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Abstract 

In the era of big data, transformation of biomedical big data into valuable knowledge has been 

one of the most important challenges in bioinformatics. Deep learning has advanced rapidly 

since the early 2000s and now demonstrates state-of-the-art performance in various fields. 

Accordingly, application of deep learning in bioinformatics to gain insight from data has been 

emphasized in both academia and industry. Here, we review deep learning in bioinformatics, 

presenting examples of current research. To provide a useful and comprehensive perspective, 

we categorize research both by the bioinformatics domain (i.e., omics, biomedical imaging, 

biomedical signal processing) and deep learning architecture (i.e., deep neural networks, 

convolutional neural networks, recurrent neural networks, emergent architectures) and present 

brief descriptions of each study. Additionally, we discuss theoretical and practical issues of 

deep learning in bioinformatics and suggest future research directions. We believe that this 

review will provide valuable insights and serve as a starting point for researchers to apply deep 

learning approaches in their bioinformatics studies. 
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Key Points 

 As a great deal of biomedical data have been accumulated, various machine algorithms 

are now being widely applied in bioinformatics to extract knowledge from big data. 

 Deep learning, which has evolved from the acquisition of big data, the power of 

parallel and distributed computing, and sophisticated training algorithms, has 

facilitated major advances in numerous domains such as image recognition, speech 

recognition, and natural language processing. 

 We review deep learning for bioinformatics and present research categorized by 

bioinformatics domain (i.e., omics, biomedical imaging, biomedical signal processing) 

and deep learning architecture (i.e., deep neural networks, convolutional neural 

networks, recurrent neural networks, emergent architectures).  

 Furthermore, we discuss the theoretical and practical issues plaguing the applications 

of deep learning in bioinformatics, including imbalanced data, interpretation, 

hyperparameter optimization, multimodal deep learning, and training acceleration. 

 As a comprehensive review of existing works, we believe that this paper will provide 

valuable insight and serve as a launching point for researchers to apply deep learning 

approaches in their bioinformatics studies. 
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Introduction 

TABLE 1: Abbreviations in alphabetical order 
   

Abbreviation Full word 

AE  Auto-Encoder 

AI  Artificial Intelligence 

AUC  Area Under the Receiver Operation Characteristics Curve 

AUC-PR  Area Under the Precision-Recall Curve 

BRNN  Bidirectional Recurrent Neural Network 

CAE  Convolutional Auto-Encoder 

CNN  Convolutional Neural Network 

DBN  Deep Belief Network 

DNN  Deep Neural Network 

DST-NN  Deep Spatio-Temporal Neural Network 

ECG  Electrocardiography 

ECoG  Electrocorticography 

EEG  Electroencephalography 

EMG  Electromyography 

EOG  Electrooculography 

GRU  Gated Recurrent Unit 

LSTM  Long Short-Term Memory 

MD-RNN  Multi-dimensional Recurrent Neural Network 

MLP  Multilayer Perceptron 

MRI  Magnetic Resonance Image 

PCA  Principal Component Analysis 

PET  Positron Emission Tomography 

PSSM  Position Specific Scoring Matrix 

RBM  Restricted Boltzmann Machine 

ReLU  Rectified Linear Unit 

RNN  Recurrent Neural Network 

SAE  Stacked Auto-Encoder 

SGD  Stochastic Gradient Descent 

 

In the era of “big data,” transformation of large quantities of data into valuable knowledge has 

become increasingly important in various domains [1], and bioinformatics is no exception. 

Significant amounts of biomedical data, including omics, image, and signal data, have been 

accumulated, and the resulting potential for applications in biological and healthcare research 

has caught the attention of both industry and academia. For instance, IBM developed Watson 

for Oncology, a platform analyzing patients’ medical information and assisting clinicians with 



treatment options [2, 3]. In addition, Google DeepMind, having achieved great success with 

AlphaGo in the game of Go, recently launched DeepMind Health to develop effective 

healthcare technologies [4, 5]. 

To extract knowledge from big data in bioinformatics, machine learning has been a widely used 

and successful methodology. Machine learning algorithms use training data to uncover 

underlying patterns, build models, and make predictions based on the best fit model. Indeed, 

some well-known algorithms (i.e., support vector machines, random forests, hidden Markov 

models, Bayesian networks, Gaussian networks) have been applied in genomics, proteomics, 

systems biology, and numerous other domains [6]. 

 

[FIGURE 1] 

The proper performance of conventional machine learning algorithms relies heavily on data 

representations called features [7]. However, features are typically designed by human 

engineers with extensive domain expertise, and identifying which features are more appropriate 

for the given task remains difficult. Deep learning, a branch of machine learning, has recently 

emerged based on big data, the power of parallel and distributed computing, and sophisticated 

algorithms. Deep learning has overcome previous limitations, and academic interest has 

increased rapidly since the early 2000s (Figure 1). Furthermore deep learning is responsible for 

major advances in diverse fields where the artificial intelligence (AI) community has struggled 

for many years [8]. One of the most important advancements thus far has been in image and 

speech recognition [9-15], although promising results have been disseminated in natural 

language processing [16, 17] and language translation [18, 19]. Certainly, bioinformatics can 

also benefit from deep learning (Figure 2): splice junctions can be discovered from DNA 



sequences, finger joints can be recognized from X-ray images, lapses can be detected from 

electroencephalography (EEG) signals, and so on.   

 

[FIGURE 2] 

Previous reviews have addressed machine learning in bioinformatics [6, 20] and the 

fundamentals of deep learning [7, 8, 21]. In addition, although recently published reviews by 

Leung et al. [22], Mamoshina et al. [23], and Greenspan et al. [24] discussed deep learning 

applications in bioinformatics research, the former two are limited to applications in genomic 

medicine, and the latter to medical imaging. In this article, we provide a more comprehensive 

review of deep learning for bioinformatics and research examples categorized by 

bioinformatics domain (i.e., omics, biomedical imaging, biomedical signal processing) and 

deep learning architecture (i.e., deep neural networks, convolutional neural networks, recurrent 

neural networks, emergent architectures). The goal of this article is to provide valuable insight 

and to serve as a starting point to facilitate the application of deep learning in bioinformatics 

studies. To the best of our knowledge, we are one of the first groups to review deep learning 

applications in bioinformatics. 



