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Abstract

Although a large number of clustering algorithms have been proposed to identify groups

of co-expressed genes from microarray data, the question of if and how such methods may

be applied to RNA-seq data remains unaddressed. In this work, we investigate the use

of data transformations in conjunction with Gaussian mixture models for RNA-seq co-

expression analyses, as well as a penalized model selection criterion to select both an ap-

propriate transformation and number of clusters present in the data. This approach has the

advantage of accounting for per-cluster correlation structures among samples, which can be

quite strong in RNA-seq data. In addition, it provides a rigorous statistical framework for

parameter estimation, an objective assessment of data transformations and number of clus-

ters, and the possibility of performing diagnostic checks on the quality and homogeneity

of the identified clusters. We analyze four varied RNA-seq datasets to illustrate the use of

transformations and model selection in conjunction with Gaussian mixture models. Finally,

we propose an R package coseq (co-expression of RNA-seq data) to facilitate implemen-

tation and visualization of the recommended RNA-seq co-expression analyses.
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search is centered on theoretical and methodological developments for model-based clus-

tering methods, variable selection, and hypothesis testing approaches.

Introduction

Increasingly complex studies of transcriptome dynamics are now routinely carried out using

high-throughput sequencing of reverse-transcribed RNA molecules (i.e., cDNA molecules),

called RNA sequencing (RNA-seq). By quantifying and comparing transcriptomes among

different types of tissues, developmental stages, or experimental conditions, researchers have

gained a deeper understanding of how changes in transcriptional activity reflect specific cell

types and contribute to phenotypic differences. Identifying groups of co-expressed genes may

help target gene modules that are involved in similar biological processes [1, 2] or that are can-

didates for co-regulation. Thus, by identifying clusters of co-expressed genes, we aim both to

identify co-regulated genes and to characterize potential biological functions for orphan genes

(namely, those whose biological function is unknown).

A great deal of clustering algorithms have been proposed for microarray data, raising the

question of their applicability to RNA-seq data. In particular, after normalization, background

correction, and log2-transformation of microarray data, hybridization intensities are typically

modeled by Gaussian distributions [3]. RNA-seq data, on the other hand, are made up of read

counts [4, 5] or pseudocounts [6, 7] for each biological entity or feature (e.g., a gene) after either

alignment to a genome reference sequence or de novo assembly. These data are characterized

by 1) highly skewed values with a very large dynamic range, often covering several orders of

magnitude; 2) positive correlation between feature size (e.g., gene length) and read counts [8];

and 3) variable sequencing depth (i.e., library size) and coverage among experiments [9]. The

presence of overdispersion (i.e., variance larger than the mean) among biological replicates for

a given feature is also a typical feature of these data, leading to the use of negative binomial

models [10, 11] for RNA-seq differential analyses.

Statistically speaking, the goal of clustering approaches is to discover structures (clusters)

within data. Many clustering methods exist and roughly fall into two categories: 1) methods

based on dissimilarity distances, including tree-based hierarchical clustering [12] as well as

methods like the K-means algorithm [13]; and 2) model-based methods [14], which consist of

defining a clustering model and optimizing the fit between the data and the model. For the latter

class of models, each cluster is represented by a distinct parametric distribution, and the entire

dataset is thus modeled as a mixture of these distributions; a notable advantage of model-based

clustering is that it provides a rigourous framework to assess the appropriate number of clusters

and the quality of clusters obtained. Presently, most proposals for clustering RNA-seq data

have focused on the question of grouping biological samples rather than features, for example

using hierarchical clustering with a modified loglikelihood ratio statistic based on a Poisson

loglinear model as a distance measure [15] or the Euclidean distance of samples following a

variance-stabilizing transformation [16].

2

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted October 21, 2016. ; https://doi.org/10.1101/065607doi: bioRxiv preprint 

https://doi.org/10.1101/065607
http://creativecommons.org/licenses/by-nc-nd/4.0/


In recent work [17], we proposed the use of Poisson mixture models to cluster RNA-seq

expression profiles. This method has the advantage of directly modeling the count nature of

RNA-seq data, accounting for variable library sizes among experiments, and providing easily

interpretable clusterings based on the profiles of variation around average expression of each

gene. However, there are several serious limitations to this approach: 1) the assumption of

conditional independence among samples, given the clustering group, is likely to be unrealistic

for the vast majority of RNA-seq datasets; 2) per-cluster correlation structures cannot be in-

cluded in the model; and 3) the Poisson distribution is likely overly restrictive, as it imposes

an assumption of equal means and variances. In addition, classical asymptotic model selec-

tion criteria, such as the Bayesian Information Criterion (BIC) [18] and Integrated Completed

Likelihood (ICL) criterion [19], were observed to have poor behavior for the Poisson mixture

model in many cases. As such, Rau et al. [17] proposed the use of a non-asymptotic penalized

model selection criterion calibrated by the slope heuristics [20, 21], requiring a collection of

mixture models to be fit for a very wide range of cluster numbers K; for large K, this can

imply significant computational time as well as practical difficulties for parameter initalization

and estimation. We note that a related approach based on a hybrid-hierarchical clustering of

negative binomial mixtures was proposed by Si et al. [22]; as with the work of Rau et al. [17],

this method cannot account for correlation structures among samples.

