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Abstract

RNA-Seq is a widely used method for studying the behavior of genes under different biological conditions. An essential step
in an RNA-Seq study is normalization, in which raw data are adjusted to account for factors that prevent direct comparison
of expression measures. Errors in normalization can have a significant impact on downstream analysis, such as inflated
false positives in differential expression analysis. An underemphasized feature of normalization is the assumptions on
which the methods rely and how the validity of these assumptions can have a substantial impact on the performance of
the methods. In this article, we explain how assumptions provide the link between raw RNA-Seq read counts and meaning-
ful measures of gene expression. We examine normalization methods from the perspective of their assumptions, as an
understanding of methodological assumptions is necessary for choosing methods appropriate for the data at hand.
Furthermore, we discuss why normalization methods perform poorly when their assumptions are violated and how this
causes problems in subsequent analysis. To analyze a biological experiment, researchers must select a normalization
method with assumptions that are met and that produces a meaningful measure of expression for the given experiment.
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Introduction

The introduction of microarrays provided the ability to study
many genes in an organism under different biological condi-
tions, with a dramatic reduction in expense and time from pre-
vious methods [1]. More recently, high-throughput sequencing
has become an affordable and effective way of examining gene
behavior and has been applied to a wide range of biological
studies. For example, specific questions about transcriptomes
and splicing can now be addressed [2], and the study of tech-
niques for the analysis of high-throughput sequencing data
continues to be a hot topic, involving researchers from biology,
statistics and computer science.

High-throughput sequencing with RNA, commonly referred
to as RNA-Seq, involves mapping sequenced fragments of
cDNA. In RNA-Seq, the RNA is fragmented and then reverse
transcribed to cDNA (or reverse transcribed then fragmented).

These fragments are then sequenced, producing reads that are
aligned back to a pre-sequenced reference genome or transcrip-
tome [2–4], or in some cases assembled without the reference
[3]. The number of reads mapped to a gene is used to quantify
its expression.

To convert raw read counts into informative measures of
gene expression, normalization is needed to account for factors
that affect the number of reads mapped to a gene, like length
[5], GC-content [6] and sequencing depth [7]. Length and GC-
content are within-sample effects, meaning that they affect the
comparison of read counts between different genes in a sample.
Sequencing depth, on the other hand, is a between-sample ef-
fect that alters the comparison of read counts between the
same gene in different samples. Here we focus on between-
sample normalization, which is needed to account for technical
effects (differences not because of the biological conditions of
interest) that prevent read count data from accurately reflecting
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differences in expression [7]. In RNA-Seq, a cDNA library is con-
structed and then a portion of the molecules is sequenced to
produce reads [8]. Experimental variability, such as variability in
the total number of molecules sequenced, can lead to different
total read counts in different samples; this is referred to as dif-
ferences in sequencing depth, and the total number of reads in
a sample is the library size of that sample [9]. When one sample
has more reads than another, non-differentially expressed
genes will tend to have higher read counts in that sample [7]
and so a correction is necessary. For applications requiring both
between-sample and within-sample normalization, performing
both types of normalization may be necessary; for example,
Risso et al. recommend using within-sample GC-content nor-
malization in combination with between-sample normalization
[6]. An additional issue when applying normalization methods
is the total number of reads; in this article, we assume the sam-
ples are sequenced sufficiently deeply for all normalization
methods considered.

Many normalization schemes have been proposed to ac-
count for between-sample effects in RNA-Seq data [9], and sev-
eral attempts have been made to determine the best strategy
[9–16]. However, little attention has been paid to the assump-
tions on which the different normalization methods rely.
Several authors have identified situations in which a few highly
expressed genes make up a large proportion of the total reads
[9, 10, 13], which could result in differences in distribution of
read counts among genes. Others have found cases in which
most or all genes are up-regulated in one condition [17–20].
These situations, especially a global shift in expression, violate
assumptions of many commonly used methods and so result in
errors in downstream analysis. Furthermore, biological experi-
ments in which assumptions are unwittingly violated may
mean that there are flaws in comparisons of normalization
methods and in the conclusions drawn from these experiments.
As we have evidence of violated assumptions in some biological
experiments, but not the extent to which assumptions are vio-
lated in others, it has been suggested that many prior conclu-
sions are incorrect and a reanalysis of published results is
necessary [21].

The goal of this article is to present normalization methods
in the context of their assumptions, and to evaluate the effect
and importance of assumptions on the performance of different
normalization methods. We believe that a focus on assump-
tions can aid in evaluating different methods, and in choosing
an appropriate method given knowledge of which assumptions
are reasonable to make for the experiment at hand. With this in
mind, we group between-sample methods by the assumptions
they rely on and their strategy for normalization. We explain
the reason the assumptions are necessary and the result of
using a method when the assumptions do not hold. Finally, we
examine previous research that aims to determine which nor-
malization method is better from the perspective of why some
methods perform better than the other in specific situations.