 

Deep learning: a brief overview 

 

[FIGURE 3] 

Efforts to create AI systems have a long history. Figure 3 illustrates the relationships and high-

level schematics of different disciplines. Early approaches attempted to explicitly program the 

required knowledge for given tasks; however, these faced difficulties in dealing with complex 

real-world problems because designing all the detail required for an AI system to accomplish 

satisfactory results by hand is such a demanding job [7]. Machine learning provided more 

viable solutions with the capability to improve through experience and data. Although machine 

learning can extract patterns from data, there are limitations in raw data processing, which is 

highly dependent on hand-designed features. To advance from hand-designed to data-driven 

features, representation learning, particularly deep learning has shown great promise. 

Representation learning can discover effective features as well as their mappings from data for 

given tasks. Furthermore, deep learning can learn complex features by combining simpler 

features learned from data. In other words, with artificial neural networks of multiple nonlinear 

layers, referred to as deep learning architectures, hierarchical representations of data can be 

discovered with increasing levels of abstraction [25].  

Key elements of deep learning 



The successes of deep learning are built on a foundation of significant algorithmic details and 

generally can be understood in two parts: construction and training of deep learning 

architectures. Deep learning architectures are basically artificial neural networks of multiple 

nonlinear layers and several types have been proposed according to input data characteristics 

and research objectives. Here, we categorized deep learning architectures into four groups (i.e., 

deep neural networks (DNNs) [26-30], convolutional neural networks (CNNs) [31-33], 

recurrent neural networks (RNNs) [34-37], emergent architectures [38-41]) and explained each 

group in detail (Table 2). Some papers have used “DNNs” to encompass all deep learning 

architectures [7, 8]; however, in this review, we use “DNNs” to refer specifically to multilayer 

perceptron (MLP) [26], stacked auto-encoder (SAE) [27, 28], and deep belief networks (DBNs) 

[29, 30], which use perceptrons [42], auto-encoders (AEs) [43], and restricted Boltzmann 

machines (RBMs) [44, 45] as the building blocks of neural networks, respectively. CNNs are 

architectures that have succeeded particularly in image recognition and consist of convolution 

layers, nonlinear layers, and pooling layers. RNNs are designed to utilize sequential 

information of input data with cyclic connections among building blocks like perceptrons, long 

short-term memory units (LSTMs) [36, 37], or gated recurrent units (GRUs) [19]. In addition, 

many other emergent deep learning architectures have been suggested, such as deep spatio-

temporal neural networks (DST-NNs) [38], multi-dimensional recurrent neural networks (MD-

RNNs) [39], and convolutional auto-encoders (CAEs) [40, 41].  

TABLE 2: Categorization of deep learning applied research in bioinformatics 

    Omics     Biomedical imaging     Biomedical signal processing 

    Research topics Reference   Research topics Reference   Research topics Reference 

Deep  
neural networks 

 Protein structure [84-87]  Anomaly classification [122-124]  Brain decoding [158-163] 

 Gene expression regulation [93-98]  Segmentation [133]  Anomaly classification [171-175] 

 Protein classification [108]  Recognition [142, 143]    

 Anomaly classification [111]  Brain decoding [149, 150]    

Convolutional  
neural networks 

  Gene expression regulation [99-104]   Anomaly classification [125-132]   Brain decoding [164-167] 

    Segmentation [134-140]  Anomaly classification [176] 

    Recognition [144-147]    

                  

Recurrent  
neural networks 

  Protein structure [88-90]         Brain decoding [168] 

 Gene expression regulation [105-107]     Anomaly classification [177, 178] 

 Protein classification [109, 110]       

                  

Emergent 
architectures 

  Protein structure [91, 92]   Segmentation [141]   Brain decoding [169, 170] 

         

         

                  



The goal of training deep learning architectures is optimization of the weight parameters in 

each layer, which gradually combines simpler features into complex features so that the most 

suitable hierarchical representations can be learned from data. A single cycle of the 

optimization process is organized as follows [8]. First, given a training dataset, the forward 

pass sequentially computes the output in each layer and propagates the function signals forward 

through the network. In the final output layer, an objective loss function measures error 

between the inferenced outputs and the given labels. To minimize the training error, the 

backward pass uses the chain rule to backpropagate error signals and compute gradients with 

respect to all weights throughout the neural network [46]. Finally, the weight parameters are 

updated using optimization algorithms based on stochastic gradient descent (SGD) [47]. 

Whereas batch gradient descent performs parameter updates for each complete dataset, SGD 

provides stochastic approximations by performing the updates for each small set of data 

examples. Several optimization algorithms stem from SGD. For example, Adagrad [48] and 

Adam [49] perform SGD while adaptively modifying learning rates based on update frequency 

and moments of the gradients for each parameter, respectively. 

Another core element in the training of deep learning architectures is regularization, which 

refers to strategies intended to avoid overfitting and thus achieve good generalization 

performance. For example, weight decay [50], a well-known conventional approach, adds a 

penalty term to the objective loss function so that weight parameters converge to smaller 

absolute values. Currently, the most widely used regularization approach is dropout [51]. 

Dropout randomly removes hidden units from neural networks during training and can be 

considered an ensemble of possible subnetworks [52]. To enhance the capabilities of dropout, 

a new activation function, maxout [53], and a variant of dropout for RNNs called rnnDrop [54], 

have been proposed. Furthermore, recently proposed batch normalization [55] provides a new 

regularization method through normalization of scalar features for each activation within a 

mini-batch and learning each mean and variance as parameters.  

Deep learning libraries 

To actually implement deep learning algorithms, a great deal of attention to algorithmic 

details is required. Fortunately, many open source deep learning libraries are available online 

(Table 3). There are still no clear front-runners, and each library has its own strengths [56]. 

According to benchmark test results of CNNs, specifically AlexNet [33] implementation in 

Baharampour et al. [57], Python-based Neon [58] shows a great advantage in the processing 



speed. C++ based Caffe [59] and Lua-based Torch [60] offer great advantages in terms of 

pre-trained models and functional extensionality, respectively. Python-based Theano [61, 62] 

provides a low-level library to define and optimize mathematical expressions; moreover, 

numerous higher-level wrappers such as Keras [63], Lasagne [64], and Blocks [65] have been 

developed on top of Theano to provide more intuitive interfaces. Google recently released 

the C++-based TensorFlow [66] with a Python interface. This library currently shows limited 

performance but is undergoing continuous improvement, as heterogeneous distributed 

computing is now supported. In addition, TensorFlow can also take advantage of Keras, 

which provides an additional model-level interface.  