To address the aforementioned limitations of the Poisson mixture model, in this work we

investigate appropriate transformations to facilitate the use of Gaussian mixture models for

RNA-seq co-expression analysis. This strategy has the notable advantage of enabling the es-

timation of per-cluster correlation structures, as well as drawing on the extensive theoretical

justifications of Gaussian mixture models [14]. We note that Law et al. [23] employed a related

strategy for the differential analyses of RNA-seq data by transforming data, estimating preci-

sion weights for each feature, and using the limma empirical Bayes analysis pipeline [24]. The

identification of an “appropriate" transformation for RNA-seq co-expression is not necessarily

straightforward, and depends strongly on the desired interpretability of the resulting clusters as

well as the model assumptions. Several transformations of read counts or pseudocounts have

been proposed in the context of exploratory or differential analyses, but most largely seek to ren-

der the data homoskedastic or to reduce skewness. In this work, rather than grouping together

genes with similar absolute (transformed) read abundances, we propose the use of normalized

expression profiles for each feature, that is, the proportion of normalized counts observed for a

given feature. Due to the compositional nature of these profiles (i.e., the sum for each feature

equals 1), an additional transformation is required prior to fitting the Gaussian mixture model,

as discussed below.

The remainder of the article is organized as follows. In the Methods section, we introduce

some notation, discuss appropriate data transformation for RNA-seq co-expression analyses,

and briefly review Gaussian mixture models, including parameter estimation and model selec-

tion. In the Results section, we describe several RNA-seq datasets and illustrate co-expression

analyses on each using Gaussian mixture models on transformed data using the coseq R pack-

age. Finally, in the Discussion we provide some concluding remarks and recommendations for
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RNA-seq co-expression analyses in practice, as well as some opportunities for future work.

Methods

For the remainder of this work, let Yij be a random variable, with corresponding observed value

yij , representing the raw read count (or pseudocount) for biological entity i (i = 1, . . . , n) of

biological sample j (j = 1, . . . , q). For simplicity, in this work we typically refer to the entities

i as genes, although the generality of the following discussion holds for other entities of interest

(exons, etc). Each sample is typically associated with one or more experimental conditions

(e.g., tissue, treatment, time); to reflect this, let C(j) correspond to the experimental group for

sample j. Finally, let y be the (n×q) matrix of read counts for all genes and samples, and let yi

be the q-dimensional vector of raw count values across all biological samples for gene i. In the

following, we use dot notation to indicate summations over a particular index, e.g. yi· =
∑

j yij .

Data transformations for RNA-seq co-expression

A feature common to many RNA-seq data transformations is the incorporation of sample-

specific normalization factors, often referred to as library size normalization. These normal-

ization factors account for the fact that the number of reads expected to map to a particular gene

depends not only on its own expression level, but also 1) on the total number of mapped reads

(also referred to as library size) in the sample, and 2) on the overall composition of the RNA

population being sampled. Although several library size normalization factors have been pro-

posed since the introduction of RNA-seq, the median ratio [11] and trimmed mean of M-values

[TMM; 25] methods have been found to be robust and effective, and are now widely used [26]

in the context of differential analysis. Without loss of generality, we note t = (tj) as the scaling

normalization factors for raw library sizes calculated using the TMM normalization method;

ℓj = y·jtj is then the corresponding normalized library size for sample j, and

sj =
ℓj

∑q
m=1 ℓm/q

(1)

is the associated normalization scaling factor by which raw counts yij are divided.

Several data transformations have been suggested for RNA-seq data, most often in the

context of exploratory or differential analyses. These include a log2 transformation (where

a small constant is typically added to read counts to avoid 0’s), a variance-stabilizing trans-

formation [VST; 27, 28, 16], moderated log counts per million [CPM; 23], and a regularized

log-transformation [rlog; 11]; see the Supplementary Materials for more details about each. As

previously noted, each of these transformations was proposed with the objective of rendering

the data homoskedastic (in the case of the VST or regularized log transformations) or to reduce

the orders of magnitude spanned by untransformed RNA-seq data. Rather than making use of
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these transformations, we propose calculating the normalized expression profiles for each fea-

ture, that is, the proportion of normalized reads observed for gene i with respect to the total

observed for gene i across all samples:

pij =
yij/sj + 1

∑

ℓ yiℓ/sℓ + 1
,

where sj are the scaling normalization factors for raw counts (see Equation 1). To illustrate

the interest of using these normalized expression profiles for co-expression analysis, we plot

yij/sj , log(yij/sj + 1), and the normalized expression profiles pij in Figure 1 for a subset of

genes from the mouse RNA-seq data studied by Fietz et al. [29]. In particular, we consider ten