Gene expression and normalization

The goal of normalization is for differences in normalized read
counts to represent differences in true expression.
Normalization is correct when the relationship between nor-
malized read counts is correct. Given that the actual product of
gene expression is never measured, we consider the true ex-
pression of a gene to be the amount of mRNA/cell it produces.

This appears to be the definition commonly used in previous
work, as prior research considers a gene to be differentially

expressed (DE) across different biological conditions if there is a
difference in the amount of mRNA/cell it produces under these
conditions. For example, authors discussing a global shift in ex-
pression talk about a global change in the absolute amount of
RNA from a fixed number of cells [22]. In this article, we view ex-
pression and differential expression in terms of absolute quan-
tities of mRNA/cell, and keeping this perspective in mind is
important for understanding our discussion of normalization
methods and their assumptions. However, it is important to
note that other definitions of expression and differential ex-
pression are possible [23], and beginning with a different defin-
ition may change which methods are appropriate for a given
RNA-Seq experiment. For example, for certain biological experi-
ments, one might be interested in detecting differences in
mRNA/transcriptome (that is, a gene’s proportion of mRNA of
all mRNA transcribed) rather than mRNA/cell [23].

Considering DE genes is helpful for understanding normal-
ization. As stated above, correct normalization will result in cor-
rect relationships between normalized read counts. In terms of
differential expression, this means that non-DE genes should
on average have the same normalized read counts across condi-
tions, while DE genes should have normalized read counts
whose differences (ratios) across conditions represent the true
differences (ratios) in mRNA/cell. As with microarrays, a com-
mon use of RNA-Seq is to investigate the differential expression
of an organism’s genes under different biological conditions [2],
but normalization is needed in any RNA-Seq study where the
relationship between normalized read counts must be correct,
not just in differential expression analyses. In this article, for
simplicity we restrict our examples to the most basic case of
two biological conditions, which will generally be referred to as
A and B. Our results, however, hold for any number of
conditions.

Gene expression is measured with RNA-Seq using the num-
ber of reads aligned to each gene under each biological condi-
tion [3]. However, a naive comparison of read counts for a given
gene under the different conditions is problematic for two rea-
sons. First, the number of reads aligned to a given gene in a
given sample is generally considered a random variable [24]
(though non-random events, such as inconsistent fragment
amplification or poor amplification of certain sequences, can
impact the final read count), and so read count comparisons
must take into account the variability of these random vari-
ables. Second, the total number of reads can vary across sam-
ples [2], and so a large difference in a gene’s read count between
different conditions may simply be the result of differential
coverage, rather than of differential expression. It is the second
problem that necessitates normalization of read counts before
differential expression analysis can be performed [2, 4].

Normalization is an essential step in an RNA-Seq analysis,
in which the read count matrix is transformed to allow for
meaningful comparisons of counts across samples. With the
advent of RNA-Seq technology, it was initially believed that nor-
malization would not be necessary [3], but normalization has
been found to be indispensable for correct analysis of RNA-Seq
data. Indeed, Bullard et al. [10] found that the normalization pro-
cedure used in a differential expression pipeline had the largest
impact on the results of the analysis, even more than the choice
of test statistic used in hypothesis tests for differential
expression.

Another reason normalization is required is that the propor-
tion of mRNA corresponding to a given gene may change across
biological conditions. In the sample of molecules sequenced,
the number of molecules (and so by extension the number of
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reads) corresponding to a given gene is tied to that gene’s share
of the population of molecules available for sequencing. Hence,
when there are a few genes that are highly expressed in only
one of the conditions, the few genes will make up a greater
share of the total molecules and so a smaller fraction of the
reads will be left for the other genes [7]. This can cause the false
appearance of differential expression for the non-DE genes, and
normalization is needed to account for this difference. A visual-
ization of such a situation is presented in Figure 1. Of the three
genes, one is up-regulated while the other two are non-DE
(Figure 1A). The one highly expressed gene leads to differences
in shares of the proportion of mRNA for each gene (Figure 1B),
which in turn causes differences in the share of reads aligned to
each gene, even if the total number of reads is the same in each
condition (Figure 1C). If the differences in read share are not cor-
rected by normalization (Figure 1D), then the apparent fold
change for every gene will be wrong (Figure 1E). Correct normal-
ization, on the other hand, equilibrates the read counts for the
two non-DE genes (Figure 1D) and thereby leads to accurate
observed fold changes (Figure 1E).

