identified a novel tar-
get for the oral anaesthetic dyclonine. They detected that the
expression signature for dyclonine resembled profiles with per-
turbations in the ergosterol pathway and provided evidence
that dyclonine inhibited the ERG2p, the sterol C-8 isomerase.
In 2003, Gardner et al. [66] also used transcriptional per-
turbations to generate a regulatory network model with
applications in the identification of molecular targets for
compounds.

Table 1. Summary of drug profiles, databases and references provided in the current study

Drug profiles References

Pharmaceutical profiles (Drug–target sources: ChEMBL, PubChem,
DrugBank, STITCH, SuperTarget, TTD, BindingDB, PharmGKB)

Molecular structure fingerprints 18–29, 39, 43, 44, 46–48, 58
Protein-ligand interaction fingerprints 30–38
Target profile fingerprints 39, 41–48
ATC profiles 44, 48, 58
Gene expression profiles (Gene expression sources: CMap, NCBI GEO) 39, 59–103
Phenome profiles (Phenome sources: FAERS, EHRs, SIDER, JAPIC)
Adverse drug effect profiles 43, 44, 46–48, 58, 104–111
Clinical and disease signatures 64, 112–114

Figure 3. Two different research strategies using gene expression signatures: (A)

reverse signature, in which the gene expression signature for a drug is com-

pared with the gene expression signature for a disease looking for reverse cor-

relations; (B) drug gene signature comparison, where pairs of drug signatures

are compared and new drug–target/pathways are inferred. A colour version of

this figure is available at BIB online: https://academic.oup.com/bib.
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There are more examples of studies that reported novel pos-
sible applications for existing drugs. In many cases, the
Connectivity Map (CMap) [67] had an important role in the dis-
covery because it was used as a source of gene expression pro-
files for drugs. The CMap is freely available and currently is
made out of a data set of >7000 genome-wide transcriptional
expression profiles from human cells treated with small drug
molecules (includes 1309 compounds). In the first version of the
CMap, published in 2006 by Lamb et al. [67], the authors
described the gene expression signatures of 164 Food and Drug
Administration (FDA) approved drugs in five different cancer
cell lines. The CMap is a valuable tool to study connections be-
tween diseases, genetic perturbations and mechanisms of ac-
tion of drugs. As a proof of CMap’s utility, Wei et al. [68]
identified rapamycin as a possible combinatory cancer therapy
with glucocorticoids owing to its action reversing glucocortic-
oids resistance. The authors screened the CMap drug genetic
expression signatures against expression signatures for gluco-
corticoid sensitivity and resistance in acute lymphoblastic leu-
kemia. They also reported the modulation of MCL1 as a
mechanism of action for rapamycin. Their approach has im-
portant implications in combinatory therapy in cancer treat-
ment to help in drug resistance problems.

Similar strategies looking for reverse signatures between
diseases and drugs were applied by Sirota, Dudley and cow-
orkers [69]. They also used CMap, showing the potential of the
database. They integrated and compared gene expression sig-
natures from 100 diseases, extracted from Gene Expression
Omnibus (GEO) [70], with signatures from 164 drugs in CMap.
They looked at large scale for reverse signatures between dis-
eases and drugs. Their approach yielded excellent results in
drug repurposing discovering the antiulcer drug cimetidine as a
potential candidate for lung adenocarcinoma and the anticon-
vulsant topiramate for inflammatory bowel disease [71].

A similar approach was published at the same time by
Kunkel et al. [72]. Because conserved changes in muscle genetic
expressions were detected in muscle atrophy [73], the authors
hypothesized that chemical compounds with an opposite gene
signature could have applications in the treatment of muscle at-
rophy. Their approach used mRNA expression signatures of
skeletal muscle atrophy to query the CMap. The study showed
anti-correlation between the disease muscle atrophy genetic
signature and the genetic signature extracted for the natural
compound ursolic acid. Their study showed potential for drug
discovery because the compound inhibited fasting-induced
muscle atrophy, induced muscle hypertrophy, improved muscle
insulin-IGF-I signaling and reduced adiposity. This type of ap-
proach looking for inverse correlations between gene expres-
sion profiles of diseases and drugs showed also potential in the
repurposing of drugs against breast cancer, myelogenous leuke-
mia and prostate cancer [74].