genes that are most representative (as measured by Euclidean distance) of four distinct groups:

non-differentially expressed (NDE) genes across all samples (Group 1); genes expressed only

in the last experimental condition (samples 11 to 15, Group 2); genes expressed only in the

first experimental condition (samples 1 to 5, Group 3); and genes expressed only in the second

experiemental condition (samples 6 to 10, Group 4). It may clearly be seen that the large dif-

ferences in magnitude that are dominant for normalized counts (Figure 1A) are greatly reduced

by a log-transformation (Figure 1B), although a certain amount of spread remains between very

highly and weakly expressed genes. This spread can be notably reduced by considering the

normalized expression profiles pij (Figure 1C). This example is thus instructive in illustrating

the importance in co-expression analyses of considering a measure that is independent of the

absolute expression level of the genes, as is the case for the normalized profiles.

It is important to note that the profile for gene i, pi = (pij), represents compositional data

[30], as it is a q-tuple of nonnegative numbers whose sum is 1. This means that the vector

of values pi are linearly dependent, which imposes constraints on the covariance matrices Σk

that are problematic for the general Gaussian mixture model (and indeed for most standard

statistical approaches). For this reason, we consider two separate transformations of the profiles

pij to break the sum constraint, the logit and the arcsin (also referred to as the arcsin square

root, or angular) transformations:

garcsin(pij) = arcsin
(√

pij
)

∈ [0, π/2], and (2)

glogit(pij) = log2

(

pij
1− pij

)

∈ (−∞,∞). (3)

Over a broad range of intermediate values of the proportions, the logit and arcsin transforma-

tions are roughly linearly related to one another (see Figure S1A in the Supplementary Materi-

als). However, although both transformations tend to pull out the ends of the distribution of pij
values, this effect is more marked for the logit transformation, meaning that it is more affected

by smaller differences at the ends of the scale (Figure S1B).
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Figure 1: Normalized counts (A), log normalized counts + 1 (B), and normalized expression

profiles pij (C) for a subset of the Fietz et al. [29] mouse RNA-seq data. The subset of genes

include non-differentially expressed (NDE) genes across all samples (Group 1); genes expressed

only in the last experimental condition (samples 11 to 15, Group 2); genes expressed only in

the first experimental condition (samples 1 to 5, Group 3); and genes expressed only in the

second experiemental condition (samples 6 to 10, Group 4). Transparent grey boxes delimit the

replicates in each of the three experimental groups.

Gaussian mixture models

Model-based clustering consists of assuming that the expression data come from several sep-

arately modeled subpopulations, where the full population of genes is a mixture of these sub-

populations. Thus, observations are assumed to be a sample from an unknown probability

distribution with density f , which is estimated by a finite mixture

f(.|θK) =
K
∑

k=1

πkfk(.|αk),

where θK = (π, α1, . . . , αK), and π = (π1, . . . , πK) are the mixing proportions, with πk ∈
(0, 1) for all k and

∑K
k=1 πk = 1. The density fk(.|αk) of the kth subpopulation must be chosen

according to the nature of the gene expression measures; in the following, we consider the

special case of Gaussian mixture models.

A collection of Gaussian mixture models can be defined as (Sm)m∈M = (S(K,v))(K,v)∈M,

where

S(K,v) =

{

f
(

.|θ(K,v)

)

=
K
∑

k=1

πk,vφ (.|µk,Σk,v)

}

, (4)

with φ (.|µk,Σk,v) denoting the q-dimensional Gaussian density with mean µk and covariance

matrix Σk,v. The index v denotes one of the Gaussian mixture shapes obtained by constraining
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one or more of the parameters in the following decomposition of each mixture component

variance matrix:

Σk = λkD
′
kAkDk, (5)

where λk = |Σk|1/q, Dk is the eigenvector matrix of Σk, and Ak is the diagonal matrix of nor-

malized eigenvalues of Σk. Various constraints on these parameters respectively control the

volume, orientation, and shape of the kth cluster [31]; by additionally allowing the proportions

πk to vary according to cluster or be equal for all clusters, we may define a collection of 28 parsi-

monious and interpretable mixture models, available in the Rmixmod R package [32]. Without

loss of generality, for simplicity of notation we will consider here only the most general model

form, with variable proportions, volume, orientation, and shape (referred to as the [pkLkCk] in

Rmixmod); as such, the model collection is defined solely over a range of numbers of clusters,

(SK)K∈M.

The parameters of each model SK in the collection defined in (4) may be estimated using

an expectation-maximization (EM)-type algorithm [33]. After solving the density estimation

problem, for each model in the collection f is estimated by f̂K = f(.|θ̂K), and the data are

clustered using the maximum a posteriori (MAP) rule: for each i = 1, . . . , n and each k =
1, . . . , K,

ẑik =

{

1 if τik

(

θ̂K

)

> τiℓ

(

θ̂K

)

∀ℓ 6= k

0 otherwise.
,

where τik(θ̂K) is the conditional probability that observation i arises from the kth component

mixture f(.|θ̂K).