TABLE 3: Comparison of deep learning libraries 

    Core   Speed for batch* (ms)   Multi-GPU   Distributed   Strengths [56, 57] 

Caffe   C++   651.6    O   X   Pre-trained models supported 

Neon   Pytho
n   386.8    O   X   Speed 

TensorFlow   C++   962.0    O   O   Heterogeneous distributed computing 

Theano   Pytho
n   733.5    X   X   Ease of use with higher-level wrappers 

Torch   Lua   506.6    O   X   Functional extensionality 

Notes. Speed for batch* is based on the averaged processing times for AlexNet [33] with batch size of 256 on a single GPU [57];  
Caffe, Neon, Theano, Torch was utilized with cuDNN v.3 while TensorFlow was utilized with cuDNN v.2 

 

Deep neural networks 

The basic structure of DNNs consists of an input layer, multiple hidden layers, and an output 

layer (Figure 4). Once input data are given to the DNNs, output values are computed 

sequentially along the layers of the network. At each layer, the input vector comprising the 

output values of each unit in the layer below is multiplied by the weight vector for each unit in 

the current layer to produce the weighted sum. Then, a nonlinear function, such as a sigmoid, 

hyperbolic tangent, or rectified linear unit (ReLU) [67], is applied to the weighted sum to 

compute the output values of the layer. The computation in each layer transforms the 

representations in the layer below into slightly more abstract representations [8]. Based on the 

types of layers used in DNNs and the corresponding learning method, DNNs can be classified 

as MLP, SAE, or DBN. 

 

 



 

[FIGURE 4] 

MLP has a similar structure to the usual neural networks but includes more stacked layers. It is 

trained in a purely supervised manner that uses only labeled data. Since the training method is 

a process of optimization in high-dimensional parameter space, MLP is typically used when a 

large number of labeled data are available [25].  

 

[FIGURE 5] 

SAE and DBN use AEs and RBMs as building blocks of the architectures, respectively. The 

main difference between these and MLP is that training is executed in two phases: unsupervised 

pre-training and supervised fine-tuning. First, in unsupervised pre-training (Figure 5), the 

layers are stacked sequentially and trained in a layer-wise manner as an AE or RBM using 

unlabeled data. Afterwards, in supervised fine-tuning, an output classifier layer is stacked, and 

the whole neural network is optimized by retraining with labeled data. Since both SAE and 

DBN exploit unlabeled data and can help avoid overfitting, researchers are able to obtain fairly 

regularized results, even when labeled data are insufficient as is common in the real world [68]. 



DNNs are renowned for their suitability in analyzing high-dimensional data. Given that 

bioinformatics data are typically complex and high-dimensional, DNNs have great promise for 

bioinformatics research. We believe DNNs, as hierarchical representation learning methods, 

can discover previously unknown highly abstract patterns and correlations to provide insight 

to better understand the nature of the data. However, it has occurred to us that the capabilities 

of DNNs have not yet fully been exploited. Although the key characteristic of DNNs is that 

hierarchical features are learned solely from data, human designed features have often been 

given as inputs instead of raw data forms. We expect that the future progress of DNNs in 

bioinformatics will come from investigations into proper ways to encode raw data and learn 

suitable features from them.  

 

Convolutional neural networks 

 

 [FIGURE 6] 

CNNs are designed to process multiple data types, especially two-dimensional images, and are 

directly inspired by the visual cortex of the brain. In the visual cortex, there is a hierarchy of 

two basic cell types: simple cells and complex cells [69]. Simple cells react to primitive patterns 

in sub-regions of visual stimuli, and complex cells synthesize the information from simple cells 

to identify more intricate forms. Since the visual cortex is such a powerful and natural visual 

processing system, CNNs are applied to imitate three key ideas: local connectivity, invariance 

to location, and invariance to local transition [8]. 

The basic structure of CNNs consists of convolution layers, nonlinear layers, and pooling layers 

(Figure 6). To use highly correlated sub-regions of data, groups of local weighted sums, called 

feature maps, are obtained at each convolution layer by computing convolutions between local 

patches and weight vectors called filters. Furthermore, since identical patterns can appear 



regardless of the location in the data, filters are applied repeatedly across the entire dataset, 

which also improves training efficiency by reducing the number of parameters to learn. Then 

nonlinear layers increase the nonlinear properties of feature maps. At each pooling layer, 

maximum or average subsampling of non-overlapping regions in feature maps is performed. 

This non-overlapping subsampling enables CNNs to handle somewhat different but 

semantically similar features and thus aggregate local features to identify more complex 

features. 

Currently, CNNs are one of the most successful deep learning architectures owing to their 

outstanding capacity to analyze spatial information. Thanks to their developments in the field 

of object recognition, we believe the primary research achievements in bioinformatics will 

come from the biomedical imaging domain. Despite the different data characteristics between 

normal and biomedical imaging, CNN will nonetheless offer straightforward applications 

compared to other domains. Indeed, CNNs also have great potential in omics and biomedical 

signal processing. The three keys ideas of CNNs can be applied not only in a one-dimensional 

grid to discover meaningful recurring patterns with small variance, such as genomic sequence 

motifs, but also in two-dimensional grids, such as interactions within omics data and in time-

frequency matrices of biomedical signals. Thus, we believe the popularity and promise of 

CNNs in bioinformatics applications will continue in the years ahead.  

 

Recurrent neural networks 

 

 [FIGURE 7] 

RNNs, which are designed to utilize sequential information, have a basic structure with a cyclic 

connection (Figure 7). Since input data are processed sequentially, recurrent computation is 

performed in the hidden units where cyclic connection exists. Therefore, past information is 



implicitly stored in the hidden units called state vectors, and output for the current input is 

computed considering all previous inputs using these state vectors [8]. Since there are many 

cases where both past and future inputs affect output for the current input (e.g., in speech 

recognition), bidirectional recurrent neural networks (BRNNs) [70] have also been designed 

and used widely (Figure 8). 

 

[FIGURE 8] 

Although RNNs do not seem to be deep as DNNs or CNNs in terms of the number of layers, 

they can be regarded as an even deeper structure if unrolled in time (Figure 7). Therefore, for 

a long time, researchers struggled against vanishing gradient problems while training RNNs, 

and learning long-term dependency among data was difficult [35]. Fortunately, substituting the 

simple perceptron hidden units with more complex units such as LSTM [36, 37] or GRU [19], 

which function as memory cells, significantly helps to prevent the problem. More recently, 

RNNs have been used successfully in many areas including natural language processing [16, 

17] and language translation [18, 19]. 