Another strategy in the discovery of new applications for
drugs consisted of guilt-by-association approaches that com-
pare gene expression signatures between drugs to infer new ac-
tions to the drug candidate. In another successful study using
CMap, Iorio et al. [75, 76] developed an approach that used drug
similarity calculated through drug gene expression profiles to
detect new targets and mechanisms of action for drugs. They
constructed a network with 1302 nodes (representing drugs)
connected through 41 047 edges (representing similarity in the
transcriptional responses between two drugs). Highly intercon-
nected nodes or drugs were enriched by compounds with a
similar mechanism of action. Based on that, new targets or
mechanisms of actions were inferred for some drug candidates.

The authors reported for the first time that Fasudil, a Rho-
kinase inhibitor, could have additional applications in neurode-
generative disorders as an enhancer of cellular autophagy [75].

There are more studies that use CMap and gene expression
profiles with applications in biomedical discovery. Because our
intention is to illustrate the importance of these types of data-
bases and not to describe all the studies that have been pub-
lished, we point out some reviews and perspectives with a more
complete and detailed description of the different studies using
CMap and its applications in drug repurposing, lead discovery,
elucidation of mechanism of action, synergy of therapeutic
combinations, mapping complex diseases and phenotypes and
systems biology [77, 78]. Besides all the different studies validat-
ing the usefulness of CMap, assessments of the applicability of
CMap-based methodologies is also available in the scientific lit-
erature [79–81].

Gene expression profiles from diseases and drugs can also
be extracted from alternative transcriptional data sources, such
as GEO microarrays data sets [82], a collection of samples from
the same platform and comparable from the biological and stat-
istical point of view. An example of characterization of disease–
drug effects through transcriptomic profiles using GEO data is
provided by Hu et al. [83]. The authors described a large-scale
analysis using gene expression signatures to generate a dis-
ease–disease, drug–drug and disease–drug network with appli-
cations in the discovery of relationships between diseases,
identification of adverse effects and detection of new indica-
tions for drugs. Their approach provides hypotheses about drug
repurposing, such as drugs used in the treatment of neuro-
logical disorders, migraine or inflammation, which could be po-
tentially useful in Huntington’s disease. The study provided
more examples of applicability in target interaction discovery,
such as the KCNMA1 potassium channel as a potential target
for the alkaloid lobeline. Moreover, associations between drugs
and adverse effects could also be made, such as tamoxifen and
potentially undesired carcinogenic properties. More informa-
tion about several resources of transcriptional data that support
functional research for genes and their signatures, as well as de-
tailed descriptions of gene signature methodologies for drug
repurposing can be found in published reviews [84].

Besides applications in drug repurposing, genetic signatures
have an important role in drug safety through the study of toxi-
cological properties of drugs. Toxicogenomics studies the
chemical-specific signatures of altered gene expression to clas-
sify toxic products based on the different signatures [85]. Gene
expression profiles can be used as a test to detect and classify
chemicals with potential toxicity for humans. Thomas et al. [86]
developed a toxicological testing studying the changes in liver
gene expression profiles caused by different chemical treat-
ments. Investigations of gene expression profiles and histo-
pathological alterations in liver after administration of the drug
methapyrilene provided insights into the role of some genes in
hepatotoxicity [87]. In a similar way, Amin et al. [88] analyzed
the changes in gene expression profiles after the administration
of some drugs with known renal toxicity. Their analysis also
provided insights about mechanism of action of the compounds
in nephrotoxicity. Genetic signatures can be seen as biomarkers
to predict toxicity after the drug administration. Fielden et al.
[89] generated a signature of 35 genes to predict drug-induced
renal toxicity. The signature was derived from kidney gene ex-
pression profiles in rats treated with renal toxic and non-toxic
compounds. The genetic signature was extracted through three
steps including data reduction, signature generation through a
sparse linear programming algorithm to differentiate presence