Model choice for RNA-seq co-expression

In the mixture model framework, the number of clusters K is typically chosen from the model

collection using a penalized selection criterion such as the BIC, [18], ICL [19], or a non-

asymptotic penalized criterion whose penalty is calibrated using the slope heuristics (SH) prin-

ciple [34]:

BIC(K) = −L(.|θ̂K) +
νK
2n

ln(n) (6)

ICL(K) = −L(.|θ̂K) +
νK
2n

ln(n)− 1

n

n
∑

i=1

K
∑

k=1

τik(θ̂K) ln(τik(θ̂K))

= −L(.|θ̂K) +
νK
2n

ln(n) + entropy (7)

SH(K) = −L(.|θ̂K) + κνK , (8)

7

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted October 21, 2016. ; https://doi.org/10.1101/065607doi: bioRxiv preprint 

https://doi.org/10.1101/065607
http://creativecommons.org/licenses/by-nc-nd/4.0/


where L(.|θ̂K) is the loglikelihood evaluated at θ̂K (the maximum likelihood estimate of θK),

νK represents the number of free parameters for the mixtures in model SK , n is the number of

observations, κ is a multiplicative constant that must be calibrated using the capushe R pack-

age [21], and τik(θ̂K) is as defined in the previous section. The selected model K̂ corresponds

to the number of clusters K that minimizes the chosen criterion among Equations (6-8).

Although rarely done in practice, penalized criteria like the BIC and ICL may also be used

to select among different models or transformations, as was suggested in a different context

by Thomas et al. [35] and more recently for RNA-seq data by Gallopin [36]. This is of great

interest, as it removes the need for an arbitrary choice of data transformation by using the

framework of formal model selection. We illustrate this principle for the choice of number

of clusters K and data transformation; in a more general case, a similar procedure could be

used to additionally choose among the different forms of Gaussian mixture models described

in Equation (5) or among different parametric forms of models. Let g(x) represent an arbitrary

monotonic transformation of a dataset x. If the new sample g(x) is assumed to arise from an

i.i.d. Gaussian mixture density, f(.|θK), then the initial data x is an i.i.d. sample from density

fg(.|θK), which is a transformation of f(.|θK) and thus not necessarily a Gaussian mixture

density. If Jg denotes the Jacobian of the transformation g and θ̂(K,g) the maximum likelihood

estimate obtained for the model with K clusters and transformation g, we select the pair (K, g)
leading to the minimum of the corrected BIC or ICL criteria:

BIC∗(K, g) = −L(.|θ̂(K,g)) +
νK
2n

ln(n)− ln[det(Jg)]

ICL∗(K, g) = −L(.|θ̂(K,g)) +
νK
2n

ln(n) + entropy − ln[det(Jg)]. (9)

Note that in these expressions, the number of parameters νK does not depend on the transfor-

mation g.
For the purposes of this work, we make use of the corrected ICL criterion defined in Equa-

tion (9) to compare between the logit and arcsin transformations in Equations (2) and (3) applied
to the expression profiles p = (pij). In particular, we use the following:

ICL∗

arcsin(K, garcsin) = −L(.|θ̂(K,garcsin)) +
νK

2n
ln(n) + entropy + nq ln(2) +

1

2

n
∑

i=1

q
∑

j=1

ln [pij(1− pij)] , (10)

ICL∗

logit(K, glogit) = −L(.|θ̂(K,glogit)) +
νK

2n
ln(n) + entropy + nq ln[ln(2)]+

n
∑

i=1

q
∑

j=1

ln [pij(1− pij)] . (11)

The values of ICL∗
arcsin(K, garcsin) and ICL∗

logit(K, glogit) can thus be directly compared to choose

between the two transformations.

coseq R package

To facilitate co-expression analyses of RNA-seq data using Gaussian mixture models and an

appropriate data transformation, we have created the R package coseq (co-expression of RNA-
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seq data), freely available on GitHub; in this section, we briefly describe some of the options

available in this package.
The package is first installed and loaded via the devtools package using the following

commands:

> library(devtools)

> install_github("andreamrau/coseq")

> library(coseq)

A typical call to coseq to fit a Gaussian mixture model on arcsin- or logit-transformed nor-
malized profiles takes the following form:

> run_arcsin <- coseq(counts, K=2:10, model="Normal", transformation="arcsin")

> run_logit <- coseq(counts, K=2:10, model="Normal", transformation="logit")

where counts represents a (n×q) matrix or data frame of read counts for n genes in q samples
and K=2:10 provides the desired range of numbers of clusters (here, 2 to 10). We note that
this function directly calls the Rmixmod R package to fit Gaussian mixture models [32]. For
backwards compatibility with our previous method [17], a similar function call may be used to
fit a Poisson mixture model on raw counts using the HTSCluster package:

> run_pois <- coseq(counts, conds, K=2:10, model="Poisson")

where a vector conds is additionally provided to identify the experimental condition associ-

ated with each column in counts. In both cases, the output of the coseq function is an S4

object of class coseqResults (an extension of the SummarizedExperiment0 Biocon-

ductor S4 class) on which standard plot and summary functions can be directly applied; the

former uses functionalities from the ggplot2 package [37]. Several examples of the standard

plot commands can be seen in the Results section of this work, as well as in the reproducible

Rmarkdown document included in the Supplementary Materials. The option of parallelization

via the BiocParallel Bioconductor package is also provided.