Even though RNNs have been explored less than DNNs and CNNs, they still provide very 

powerful analysis methods for sequential information. Since omics data and biomedical signals 

are typically sequential and often considered languages of nature, the capabilities of RNNs for 

mapping a variable-length input sequence to another sequence or fixed-size prediction are 

promising for bioinformatics research. With regard to biomedical imaging, RNNs are currently 

not the first choice of many researchers. Nevertheless, we believe that dissemination of 

dynamic CT and MRI [71, 72] would lead to the incorporation of RNNs and CNNs and elevate 

their importance in the long term. Furthermore, we expect that their successes in natural 



language processing will lead RNNs to be applied in biomedical text analysis [73] and that 

employing an attention mechanism [74-77] will improve performance and extract more 

relevant information from bioinformatics data.  

 

Emergent architectures  

Emergent architectures refer to deep learning architectures besides DNNs, CNNs, and RNNs. 

In this review, we introduce three emergent architectures (i.e., DST-NNs, MD-RNNs, and 

CAEs) and their applications in bioinformatics. 

 

[FIGURE 9] 

DST-NNs [38] are designed to learn multi-dimensional output targets through progressive 

refinement. The basic structure of DST-NNs consists of multi-dimensional hidden layers 

(Figure 9). The key aspect of the structure, progressive refinement, considers local correlations 

and is performed via input feature compositions in each layer: spatial features and temporal 

features. Spatial features refer to the original inputs for the whole DST-NN and are used 

identically in every layer. However, temporal features are gradually altered so as to progress to 

the upper layers. Except for the first layer, to compute each hidden unit in the current layer, 

only the adjacent hidden units of the same coordinate in the layer below are used so that local 

correlations are reflected progressively. 



 

[FIGURE 10] 

MD-RNNs [39] are designed to apply the capabilities of RNNs to non-sequential multi-

dimensional data by treating them as groups of sequential data. For instance, two-dimensional 

data are treated as groups of horizontal and vertical sequence data. Similar to BRNNs which 

use contexts in both directions in one-dimensional data, MD-RNNs use contexts in all possible 

directions in the multi-dimensional data (Figure 10). In the example of a two-dimensional 

dataset, four contexts that vary with the order of data processing are reflected in the 

computation of four hidden units for each position in the hidden layer. The hidden units are 

connected to a single output layer, and the final results are computed with consideration of all 

possible contexts.  

 
[FIGURE 11]  



CAEs [40, 41] are designed to utilize the advantages of both AE and CNNs so that it can learn 

good hierarchical representations of data reflecting spatial information and be well regularized 

by unsupervised training (Figure 11). In training of AEs, reconstruction error is minimized 

using an encoder and decoder, which extract feature vectors from input data and recreate the 

data from the feature vectors, respectively. In CNNs, convolution and pooling layers can be 

regarded as a type of encoder. Therefore, the CNN encoder and decoder consisting of 

deconvolution and unpooling layers are integrated to form a CAE and are trained in the same 

manner as in AE.  

Deep learning is a rapidly growing research area, and a plethora of new deep learning 

architecture is being proposed but awaits wide applications in bioinformatics. Newly proposed 

architectures have different advantages from existing architectures, so we expect them to 

produce promising results in various research areas. For example, the progressive refinement 

of DST-NNs fits the dynamic folding process of proteins and can be effectively utilized in 

protein structure prediction [38]; the capabilities of MD-RNNs are suitable for segmentation 

of biomedical images since segmentation requires interpretation of local and global contexts; 

the unsupervised representation learning with consideration of spatial information in CAEs can 

provide great advantages in discovering recurring patterns in limited and imbalanced 

bioinformatics data. 

 

 

 

 

 

 

 

 

 

 



TABLE 4: Deep learning applied bioinformatics research avenues and input data 

  Input data Research avenues 

Omics 

sequencing data (DNA-seq, RNA-seq, ChIP-seq, DNase-seq) 
features from genomic sequence 
       position specific scoring matrix (PSSM) 
       physicochemical properties (steric parameter, volume) 
       Atchley factors (FAC) 
       1-dimensional structural properties 
contact map (distance of amino acid pairs in 3D structure) 
microarray gene expression 

Protein structure prediction [84-92] 
       1-dimensional structural properties 
       contact map 
       structure model quality assessment 
Gene expression regulation [93-107] 
       splice junction 
       genetic variants affecting splicing 
       sequence specificity 
Protein classification [108-110] 
       super family 
       subcellular localization 
Anomaly classification [111] 
       Cancer 

Biomedical 
imaging 

magnetic resonance image (MRI) 
radiographic image 
positron emission tomography (PET) 
histopathology image 
volumetric electron microscopy image 
retinal image 
in situ hybridization (ISH) image  

Anomaly classification [122-132] 
       gene expression pattern 
       cancer 
       Alzheimer's disease 
       schizophrenia 
Segmentation [133-141] 
       cell structure 
       neuronal structure 
       vessel map 
       brain tumor 
Recognition [142-147] 
       cell nuclei 
       finger joint 
       anatomical structure 
Brain decoding [149-150] 
       behavior 

Biomedical  
signal processing 

ECoG, ECG, EMG, EOG 
EEG (raw, wavelet, frequency, differential entropy) 
extracted features from EEG 
       normalized decay 
       peak variation 

Brain decoding [158-170] 
       behavior 
       emotion 
Anomaly classification [171-178] 
       Alzheimer's disease 
       seizure 
       sleep stage 

 

Omics 

In omics research, genetic information such as genome, transcriptome, and proteome data is 

used to approach problems in bioinformatics. Some of the most common input data in omics 

are raw biological sequences (i.e., DNA, RNA, amino acid sequences) which have become 

relatively affordable and easy to obtain with next-generation sequencing technology. In 

addition, extracted features from sequences such as a position specific scoring matrices (PSSM) 

[78], physicochemical properties [79, 80], Atchley factors [81], and one-dimensional structural 

properties [82, 83] are often used as inputs for deep learning algorithms to alleviate difficulties 

from complex biological data and improve results. In addition, protein contact maps, which 



present distances of amino acid pairs in their three-dimensional structure, and microarray gene 

expression data are also used according to the characteristics of interest. We categorized the 

topics of interest in omics into four groups (Table 4). One of the most researched problems is 

protein structure prediction, which aims to predict the secondary structure or contact map of a 

protein [84-92]. Gene expression regulation [93-107], including splice junctions or RNA 

binding proteins, and protein classification [108-110], including super family or subcellular 

localization, are also actively investigated. Furthermore, anomaly classification [111] 

approaches have been used with omics data to detect cancer. 

Deep neural networks 

DNNs have been widely applied in protein structure prediction [84-87] research. Since 

complete prediction in three-dimensional space is complex and challenging, several studies 

have used simpler approaches, such as predicting the secondary structure or torsion angles of 

protein. For instance, Heffernan et al. [85] applied SAE to protein amino acid sequences to 

solve prediction problems for secondary structure, torsion angle, and accessible surface area. 