674 | Vilar and Hripcsak

Deleted Text: 72
Deleted Text: since 
Deleted Text: Connectivity Map (
Deleted Text: )
Deleted Text: more than 
Deleted Text: ,
Deleted Text: ,
Deleted Text: 72
Deleted Text: 73
Deleted Text: due 
Deleted Text: 74
Deleted Text: 75
Deleted Text: 76
Deleted Text: 77
Deleted Text: 78
Deleted Text: Connectivity Map
Deleted Text: since 
Deleted Text: 79
Deleted Text: 80
Deleted Text: ,
Deleted Text: ,
Deleted Text: 80
Deleted Text: Since 
Deleted Text: ,
Deleted Text: 82
Deleted Text: 84
Deleted Text: 87
Deleted Text: -
Deleted Text: 88
Deleted Text: -
Deleted Text: -
Deleted Text: -
Deleted Text: ,
Deleted Text: &hx00B4;
Deleted Text: 89
Deleted Text: 90
Deleted Text: 91
Deleted Text: 92
Deleted Text: 93
Deleted Text: 94
Deleted Text:  (SPLP)


and absence of future renal tubular toxicity and cross-
validation. The study showed promising results of genetic sig-
natures as biomarkers in adverse effect prediction that could
help traditional methodologies, such as histopathology or clin-
ical chemistry.

Gene expression profiles are also useful tools to monitor the
adverse effects associated with some therapies, such as treat-
ments for Duchenne muscular dystrophy [90]. Gene signatures
have great potential in the identification of off-targets and have
substantially contributed to the knowledge of molecular mech-
anisms of adverse drug reactions [91]. The large number of dif-
ferent biological processes that are analyzed can help in
preclinical and clinical research and detect in an early stage po-
tential adverse reactions. Microarray expression profiles can
also be useful in preclinical phases in the selection of com-
pounds with more opportunities of clinical success. In fact, the
regulatory authorities, such as the US FDA [120] have shown
interest in the regulation of genomic data by pharmaceutical
companies to help in the process of decision making. It is not
our intention to describe more studies in detail because there
are excellent reviews in the literature describing associations
between off-targets, adverse reactions and genes, such as asso-
ciations between liver and skin reactions and human leukocyte
antigen genes [92–94].

As we have shown above, gene expression profiles have great
applications in drug repurposing and adverse effect detection
providing insights about pathways and molecular mechanism
of action. Moreover, approaches such as gene expression-based
high-throughput screening showed potential for chemical
screening in drug discovery processes [95]. Gene expression sig-
natures have also an important role in precision medicine pro-
viding the tool necessary to analyze the more convenient drugs
for an individual [96, 97]. In fact, genomic analyses have already
reached great importance in therapy optimization, efficacy and
drug response in diseases such as cancer [98–101]. As we
described before, the analysis of reverse correlations between
drugs and diseases have applications in drug repurposing; in
addition, correlations between drugs and disease signatures
could also provide insights about possible medications contrain-
dicated for a particular disease. Another possible utility of this
type of study is the analysis and detection of DDIs. The import-
ance of genetic data on DDIs has been previously discussed [102,
103]. Incorporating patients’ genetic information into ad-
verse drug interaction data would improve personalized DDI
outcomes.

Phenome profiles
Adverse drug effect profiles

Adverse effects have been used as a source of pharmacological
information to develop drug profiles and compare similarity be-
tween chemicals. The idea behind these methods is that drugs
that share a significant number of adverse reactions should
have similar mechanisms of action with the consequent pre-
dictability in drug–target, drug–off-target and DDIs. In this
sense, current approaches rely on data that are based on drugs
that reached the pharmaceutical market. These approaches
would substantially benefit, however, from the extensive clin-
ical side effect data generated for experimental drugs by the
pharmaceutical sector in preclinical and clinical steps [104]. As
an application of these biological profiles, there are different
studies whose objective is the prediction of new targets for
drugs. Campillos et al. [105] used a phenotypic adverse effects