In addition to the choice of mixture model and transformation to be used, the coseq func-

tion provides flexibility to the user to filter normalized read counts according to their mean

value if desired, specify library size normalization method (TMM, median ratio, upper quartile,

or user-provided normalization factors), and modify Rmixmod options (number of iterations,

etc). For the specific case of arcsin- and logit-transformed normalized profiles, we provide a

convenience function compareICL to calculate and plot the corrected ICL model selection

criteria defined in Equations (10) and (11). Finally, as RNA-seq expression analyses are of-

ten performed on a subset of genes identified as differentially expressed, the coseq function

can also be directly called on an DESeqResults S4 object or integrated with DGELRT S4

objects, respectively corresponding to output from the DESeq2 [11] and edgeR [10] Biocon-

ductor packages for RNA-seq differential analyses. For more details and examples, see the full

package vignette provided with coseq.
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Results

In the following, we illustrate co-expression analyses using Gaussian mixture models in con-

junction with the proposed transformations on normalized expression profiles for several RNA-

seq datasets. The data were selected to represent several different organisms (pig, mouse, hu-

man, fly) in studies for which co-expression is of particular interest (across tissues or across

time); additional details on how data were obtained and preprocessed may be found in the Sup-

plementary Materials.

Description of RNA-seq data

Porcine small intestine: Mach et al. [38] used RNA-seq to study site-specific gene expres-

sion along the gastrointestinal tract of four healthy 70-day-old male Large White piglets.

Samples were collected in three sites along the proximal-distal axis of the small intestine

(duodendum, jejunum, and ileum), as well as the ileal Peyer’s patch (a lymphoid tissue

localized in direct contact with the epithelial intestinal tissue). Complete information

regarding sample preparation, sequencing, quality control, and pre-processing are avail-

able in the original article [38]. Raw reads are available at NCBI’s SRA repository (PR-

JNA221286 BioProject; accessions SRR1006118 to SRR1006133); in the current work,

read counts for genes sharing a common gene symbol or Ensembl gene ID were summed.

Embryonic mouse neocortex: Fietz et al. [29] studied the expansion of the neocortex in five

embryonic (day 14.5) mice by analyzing the transcriptome of the ventricular zone (VZ),

subventricular zone (SVZ), and cortical plate (CP) using RNA-seq. Laser-capture mi-

crodissection, RNA isolation and cDNA library preparation, and RNA sequencing and

quantification are described in the Supplementary Materials of Fietz et al. [29]. In our

work, raw read counts for this study were downloaded on December 23, 2015 from

the Digital Expression Explorer (DEE) [39] using associated SRA accession number

SRP013825, and run information was downloaded using the SRA Run Selector. Addi-

tional information about the DEE processing pipeline may be found in the Supplementary

Materials.

Fetal human neocortex: In the aforementioned study, Fietz et al. [29] also included samples

from 6 (13-16 wk postconception) human fetuses taken from four neocortex regions: CP,

VZ, and inner and outer subventricular zone (ISZZ and OSVZ, respectively). Raw counts

were obtained in the same manner as described above.

Dynamic expression in embryonic flies: As part of the modENCODE project to annotate

functional elements of the Drosophila melanogaster genome, Graveley et al. [40] char-

acterized the expression dynamics of the fly using RNA-seq over 27 distinct stages of

development, from early embryo to ageing male and female adults. As in our previous

co-expression work [17], we focus on a subset of these data from 12 embryonic samples
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Organism Reference Conditions (reps) K̂arcsin K̂logit

Pig Mach et al. [38] 4 tissues (4 reps each) 14 11

Mouse Fietz et al. [29] 3 tissues (5 reps each) 12 15

Human Fietz et al. [29] 4 tissues (6 reps each) 6 8

Fly Graveley et al. [40] 12 time pts (1 rep each) 28 23

Table 1: Summary of results for Gaussian mixture models fit on transformed normalized RNA-

seq profiles. For each dataset, the organism, associated reference, experimental conditions C(j)
and number of biological replicates in each, and number of clusters selected via ICL for the

arcsin and logit transformation are provided. Boldface values indicated the final model selected

via the corrected ICL.

that were collected at 2-hour intervals for 24 hours, with one biological replicate for each

time point. Phenotype tables and raw read counts were obtained from the ReCount online

resource [41].