In another study, Spencer et al. [86] applied DBN to amino acid sequences along with PSSM 

and Atchley factors to predict protein secondary structure. DNNs have also shown great 

capabilities in the area of gene expression regulation [93-98]. For example, Lee et al. [94] 

utilized DBN in splice junction prediction, a major research avenue in understanding gene 

expression [112], and proposed a new DBN training method called boosted contrastive 

divergence for imbalanced data and a new regularization term for sparsity of DNA sequences; 

their work showed not only significantly improved performance but also the ability to detect 

subtle non-canonical splicing signals. Moreover, Chen et al. [96] applied MLP to both 

microarray and RNA-seq expression data to infer expression of up to 21000 target genes from 

only 1000 landmark genes. In terms of protein classification, Asgari et al. [108] adopted the 

skip-gram model, a widely known method in natural language processing, that can be 

considered a variant of MLP, and showed that it could effectively learn a distributed 

representation of biological sequences with general use for many omics applications, including 

protein family classification. For anomaly classification, Fakoor et al. [111] used principal 

component analysis (PCA) [113] to reduce the dimensionality of microarray gene expression 

data and applied SAE to classify various cancers, including acute myeloid leukemia, breast 

cancer, and ovarian cancer. 

Convolutional neural networks 



Relatively few studies have used CNNs to solve problems involving biological sequences, 

specifically gene expression regulation problems [99-104]; nevertheless, those have introduced 

the strong advantages of CNNs, showing their great promise for future research. First, an initial 

convolution layer can powerfully capture local sequence patterns and can be considered a motif 

detector for which PSSMs are solely learned from data instead of hard-coded. The depth of 

CNNs enables learning more complex patterns and can capture longer motifs, integrate 

cumulative effects of observed motifs, and eventually learn sophisticated regulatory codes 

[114]. Moreover, CNNs are suited to exploit the benefits of multitask joint learning. By training 

CNNs to simultaneously predict closely related factors, features with predictive strengths are 

more efficiently learned and shared across different tasks.  

For example, as an early approach, Denas et al. [99] preprocessed ChIP-seq data into a two-

dimensional matrix with the rows as transcription factor activity profiles for each gene and 

exploited a two-dimensional CNN similar to its use in image processing. Recently, more studies 

focused on directly using one-dimensional CNNs with biological sequence data. Alipanahi et 

al. [100] and Kelley et al. [103] proposed CNN-based approaches for transcription factor 

binding site prediction and 164 cell-specific DNA accessibility multitask prediction, 

respectively; both groups presented downstream applications for disease-associated genetic 

variant identification. Furthermore, Zeng et al. [102] performed a systematic exploration of 

CNN architectures for transcription factor binding site prediction and showed that the number 

of convolutional filters is more important than the number of layers for motif-based tasks. Zhou 

et al. [104] developed a CNN-based algorithmic framework, DeepSEA, that performs multitask 

joint learning of chromatin factors (i.e., transcription factor binding, DNase I sensitivity, 

histone-mark profile) and prioritizes expression quantitative trait loci and disease-associated 

genetic variants based on the predictions. 

Recurrent neural networks 

RNNs are expected to be an appropriate deep learning architecture because biological 

sequences have variable lengths, and their sequential information has great importance. Several 

studies have applied RNNs to protein structure prediction [88-90], gene expression regulation 

[105-107], and protein classification [109, 110]. In early studies, Baldi et al. [88] used BRNNs 

with perceptron hidden units in protein secondary structure prediction. Thereafter, the 

improved performance of LSTM hidden units became widely recognized, so Sønderby et al. 

[110] applied BRNNs with LSTM hidden units and a one-dimensional convolution layer to 



learn representations from amino acid sequences and classify the subcellular locations of 

proteins. Furthermore, Park et al. [105] and Lee et al. [107] exploited RNNs with LSTM hidden 

units in microRNA identification and target prediction and obtained significantly improved 

accuracy relative to state-of-the-art approaches demonstrating the high capacity of RNNs to 

analyze biological sequences. 

Emergent architectures 

Emergent architectures have been used in protein structure prediction research [91, 92], 

specifically in contact map prediction. Di Lena et al. [91] applied DST-NNs using spatial 

features including protein secondary structure, orientation probability, and alignment 

probability. Additionally, Baldi et al. [92] applied MD-RNNs to amino acid sequences, 

correlated profiles, and protein secondary structures. 

 

Biomedical imaging 

Biomedical imaging [115] is another an actively researched domain with wide application of 

deep learning in general image-related tasks. Most biomedical images used for clinical 

treatment of patients—magnetic resonance imaging (MRI) [116, 117], radiographic imaging 

[118, 119], positron emission tomography (PET) [120], and histopathology imaging [121]—

have been used as input data for deep learning algorithms. We categorized the research avenues 

in biomedical imaging into four groups (Table 4). One of the most researched problems is 

anomaly classification [122-132] to diagnose diseases such as cancer or schizophrenia. As in 

general image-related tasks, segmentation [133-141] (i.e., partitioning specific structures such 

as cellular structures or a brain tumor) and recognition [142-147] (i.e., detection of cell nuclei 

or a finger joint) are studied frequently in biomedical imaging. Studies of popular high content 

screening [148], which involves quantifying microscopic images for cell biology, are covered 

in the former groups [128, 134, 137]. Additionally, cranial MRIs have been used in brain 

decoding [149, 150] to interpret human behavior or emotion.  

Deep neural networks 

In terms of biomedical imaging, DNNs have been applied in several research areas, including 

anomaly classification [122-124], segmentation [133], recognition [142, 143], and brain 

decoding [149, 150]. Plis et al. [122] classified schizophrenia patients from brain MRIs using 



DBN, and Xu et al. [142] used SAE to detect cell nuclei from histopathology images. 

Interestingly, similar to handwritten digit image recognition, Van Gerven et al. [149] classified 

handwritten digit images with DBN not by analyzing the images themselves but by indirectly 

analyzing indirectly functional MRIs of participants who are looking at the digit images. 