profile approach to infer new drug–target associations. They
used a classification of side effects based on the Unified Medical
Language System [121] and mined drug package inserts to ex-
tract sets of adverse effects for each drug. A weighted function
was used to measure similarity between adverse effect profiles.
They observed a correlation between side-effect similarity and
the likelihood of sharing a target. A test with 20 drug–target as-
sociations was carried out and 13 of them were validated
through in vitro binding assays, showing promising results for
the use of adverse effect profiles in drug discovery. Yang et al.
[106] also showed that clinical adverse drug effect profiles ex-
tracted from SIDER [122] could suggest novel indications for
drugs in the market. They extracted 3175 relationships between
side effects and diseases and provided repositioning hypoth-
esis. An approach inferring potential drug indications was also
described by Gottlieb et al. [107]. The authors developed their
method using different similarity measures, among them drug
side effect similarity extracted from SIDER. Another source of
adverse reactions, such as FAERS, the US FDA’s Adverse Event
Reporting System [50] was used by Takarabe et al. [108] to define
adverse drug effect similarity. In this study the drugs are repre-
sented using two different adverse effect profiles, based on bin-
ary profiles in which the adverse events are coded 1 or 0
indicating presence or absence of the adverse effects, and based
on frequency in which the side effect vector position codifies
the frequency of the adverse events in the reports. Alternative
data sources of adverse effects were also used in the study,
such as SIDER [122] or JAPIC [123], the Japan Pharmaceutical
Information Center database. There are also some Web servers,
such as DINIES [124, 109], to predict drug–target interactions
using chemical features but also additional biological informa-
tion such as side-effect profiles. The prediction in the system is
based on the use of machine learning methods assuming that
similar compounds (calculated with different similarity profiles)
interact with similar proteins.

Adverse effect signatures have also shown great potential in
clinical and postmarketing phases through the detection of ad-
verse reactions and DDIs [110]. As it was commented in previ-
ous sections, Liu et al. [43] developed a machine learning
approach for large-scale prediction of adverse reactions caused
by drugs using similarity signatures, among them adverse ef-
fects signatures extracted from SIDER [122]. Our research group
has also used adverse drug effects profiles to generate predict-
ive models with implications in the detection of adverse reac-
tions and DDIs [44, 47, 48]. The potential of phenotypic profiles
in the prediction of DDIs was also demonstrated in more recent
studies [111].

Clinical and disease signatures

Electronic Health Records (EHRs) are widely investigated to look
for associations between drugs and adverse effects and consti-
tute an important source for pharmacovigilance. These data
also offer a great opportunity as an extensive source of drug sig-
natures. EHRs contain medical data regarding laboratory test-
ing. Information from laboratory tests can be implemented as
laboratory fingerprints and hence drugs can be compared based
on the similarity displayed in the different tests. The associated
similarity between drugs is useful to infer new drug actions
with implications in drug repurposing and adverse effect detec-
tion. As an example, Paik et al. [112] developed a method that
integrated laboratory test signatures from >530 000 patients
with genomic profiles from public sources to discover new drug
applications. The study suggested that the anti-asthma drug
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terbutaline sulfate can be a promising candidate for the treat-
ment of amyotrophic lateral sclerosis.

Knowledge of the diseases treated by drugs can also be ex-
ploited to generate predictive systems in drug repurposing. For
instance, drugs can be represented as fingerprints of the differ-
ent diseases they treat. Alternatively, a disease signature can
also be generated, composed of the different drugs used to treat
the disease. Following this concept, Chiang et al. [113] used FDA-
approved indications and off-label uses to generate disease sig-
natures. Signatures were compared and the non-intersecting
drugs in the disease pair were considered new putative drug–
disease candidates. The authors developed a guilt-by-
association network model with 5549 disease pairs to generate
a set of 57 542 candidates for repurposing. An alternative idea to
be exploited is based on the analysis of the shared molecular
mechanisms between two different pathologies. Comparison of
the diseases at molecular level can also offer opportunities in
drug repurposing. Although these techniques have applicability
in drug-related predictions, we do not consider them as drug
signatures and additional related information is available in a
previous review published by Dudley et al. [64].

A complementary framework was used by Jang et al. [114] in
which clinical disease signatures and clinical drug effect vectors
were combined. The clinical disease signatures were derived
from electronic health information extracted from the National
Health and Nutrition Examination Survey. The disease signa-
ture consisted of clinical variables with significant alterations
(up or down) between disease and healthy controls determined
by statistical analysis (Wilcoxon rank sum test). The drug effect
signatures were calculated from the scientific literature by
Fisher’s exact test and supervised machine learning. They also
contained clinical variables modified by the effect of drugs, i.e.
they can be up, down, non-related and associated (this is the
case when drug and clinical variable are associated but no infor-
mation about directionality is available). The method calculated
a repositioning score for each drug–disease candidate based on
both anti-correlation and association of clinical states of disease
signatures and clinical effects of drugs. Examples of possible
drug repurposing candidates for further study are glutathione
and edetic acid as treatments for asthma. The authors showed
the potential of their approach in the discovery of new drug
therapeutic effects based on complementary relations between
disease and clinical drug effect signatures.