Results on RNA-seq data

We used the coseq package described in the previous section to fit Gaussian mixture models

to the arcsin- and logit-transformed normalized profiles for each of the four datasets described

above for K = 2, . . . , 40 clusters (with the exception of the Drosophila melanogaster data, for

which a maximum value of K = 60 was used), using the TMM library size normalization,

filtering genes with mean normalized count less than 50, and otherwise using default values

for parameters. Concerning the filtering step, screening using either a differential analysis or a

threshold on normalized means or coefficients of variation are often applied in practice prior to

co-expression analyses to remove features that contribute noise. We note that for some studies

(e.g., those in which some genes may be completely switched off in some conditions), a less

stringent filtering threshold may be desired; in such cases, the meanFilterCutoff argument

of coseq may be omitted (corresponding to no filter) or set to a smaller value. In all cases,

we calculated the corrected ICL values from Equations (10) and (11) to compare between the

arcsin and logit transformations; the number of clusters K̂ identified for each transformation,

as well as the preferred model-transformation pair chosen via the corrected ICL, are shown for

each dataset in Table 1. The corrected ICL values across a range of numbers of clusters K are

shown in Figure 2 for the Graveley et al. [40] fly and Fietz et al. [29] mouse data; for clarity,

we focus our discussion in the main text on these two datasets, but complete and reproducible

results (in the form of an Rmarkdown document) for all four RNA-seq datasets may be found

in the Supplementary Materials.

For the remainder of the article, the results presented correspond to the model selected via

the corrected ICL. It is of interest to investigate the per-cluster covariance structures estimated

for the selected models for each of the RNA-seq datasets. As an example, the per-cluster cor-
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Figure 2: Corrected ICL values for the arcsin (red) and logit (blue) transformed normalized

expression profiles over a range of numbers of clusters K for the Graveley et al. [40] fly and

Fietz et al. [29] mouse data (A and B, respectively).

relation matrices estimated by coseq for two selected clusters from the Graveley et al. [40]

and Fietz et al. [29] mouse data are shown in Figure 3. It is interesting to note that although

the Gaussian mixture model does not explicitly incorporate the experimental condition labels

C(j), the estimated models include large cluster-specific correlations among close time points

(Figures 3A and 3B) or among replicates within each tissue (Figures 3C and 3D). In addition,

cluster-specific correlation structures among regions may be clearly seen; for example, in the

Fietz et al. [29] mouse data, Cluster 2 is characterized by very large negative correlations be-

tween the CP and SVZ/VZ regions, while Cluster 3 instead has a strong negative correlation

between the VZ and CP/SVZ regions. This strongly suggests that in these data, the assumption

of conditional independence among samples assumed by the Poisson mixture model described

in Rau et al. [17] is indeed unrealistic.

There are several ways in which per-cluster expression profiles can be represented graphi-

cally, depending on the type of data plotted (normalized counts, normalized expression profiles,

or transformed normalized profiles), the type of plot (e.g., line plots or boxplots), and whether

replicates within experimental conditions are averaged or plotted independently. Regarding the

latter point, note that the Gaussian mixture model is fit on the entirety of the data, and replicate

averaging is proposed to simplify the visualization of cluster-specific expression. Although

the coseq package facilitates the implementation of any combination of these three graph-

ical options, our recommendations for visualizating co-expression results are as follows: 1)

although “tighter" profiles are observed when plotting the transformed normalized profiles (as

these are the data used to fit the model), interpretation of profiles is improved by instead using

the untransformed normalized profiles; 2) boxplots are generally preferable when experimen-

tal conditions C(j) represent distinct groups, although line plots can be useful for time-course
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Figure 3: Per-cluster correlation matrices for clusters 25 (A) and 27 (B) from the Graveley

et al. [40] fly data and for clusters 2 (C) and 3 (D) from the Fietz et al. [29] mouse data. Dark

blue and red represent correlations close to 1 and -1, respectively, and circle areas correspond

to the absolute value of correlation coefficients. Correlation matrices are visualized using the

corrplot R package.

experiments; 3) averaging replicates prior to plotting often provides clearer distinctions among

cluster-specific profiles. Following these recommendations, the cluster-specific profiles iden-

tified for the Graveley et al. [40] and Fietz et al. [29] mouse data are shown in Figures 4 and

5.

An additional advantage of model-based clustering approaches is that they facilitate an eval-

uation of the clustering quality of the selected model by examining the maximum conditional

probabilities of cluster membership for each gene:

τmax(i) = max
1≤k≤K̂

τik

(

θ̂K̂

)

, i = 1, . . . , n.

Boxplots of the maximum conditional probabilities τmax(i) per cluster for the Graveley et al.
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Figure 4: Per-cluster expression profiles for the Graveley et al. [40] data. Clusters have been

sorted so that those with similar mean vectors (as measured by the Euclidean distance) are plot-

ted next to one another. Red lines correspond to genes with maximimum conditional probability

τmax(i) of cluster membership < 0.8.