Convolutional neural networks 

The largest number of studies have been conducted in biomedical imaging, since these avenues 

are similar to general image-related tasks. In anomaly classification [125-132], Roth et al. [125] 

applied CNNs to three different CT image datasets to classify sclerotic metastases, lymph nodes, 

and colonic polyps. Additionally, Ciresan et al. [128] used CNNs to detect mitosis in breast 

cancer histopathology images, a crucial approach for cancer diagnosis and assessment. PET 

images of esophageal cancer were used by Ypsilantis et al. [129] to predict responses to 

neoadjuvant chemotherapy. Other applications of CNNs can be found in segmentation [134-

140] and recognition [144-147]. For example, Ning et al. [134] studied pixel-wise segmentation 

patterns of the cell wall, cytoplasm, nuclear membrane, nucleus, and outside media using 

microscopic image, and Havaei et al. [139] proposed a cascaded CNN architecture exploiting 

both local and global contextual features and performed brain tumor segmentation from MRIs. 

For recognition, Cho et al. [144] researched anatomical structure recognition among CT images, 

and Lee et al. [145] proposed a CNN-based finger joint detection system, FingerNet, which is 

a crucial step for medical examinations of bone age, growth disorders, and rheumatoid arthritis 

[151]. 

Recurrent neural networks 

Traditionally, images are considered data that involve internal correlations or spatial 

information rather than sequential information. Treating biomedical images as non-sequential 

data, most studies in biomedical imaging have chosen approaches involving DNNs or CNNs 

instead of RNNs.  

Emergent architectures 

Attempts to apply the unique capabilities of RNNs to image data using augmented RNN 

structures have continued. MD-RNNs [39] have been applied beyond two-dimensional images 

to three-dimensional images. For example, Stollenga et al. [141] applied MD-RNNs to three-

dimensional electron microscopy images and MRIs to segment neuronal structures. 



 

Biomedical signal processing 

Biomedical signal processing [115] is a domain where researchers use recorded electrical 

activity from the human body to solve problems in bioinformatics. Various data from EEG 

[152], electrocorticography (ECoG) [153], electrocardiography (ECG) [154], 

electromyography (EMG) [155], and electrooculography (EOG) [156, 157] have been used, 

with most studies focusing on EEG activity so far. Because recorded signals are usually noisy 

and include many artifacts, raw signals are often decomposed into wavelet or frequency 

components before they are used as input in deep learning algorithms. In addition, human-

designed features like normalized decay and peak variation are used in some studies to improve 

the results. We categorized the research avenues in biomedical signal processing into two 

groups (Table 4): brain decoding [158-170] using EEG signals and anomaly classification [171-

178] to diagnose diseases. 

Deep neural networks 

Since biomedical signals usually contain noise and artifacts, decomposed features are more 

frequently used than raw signals. In brain decoding [158-163], An et al. [159] applied DBN to 

the frequency components of EEG signals to classify left- and right-hand motor imagery skills. 

Moreover, Jia et al. [161] and Jirayucharoensak et al. [163] used DBN and SAE, respectively, 

for emotion classification. In anomaly classification [171-175], Huanhuan et al. [171] 

published one of the few studies applying DBN to ECG signals and classified each beat into 

either a normal or abnormal beat. A few studies have used raw EEG signals. Wulsin et al. [172] 

analyzed individual second-long waveform abnormalities using DBN with both raw EEG 

signals and extracted features as inputs, whereas Zhao et al. [174] used only raw EEG signals 

as inputs for DBN to diagnose Alzheimer’s disease.  

Convolutional neural networks 

Raw EEG signals have been analyzed in brain decoding [164-167] and anomaly classification 

[176] via CNNs, which perform one-dimensional convolutions. For instance, Stober et al. [165] 

classified the rhythm type and genre of music that participants listened to, and Cecotti et al. 

[167] classified characters that the participants viewed. Another approach to apply CNNs to 

biomedical signal processing was reported by Mirowski et al. [176], who extracted features 



such as phase-locking synchrony and wavelet coherence and coded them as pixel colors to 

formulate two-dimensional patterns. Then, ordinary two-dimensional CNNs, like the one used 

in biomedical imaging, were used to predict seizures. 

Recurrent neural networks 

Since biomedical signals represent naturally sequential data, RNNs are an appropriate deep 

learning architecture to analyze data and are expected to produce promising results. To present 

some of the studies in brain decoding [168] and anomaly classification [177, 178], Petrosian et 

al. [177] applied perceptron RNNs to raw EEG signals and corresponding wavelet decomposed 

features to predict seizures. In addition, Davidson et al. [178] used LSTM RNNs on EEG log-

power spectra features to detect lapses. 

Emergent architectures 

CAE has been applied in a few brain decoding studies [169, 170]. Wang et al. [169] performed 

finger flex and extend classifications using raw ECoG signals. In addition, Stober et al. [170] 

classified musical rhythms that participants listened to with raw EEG signals.  

 

Discussion 

Limited and imbalanced data 

Considering the necessity of optimizing a tremendous number of weight parameters in neural 

networks, most deep learning algorithms have assumed sufficient and balanced data. 

Unfortunately, however, this is usually not true for problems in bioinformatics. Complex and 

expensive data acquisition processes limit the size of bioinformatics datasets. In addition, such 

processes often show significantly unequal class distributions, where an instance from one class 

is significantly higher than instances from other classes [179]. For example in clinical or 

disease-related cases, there is inevitably less data from treatment groups than from the normal 

(control) group. The former are also rarely disclosed to the public due to privacy restrictions 

and ethical requirements creating a further imbalance in available data [180].  

A few assessment metrics have been used to clearly observe how limited and imbalanced data 

might compromise the performance of deep learning [181]. While accuracy often gives 

misleading results, the F-measure, the harmonic mean of precision and recall, provides more 



insightful performance scores. To measure performance over different class distributions, the 

area under the receiver operating characteristic curve (AUC) and the area under the precision-

recall curve (AUC-PR) are commonly used. These two measures are strongly correlated such 

that a curve dominates in one measure if and only if it dominates in the other. Nevertheless, in 

contrast with AUC-PR, AUC might present a more optimistic view of performance, since false 

positive rates in the receiver operating characteristic curve fail to capture large changes of false 

positives if classes are negatively skewed [182].   

Solutions to limited and imbalanced data can be divided into three major groups [181, 183] : 

data preprocessing, cost-sensitive learning and algorithmic modification. Data preprocessing 

typically provides a better dataset through sampling or basic feature extraction. Sampling 

methods balance the distribution of imbalanced data, and several approaches have been 

proposed, including informed undersampling [184], the synthetic minority oversampling 

technique [185], and cluster-based sampling [186]. For example, Li et al. [127] and Roth et al. 

[146] performed enrichment analyses of CT images through spatial deformations such as 

random shifting and rotation. Although basic feature extraction methods deviate from the 

concept of deep learning, they are occasionally used to lessen the difficulties of learning from 

limited and imbalanced data. Research in bioinformatics using human designed features as 

input data such as PSSM from genomics sequences or wavelet energy from EEG signals can 

be understood in the same context [86, 92, 172, 176]. 