Semantic analysis as a source of drug profiles

Drug biological profiles are generated in many occasions from
knowledge data sources available for the scientific community
(see Table 1 with the summary of some data sources). However,
text mining and semantic analysis performed in the Web and in
the scientific literature can provide also a valuable source for
the generation of the different biological profiles. There are dif-
ferent studies that established drug biological profiles for simi-
larity comparison that are based on semantic extraction of the
knowledge from the texts and data sources. The generation of
ontologies helps in the extraction and analysis of the informa-
tion providing a vocabulary and a tool to link relationships be-
tween terms in the biomedical domain. Moreover, ontologies
provide a standard framework to unify concepts from different
domains of knowledge and with diverse formats.

Choi et al. [125] used Semantic Web technologies and gener-
ated a Small Molecule Ontology (SMO) to represent concepts
and relationships. The elements of their ontology described
small molecules, proteins, pathways and genes. SMO is a

repository of relevant terms for small molecules and protein
interaction data that facilitates reasoning across drugs and their
targets. Gene Ontology was useful to compute gene semantic
similarity between proteins by Tan et al. [126]. The authors gen-
erated ‘theoretical expression profiles’ by integrating 3D chem-
ical structure similarity and gene semantic similarity. Those
expression profiles were compared to measure drug-drug simi-
larity and infer new properties in a repurposing strategy.
Another case of application of the knowledge from data sources
and ontologies in drug–target prediction is provided by Palma
et al. [127]. They presented a method that combines semantic
similarities from ontologies or semantic spaces with an edge
partitioning approach that includes drug–target interaction
edges, and drug–drug and target–target similarity edges. An ex-
ample of semantic similarity between drugs described in the
study is calculated through the shared annotations of disease
concepts (representing drugs as profiles of disease terms).
Through the combination of shared annotation and ontological
relatedness, i.e. identical terms and related terms, the authors
developed a community of related disease concepts. Chen et al.
[128] used semantic methodologies to generate a network with
drug–target interaction data. They developed a Semantic Link
Association Prediction model to evaluate and predict drug–tar-
get pairs associations. The scores associating drugs against set
of targets are biological signatures to measure drug similarities
within the network system. Their method has potential in the
discovery of new applications for drugs. Semantic similarity cal-
culated with phenotype ontologies has also demonstrated to be
useful to analyze druggable therapeutic targets, pathways, gene
functions and drug effect profiles [129]. The authors developed
PhenomeNET 2 [130], a Web server to evaluate similarity be-
tween organisms, diseases and drug effect profiles using pheno-
type annotations.

Drug–drug similarity calculated with ontology measures is
useful to automate the analysis. However, drug ontologies may
contain some irrelevant terms for a particular problem and
hence lead to inaccurate drug similarities. For this reason, Lee
et al. [131] described a pruning approach for drug ontologies to
eliminate irrelevant terms or concepts that confound the im-
portant semantic terms of a certain domain. There are in the
scientific literature different reviews that show the applicability
of text mining, semantic approaches and ontologies in the ex-
traction, integration and generation of biomedical information
[132–135].

Challenges in drug biological profiles

Drug signatures have showed great applicability in drug discov-
ery, development and drug safety. Although large and complex
biological data are available nowadays, and more is expected in
the next future, showing great potential as extensive sources to
generate drug signatures, the use of these computational
approaches is not exempt of important challenges. A primary
limitation of drug signatures resides on the quality and accur-
acy of the data introduced in the signature. Drug signatures ex-
tracted from some knowledge data, such as established sources
of targets and adverse effects, could be partially biased [47].
Knowledge target databases are influenced by the tendency of
evaluating drugs in the same pharmacological class for the
same targets. Moreover, target fingerprints could also be
weighted with a significant number of similar targets belonging
to the same protein family that could provide redundant infor-
mation for drug comparison. Another limitation in the applic-
ability of some profiles could reside in the inconsistency
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between the obtained results and clinical therapeutic actions.
The prediction of molecular responses, such as possible drug–
target associations, may not correspond well with phenotypic
actions. On the other hand, drug signatures calculated with ad-
verse effects extracted from valuable knowledge data sources
such as SIDER could be affected by reporting biases owing to the
fact that some adverse effects are extracted from package in-
serts [136] that could include all the drugs in a particular
pharmacological category. In some cases, however, the adverse
reactions are not totally confirmed for some drugs in the class
and some false positives could be included [136, 137]. Moreover,
the calculation of knowledge-based signatures is not applicable
in some cases, such as postmarketing adverse event signatures
in recent approved drugs with limited adverse effect informa-
tion in the current pharmaceutical market.