[40] and Fietz et al. [29] mouse data are presented in Figure 6. It may be seen that across

clusters, the majority of genes in both datasets have a large value (i.e., close to 1) for τmax(i);
the number of genes with τmax(i) > 0.8 is 7822 (82.1%) and 7382 (82.4%) for the Graveley

et al. [40] and Fietz et al. [29] mouse data, respectively. However, the boxplots also illustrate

that some genes have a τmax(i) less than this threshold, in some cases as low as 0.4; this indicates

that for a small number of genes, the cluster assignment is fairly ambiguous and assignment to

a single cluster is questionable (the gene with the smallest τmax(i) in the Fietz et al. [29] mouse

data had a conditional probability of 24.8%, 32.2%, 13.0% and 30.0% of belonging to clusters

1, 4, 6, and 12, respectively). In such cases, it may be prudent to focus attention on genes with

highly confident cluster assignments (e.g., those with τmax(i) > 0.8).

Finally, examining the distribution of τmax(i) values within each cluster provides informa-

tion about the homogeneity and relevance of each cluster. For both datasets, all cases clusters

are primarily made up of genes with highly confident τmax(i) values; however some clusters
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Figure 5: Per-cluster expression profiles for the Fietz et al. [29] data. Clusters have been sorted

so that those with similar mean vectors (as measured by the Euclidean distance) are plotted next

to one another. Connected red lines correspond to the mean expression profile for each group.

(e.g., Clusters 1 and 4 in the Graveley et al. [40] data) appear to be more homogeneous and

well-formed than others (e.g., Clusters 16 and 3 in the same data). These conclusions align

with the general observations made about the per-cluster normalized profiles in Figure 4, where

it may be seen that clusters 16 and 3 have quite similar profiles (suggesting that unambiguous

assignment to one of these clusters is more difficult).

Discussion and recommendations

In this work, we have primarily addressed the choice of data to be clustered (transformed nor-

malized profiles rather than raw counts) for RNA-seq co-expression analysis under the frame-

work of Gaussian mixture models. In the following section, we provide some additional discus-
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Figure 6: Evaluation of clustering quality for the Graveley et al. [40] (top) and Fietz et al. [29]

mouse (bottom) data. (left) Maximum conditional probabilities τmax(i) for each cluster, sorted

in decreasing order by the cluster median. (right) Barplots of cluster sizes, according to τmax(i)
greater than or less than 0.8, sorted according to the number of genes with τmax(i) > 0.8.

sion of the choice of transformation and the use of Gaussian mixture models for co-expression

analysis, as well as additional remarks about the practical application of co-expression analyses.

Choice of transformation for co-expression analysis

We have focused the majority of our discussion here on the use of (arcsin- or logit-transformed)

normalized profiles to identify groups of co-expressed genes. As previously noted, a variety of

well-established candidates for transformations have already been proposed for RNA-seq data,

including the log(·+ c) (for a constant c), VST, CPM, and rlog. As suggested by a reviewer, we

could consider the alternative approach of clustering RNA-seq data after applying one of these

transformations and mean-centering per gene; this latter step would remove the spread in values
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observed, for example, in the log-transformed (and uncentered) data in Figure 1B and ensure

that the data to be clustered are independent of the absolute expression levels.

To investigate this idea, we fit Gaussian mixture models to the centered log, VST, CPM,

and rlog transformed data for the Fietz et al. [29] mouse data with K = 2, ..., 40 clusters using

the same parameters as for the coseq analysis. For all four mean-centered transformations

across all clusters, the most general covariance model form (the so-called [pkLkCk] model, with

variable proportions, volume, orientation, and shape) systematically resulted in estimation er-

rors via the Rmixmod package. When considering a larger variety of general covariance model

forms (the [pkLCk], [pkLkC], [pkLC] forms, which all have variable proportions and respec-

tively feature equal volume, equal orientation/shape, and equal volume/orientation/shape), the

same estimation errors were observed for all centered transformations across all clusters. We

were in fact only able to estimate the Gaussian mixture model for all four centered transforma-

tions when restricting the covariance model forms to be spherical or diagonal (which roughly

corresponds to applying a K-means type algorithm); as such, this implies that when using these

alternative transformations, complex covariance structures among samples (such as those ob-

served in Figure 3) must be assumed to be negligeable (i.e., conditional independence given the

clustering component).

Gaussian mixture models for co-expression analysis

We have illustrated several advantages in using Gaussian mixture models in conjunction with

appropriately defined transformations to identify groups of co-expressed genes from normal-

ized RNA-seq gene expression profiles. First, mixture models in general have the advantage of

providing a rigorous statistical framework for parameter estimation, an objective assessment of

the number of clusters present in the data through the use of penalized criteria, and the possi-

bility of performing diagnostic checks on the quality and homogeneity of the resulting clusters.

In particular, diagnostic plots on the maximum conditional probabilities of cluster member-

ship provide a global overview of the clustering and an objective explanation of the quality of

cluster assignments. Since only a subset of genes are expected to be assigned to biologically in-

terpretable groups, these diagnostic plots help provide a basis for discussion about the choice of

genes for follow-up study. However, it should be noted that such assessments of cluster stability

are not unique to Gaussian mixture models. In recent years, several resampling-based methods

for assessing cluster stability and membership have been proposed, including the clue R pack-

age [42] and ConsensusClusterPlus Bioconductor package [43]; for example, Ohnishi

et al. [44] applied K-means clustering to resampled microarray data, constructed a consensus

clustering using clue, and compared each of the resampled clusterings to the consensus to

identify stable and robust clusters.