Cost-sensitive learning methods define different costs for misclassifying data examples from 

individual classes to solve the limited and imbalanced data problems. Cost sensitivity can be 

applied in an objective loss function of neural networks either explicitly or implicitly [187]. 

For example, we can explicitly replace the objective loss function to reflect class imbalance or 

implicitly modify the learning rates according to data instance classes during training.  

Algorithmic modification methods accommodate learning algorithms to increase their 

suitability for limited and imbalanced data. A simple and effective approach is adoption of pre-

training. Unsupervised pre-training can be a great help to learn representation for each class 

and to produce more regularized results [68]. In addition, transfer learning, which consists of 

pre-training with sufficient data from similar but different domains and fine-tuning with real 

data, has great advantages [24, 188]. For instance, Lee et al. [107] proposed a microRNA target 

prediction method, which exploits unsupervised pre-training with RNN based AE, and 

achieved a >25% increase in F-measure compared to the existing alternatives. Bar et al. [132] 



performed transfer learning using natural images from the ImageNet database [189] as pre-

training data and fine-tuned with chest X-ray images to identify chest pathologies and to 

classify healthy and abnormal images. In addition to pre-training, sophisticated training 

methods have also been executed. Lee et al. [94] suggested DBN with boosted categorical 

RBM, and Havaei et al. [139] suggested CNNs with two-phase training, combining ideas of 

undersampling and pre-training. 

Changing the black-box into the white-box 

A main criticism against deep learning is that it is used as a black-box: even though it produces 

outstanding results, we know very little about how such results are derived internally. In 

bioinformatics, particularly in biomedical domains, it is not enough to simply produce good 

outcomes. Since many studies are connected to patients’ health, it is crucial to change the black-

box into the white-box providing logical reasoning just as clinicians do for medical treatments.  

Transformation of deep learning from the black-box into the white-box is still in the early 

stages. One of the most widely used approaches is interpretation through visualizing a trained 

deep learning model. In terms of image input, a deconvolutional network has been proposed to 

reconstruct and visualize hierarchical representations for a specific input of CNNs [190]. In 

addition, to visualize a generalized class representative image rather than being dependent on 

a particular input, gradient ascent optimization in input space through backpropagation-to-

input (cf. backpropagation-to-weights) has provided another effective methodology [191, 192]. 

Regarding genomic sequence input, several approaches have been proposed to infer PSSMs 

from a trained model and to visualize the corresponding motifs with heat maps or sequence 

logos. For example, Lee et al. [94] extracted motifs by choosing the most class discriminative 

weight vector among those in the first layer of DBN; DeepBind [100] and DeMo [101] 

extracted motifs from trained CNNs by counting nucleotide frequencies of positive input 

subsequences with high activation values and backpropagation-to-input for each feature map, 

respectively.  

Specifically for transcription factor binding site prediction, Alipanahi et al. [100] developed a 

visualization method, a mutation map, for illustrating the effects of genetic variants on binding 

scores predicted by CNNs. A mutation map consists of a heat map, which shows how much 

each mutation alters the binding score, and the input sequence logo, where the height of each 

base is scaled as the maximum decrease of binding score among all possible mutations. 



Moreover, Kelley et al. [103] further complemented the mutation map with a line plot to show 

the maximum increases as well as the maximum decreases of prediction scores. In addition to 

interpretation through visualization, attention mechanisms [74-77] designed to focus explicitly 

on salient points and the mathematical rationale behind deep learning [193, 194] are being 

studied. 

Selection of an appropriate deep learning architecture and hyperparameters 

Choosing the appropriate deep learning architecture is crucial to proper applications of deep 

learning. To obtain robust and reliable results, awareness of the capabilities of each deep 

learning architecture and selection according to capabilities in addition to input data 

characteristics and research objectives are essential. However, to date, the advantages of each 

architecture are only roughly understood; for example, DNNs are suitable for analysis of 

internal correlations in high-dimensional data, CNNs are suitable for analysis of spatial 

information, and RNNs are suitable for analysis of sequential information [7]. Indeed, a 

detailed methodology for selecting the most appropriate or “best fit” deep learning architecture 

remains a challenge to be studied in the future.  

Even once a deep learning architecture is selected, there are many hyperparameters—the 

number of layers, the number of hidden units, weight initialization values, learning iterations, 

and even the learning rate—for researchers to set, all of which can influence the results 

remarkably [195]. For many years, hyperparameter tuning was rarely systematic and left up to 

human machine learning experts. Nevertheless, automation of machine learning research, 

which aims to automatically optimize hyperparameters is growing constantly [196]. A few 

algorithms have been proposed including sequential model based global optimization [197], 

Bayesian optimization with Gaussian process priors [198], and random search approaches 

[199].  

Multimodal deep learning 

Multimodal deep learning [200], which exploits information from multiple input sources, is a 

promising avenue for the future of deep learning research. In particular, bioinformatics is 

expected to benefit greatly, as it is a field where various types of data can be assimilated 

naturally [201]. For example, not only are omics data, images, signals, drug responses, and 

electronic medical records available as input data, but X-ray, CT, MRI, and PET forms are also 

available from a single image.  



A few bioinformatics studies have already begun to use multimodal deep learning. For example, 

Suk et al. [124] studied Alzheimer’s disease classification using cerebrospinal fluid and brain 

images in the forms of MRI and PET scan and Soleymani et al. [168] conducted an emotion 

detection study with both EEG signal and face image data.  

Accelerating deep learning 

As more deep learning model parameters and training data become available, better learning 

performances can be achieved. However, at the same time, this inevitably leads to a drastic 

increase in training time, emphasizing the necessity for accelerated deep learning [7, 25].  

Approaches to accelerating deep learning can be divided into three groups: advanced 

optimization algorithms, parallel and distributed computing, and specialized hardware. Since 

the main reason for long training times is that parameter optimization through plain SGD takes 

too long, several studies have focused on advanced optimization algorithms [202]. To this end, 

some widely employed algorithms include Adagrad [48], Adam [49], batch normalization [55], 

and Hessian-free optimization [203]. Parallel and distributed computing can significantly 

accelerate the time to completion and have enabled many deep learning studies [204-208]. 

These approaches exploit both scale-up methods, which use a graphic processing unit, and 

scale-out methods, which use large-scale clusters of machines in a distributed environment. A 

few deep learning frameworks, including the recently released DeepSpark [209] and 

TensorFlow [210] provide parallel and distributed computing abilities. Although development 

of specialized hardware for deep learning is still in its infancy, it will provide major 

accelerations and become far more important in the long term [211]. Currently, field 

programmable gate array based processors are under development, and neuromorphic chips 

modeled from the brain are greatly anticipated as promising technologies [212-214]. 