Although the analysis of gene expression signatures is a
promising technique, it is not free of limitations, such as the se-
lection of genes that compose the signature or the multiple ex-
pression signatures obtained by treating different cell lines with
the same drug [84]. Limitations to derive drug signatures can
arise from drug single testing concentrations [77]. A different re-
sponse could be observed in some cases and hence a different
genetic drug profile. Besides these limitations, implementation
of drug genetic profiles extracted from different drugs, types of
cells and under different conditions is a challenging process.
Incorrect integration of gene expression profiles could provide a
misguided representation of the biological states [84].
Improvements in signature matching methodologies would be
useful in data implementation. Moreover, the gap between mo-
lecular responses and phenotypic actions is also applicable in
the case of gene expression signatures. Drug responses in iso-
lated cell lines might not reflect the behavior of a drug in a more
complete biological system [64]. Complex diseases that alter
multiple biological processes in different organ systems might
not be efficiently represented and analyzed by drug transcrip-
tome responses in a single cell signature. Moreover, drug thera-
peutic effects in some cases could be associated to metabolic
drug products that are not taken into account using genetic
approaches in cells [64]. Besides the great effort applied in the
development of CMap and alternative publicly available tran-
scriptional sources, more gene expression data extracted for
more molecules, approved and experimental drugs, would be
necessary to expand this type of studies toward a more com-
plete representation of the pharmacological space.

Despite the different challenges and limitations presented
by the nature of the features codified in the drug profile or sig-
nature and by the method used to integrate similarity and infer
new targets, pathways, adverse effects and DDIs, the analysis of
drug profiles has shown significant applications in drug discov-
ery, development and safety. The concept of drug profile simi-
larity is exploited in most of the studies as a successful tool to
associate or infer new properties for drugs. However, it is not
clear that the performance and efficiency achieved by one of
the drug profiles really surpasses performance yielded by the
others. Integrative models combining different similarity pro-
files could be an option to improve prediction. As it was shown
previously [47, 48], different drug profile information was imple-
mented in the development of integrative models through
Principal Component Analysis and Linear Discriminant
Analysis. It is worth noting that comparison of different drug
profiles showed some similar patterns, although low correl-
ations were obtained in some cases [48]. They showed the abil-
ity of codifying related biological information but at the same
time different and complementary data. For this reason,

combination of different drug profiles in integrative models
could be an alternative in the prediction of drug properties.
However, regardless of the success of some computational
approaches, new candidates extracted from this type of studies
are novel hypothesis that need further confirmation through
experimental assays developed in cells, animals or humans or
through complementary surveillance studies that provide more
scientific evidences.

Conclusion

Availability of big biological data sources combined with the ad-
vances in development of integrative methods for data analysis
provides a great opportunity in the generation of drug biological
profiles that can be used in the modeling of drugs, targets, path-
ways and adverse effects. Biological drug profiles can be com-
pared easily through similarity algorithms, such as the TC, and
predictive models that infer new biological actions to the candi-
dates can be generated from the comparative analysis. In the
current review, we focus on drug-related profiles, such as target
profiles, gene expression signatures, adverse drug effects and
drug–disease profiles, and their applicability on the explanation
of important biological phenomena for existing drugs. Results
showed that computational approaches using drug biological
profiles can be used with great success to infer novel actions for
drugs. We provide a significant number of examples of applic-
ability of drug profiles in drug repurposing, adverse drug effect
prediction and DDI analysis. The three applications presented
in the current review have the potential to improve patient
health and reduce costs associated with drug development and
safety.

Key Points

• Examples of drug biological profiles contain informa-
tion about target interactions, gene expression meas-
urements, adverse effects and/or diseases.

• Similarity in drug biological profiles can be compared
to predict and analyze drugs’ actions.

• Drug biological profiles have applications in drug
repurposing, detection of adverse reactions and predic-
tion of drug–drug interactions.
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