Gaussian mixtures in particular represent a rich, flexible, and well-characterized class of

models that have been successfully implemented in a large variety of theoretical and applied

research contexts. For RNA-seq data, this means that the model may directly account for per-

cluster correlation structures among samples, which can be quite strong in RNA-seq data. In
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this work we considered a single form of Gaussian covariance matrices (the [pkLkCk] form),

but any or all of the 28 forms of Gaussian mixture models could be used in practice.

We have also discussed the use of penalized criteria like the ICL and BIC to objectively

compare results between different transformations, and potentially among different forms of

Gaussian covariance matrices or among different models. For the four datasets considered here,

the arcsin transformation of normalized expression profiles was consistently preferred to the

logit transformation; as previously mentioned, this is likely due the sensitivity of the latter

to very small pij values. An interesting further direction of research would be to consider

approaches able to directly model the compositional nature of normalized profiles pij without

the need to apply an arcsin or logit transformation.

Practical issues for co-expression analysis

It is worth noting that the concept of gene co-expression is alternatively used to refer to two

broad types of analyses [45]: 1) clustering gene expression patterns to explore shared function

and co-regulation (our focus in this work); and 2) network inference, which aims to construct

a model of the network of regulatory interactions between genes. For the latter, a popular and

widely-used method is the weighted correlation network analysis (WGCNA) approach [46],

which seeks to identify modules of highly interconnected (both positively and negatively cor-

related) genes. Although this approach was first proposed for use with microarray data, the

WGCNA online FAQ page suggests it may be used for normalized RNA-seq data following a

variance-stabilizing or log transformation; however, as WGCNA is based on esimates of pair-

wise correlation among genes, the authors recommend at least 15 to 20 samples in practice (as

a reminder, the number of samples in the four datasets considered here ranged from 12 to 24).

As such, due to both the difference in analysis objectives (clustering versus network inference)

and the relatively small sample sizes of the four datasets, we have not included a more detailed

discussion of WGCNA in the current work.

Many alternative clustering strategies exist based on different algorithms (e.g., K-means and

hierarchical clustering), distance measures calculated among pairs of genes (e.g., Euclidean dis-

tance, correlation, etc), and techniques for identifying the number of clusters (e.g., the Dynamic

Tree Cut method for dendrograms [46]). The difficulty of comparing clusterings arising from

different approaches is well-known, and it is rarely straightforward to establish the circum-

stances under which a given strategy may be preferred. One possibility that may be of interest

in practice is to analyze cluster ensembles arising from a set of different methods to assess the

agreement or dissimilarity among partitions and obtain a consensus clustering [42].

In addition to the choice of clustering method, several practical issues should be considered

in co-expression analyses. First, a common question is whether genes should be screened prior

to the analysis (e.g., via an upstream differential analysis or filter based on the mean expression

or coefficient of variation for each gene). Such a screening step is often used in practice, as

genes contributing noise but little biological signal of interest can adversely affect clustering

results. A second common question pertains to whether replicates within a given experimental
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group should be modeled independently or summed or averaged prior to the co-expression

analysis. Although technical replicates in RNA-seq data are typically summed prior to analysis,

in this work we fit Gaussian mixture models on the full data including all biological replicates;

subsequently to visualize clustering results, replicate profiles are averaged for improved clarity

of cluster profiles.

Following a co-expression analysis, it is notoriously difficult to validate the results of a

clustering algorithm on transcriptomic data, and such results can be evaluated based on either

statistical criteria (e.g., between-group and within-cluster inertia measures) or external biolog-

ical criteria. In practice groups of co-expressed genes are further characterized by analyzing

and integrating various resources, such as functional annotation or pathway membership infor-

mation from databases like the Gene Ontology Consortium. Such functional analyses can be

useful for providing interpretation and context for the identified clusters.
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Key Points

• After applying an appropriate transformation, Gaussian mixture models represent a rich,

flexible, and well-characterized class of models to identify groups of co-expressed genes

from RNA-seq data. In particular, they directly account for per-cluster correlation struc-

tures among samples, which are observed to be quite strong in typical RNA-seq data.

• Normalized expression profiles, rather than raw counts, are recommended for co-expression

analyses of RNA-seq data. Because these data are compositional in nature, an additional

transformation (e.g., arcsin or logit) is required prior to fitting a Gaussian mixture model.

• Penalized model selection criteria like the BIC or ICL can be used to select both the

number of clusters present and the appropriate transformation to use; in the latter case,

an additional term based on the Jacobian of the transformation is added to the criterion,

yielding a corrected BIC or ICL that can be used to directly compare two transformations.
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