Future trends of deep learning 

Incorporation of traditional deep learning architectures is a promising future trend. For instance, 

joint networks of CNNs and RNNs integrated with attention models have been applied in image 

captioning [75], video summarization [215], and image question answering [216]. A few 

studies toward augmenting the structures of RNNs have been conducted as well. Neural Turing 

machines [217] and memory networks [218] have adopted addressable external memory in 

RNNs and shown great results for tasks requiring intricate inferences, such as algorithm 

learning and complex question answering. Recently, adversarial examples, which degrade 



performance with small human-imperceptible perturbations, have received increased attention 

from the machine learning community [219, 220]. Since adversarial training of neural networks 

can result in regularization to provide higher performance, we expect additional studies in this 

area, including those involving adversarial generative networks [221] and manifold regularized 

networks [222].  

In terms of learning methodology, semi-supervised learning and reinforcement learning are 

also receiving attention. Semi-supervised learning exploits both unlabeled and labeled data, 

and a few algorithms have been proposed. For example, ladder networks [223] add skip 

connections to MLP or CNNs, and simultaneously minimize the sum of supervised and 

unsupervised cost functions to denoise representations at every level of the model. 

Reinforcement learning leverages reward outcome signals resulting from actions rather than 

correctly labeled data. Since reinforcement learning most closely resembles how humans 

actually learn, this approach has great promise for artificial general intelligence [224]. 

Currently, its applications are mainly focused on game playing [4] and robotics [225].  

 

Conclusion 

As we enter the major era of big data, deep learning is taking center stage for international 

academic and business interests. In bioinformatics, where great advances have been made with 

conventional machine learning, deep learning is anticipated to produce promising results. In 

this review, we provided an extensive review of bioinformatics research applying deep learning 

in terms of input data, research objectives, and the characteristics of established deep learning 

architectures. We further discussed limitations of the approach and promising directions of 

future research. 

Although deep learning holds promise, it is not a silver bullet and cannot provide great results 

in ad hoc bioinformatics applications. There remain many potential challenges, including 

limited or imbalanced data, interpretation of deep learning results, and selection of an 

appropriate architecture and hyperparameters. Furthermore, to fully exploit the capabilities of 

deep learning, multimodality and acceleration of deep learning require further study. Thus, we 

are confident that prudent preparations regarding the issues discussed herein are key to the 

success of future deep learning approaches in bioinformatics. We believe that this review will 



provide valuable insight and serve as a starting point for application of deep learning to advance 

bioinformatics in future research. 
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Figure captions 

Figure 1: Approximate number of published deep learning articles by year. The number of 

articles is based on the search results on http://www.scopus.com with the two queries: “Deep 

learning,” “Deep learning” AND “bio*”. 

Figure 2: Application of deep learning in bioinformatics research. (A) Overview diagram with 

input data and research objectives. (B) A research example in the omics domain. Prediction of 

splice junctions in DNA sequence data with a deep neural network [94]. (C) A research example 

in biomedical imaging. Finger joint detection from X-ray images with a convolutional neural 

network [145]. (D) A research example in biomedical signal processing. Lapse detection from 

EEG signal with a recurrent neural network [178]. 

Figure 3: Relationships and high-level schematics of artificial intelligence, machine learning, 

representation learning, and deep learning [7].  

Figure 4: Basic structure of DNNs with input units x, three hidden units h1, h2, and h3, in each 

layer and output units y [26]. At each layer, the weighted sum and nonlinear function of its 

inputs are computed so that the hierarchical representations can be obtained. 



Figure 5: Unsupervised layer-wise pre-training process in SAE and DBN [29]. First, weight 

vector W1 is trained between input units x and hidden units h1 in the first hidden layer as an 

RBM or AE. After the W1 is trained, another hidden layer is stacked, and the obtained 

representations in h1 are used to train W2 between hidden units h1 and h2 as another RBM or 

AE. The process is repeated for the desired number of layers. 

Figure 6: Basic structure of CNNs consisting of a convolution layer, a nonlinear layer, and a 

pooling layer [32]. The convolution layer of CNNs uses multiple learned filters to obtain 

multiple filter maps detecting low-level filters, and then the pooling layer combines them into 

higher-level features. 

Figure 7: Basic structure of RNNs with an input unit x, a hidden unit h, and an output unit y 

[8]. A cyclic connection exists so that the computation in the hidden unit receives inputs from 

the hidden unit at the previous time step and from the input unit at the current time step. The 

recurrent computation can be expressed more explicitly if the RNNs are unrolled in time. The 

index of each symbol represents the time step. In this way, ht receives input from xt and ht-1 and 

then propagates the computed results to yt and ht+1. 

Figure 8: Basic structure of BRNNs unrolled in time [70]. There are two hidden units ℎ�⃗ 𝑡𝑡 and 

ℎ⃖�𝑡𝑡  for each time step. ℎ�⃗ 𝑡𝑡  receives input from xt and ℎ�⃗ 𝑡𝑡−1 to reflect past information; ℎ⃖�𝑡𝑡 

receives input from xt and ℎ⃖�𝑡𝑡+1  to reflect future information. The information from both 

hidden units is propagated to yt. 

Figure 9: Basic structure of DST-NNs [38]. The notation ℎ𝑖𝑖,𝑗𝑗𝑘𝑘  represents the hidden unit at (i, 

j) coordinate of the k-th hidden layer. To conduct the progressive refinement, the neighborhood 

units of ℎ𝑖𝑖,𝑗𝑗𝑘𝑘  and input units x are used in the computation of ℎ𝑖𝑖,𝑗𝑗𝑘𝑘+1. 

Figure 10: Basic structure of MD-RNNs for two-dimensional data [39]. There are four groups 

of two-dimensional hidden units, each reflecting different contexts. For example, the (i, j) 

hidden unit in context 1 receives input from the (i–1, j) and (i, j–1) hidden units in context 1 

and the (i, j) unit from the input layer so that the upper-left information is reflected. The hidden 

units from all four contexts are propagated to compute the (i, j) unit in the output layer. 

Figure 11: Basic structure of CAEs consisting of a convolution layer and a pooling layer 

working as an encoder and a deconvolution layer and an unpooling layer working as a decoder 

[41]. The basic idea is similar to the AE, which learns hierarchical representations through 



reconstructing its input data, but CAE additionally utilizes spatial information by integrating 

convolutions. 
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