As normalization methods have developed, it has become
clear that initial approaches fail in cases of a shift in expression
for many or all genes [22]. In cases like Figure 1, a small number
of highly expressed genes creates the appearance that non-DE
are DE, but the false DE calls may be corrected by normalizing
read counts so that the expression levels of non-DE genes are
equivalent. In contrast, in the case of a global shift in expres-
sion, it may appear that DE genes are non-DE or that up-
regulated genes are down-regulated [22]. An example is pre-
sented in Figure 2. All genes are up-regulated 2-fold under con-
dition B (Figure 2A), but roughly the same number of molecules
are sequenced (Figure 2B). This conceals the fact that one condi-
tion results in twice as much total expression, and the only dif-
ferences in read counts between the two conditions is because
of technical variability (e.g. sequencing depth; Figure 2C).
Conventional normalization approaches account for the tech-
nical differences, resulting in the same normalized read counts
under each condition (Figure 2D). Conventional normalization
fails to reflect the 2-fold up-regulation under condition B, and
examining the observed fold changes (Figure 2E), it appears that
neither gene is DE when in truth both are. A further need for
normalization is therefore in cases of global shifts in expres-
sion, in which it is necessary to take into account the differ-
ences in overall expression between conditions.

To address the variety of needs for normalization, a corres-
ponding variety of normalization methods has been developed.
To correctly normalize, each method requires one or more as-
sumptions about the experiment and gene expression.
Assumptions are necessary for converting read counts into
meaningful measures of expression. In the following sections,
we organize normalization methods into groups of methods
that rely on similar assumptions.

Normalization methods and assumptions

Here we group normalization methods that have similar as-
sumptions and approaches to normalization. Short descriptions
of the methods are provided; more detailed information on
the method specifics is available in the Supplementary
Information.

Recall that for our purposes, a gene is DE across a set of con-
ditions if that gene produces different levels of mRNA/cell under
the different conditions. For a normalization method to work,
the normalized read counts must be representative of the true

mRNA/cell values. That is, if a gene produces twice as much
mRNA/cell under condition A as under condition B, then the
normalized read count for that gene should on average be twice
as big under condition A as under condition B. However, RNA-
Seq, on the other hand, initially produces relative measures of
expression [25]. As shown in Figure 2, the number of reads
aligned to a given gene reflects the sequencing depth and that
gene’s share of the population of mRNA molecules. We should
not expect a gene with twice as much mRNA/cell to have twice
the number of reads. To correctly normalize, then, we must
make some assumptions so that initial raw read counts can be

Figure 1. One highly expressed gene. An experiment is performed with condi-

tions A and B to compare expression for the three genes (1, 2 and 3). (A) Gene 3

is 2-fold up-regulated under condition B, while the other genes are not DE; the

quantity of mRNA/cell (in bp) is the same for genes 1 and 2, but is twice as high

for gene 3 under condition B. (B) Because of the change in expression of gene 3,

the shares of mRNA in the cell are different between conditions. Under condi-

tion A, each gene gets one-third, whereas under condition B, gene 3 gets half

while the other two get one-fourth. (C) Differences in shares of mRNA are re-

flected in the shares of reads. Each sample has the same total number of reads,

but the distribution is different between the conditions, matching the distribu-

tion of mRNA in (B). (D) When no normalization is performed, there are apparent

differences in read counts for all three genes. Total count normalization pro-

duces the exact same result as no normalization at all, as the total read count

for each sample is the same. In truth, there is no difference in expression for

genes 1 and 2, and the relative count for gene 3 should be higher than found by

no normalization or total count normalization. Correct normalization, therefore,

makes the read counts of the non-DE genes equivalent, which also makes the

relative expression of gene 3 correct. (E) No normalization and total count nor-

malization fail to equilibrate the read counts of the non-DE genes, resulting in

each gene appearing DE, and the truly DE gene (gene 3) having the wrong fold

change. Correct normalization reveals no difference in expression for the non-

DE genes and the correct fold change for gene 3.
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converted into a measure comparable across samples. Different
groups of normalization methods discussed here take different
approaches, and so require different assumptions to produce
correctly normalized values. These assumptions often deal with
the total amount of mRNA/cell or the amount of ‘symmetry’ in
the differential expression.

We say that differential expression is symmetric between
two conditions when the number of genes up-regulated in each
condition is equal. Figure 3 demonstrates the four possible com-
binations of symmetry/asymmetry and same/different total
mRNA/cell. Figure 3 will be referenced to illustrate situations in
which assumptions are and are not met.

Normalization by library size

The normalization by library size aims to remove differences in
sequencing depth simply by dividing by the total number of
reads in each sample [9].

Assumptions
1. Same total expression: The amount of total expression is the

same under the different experimental conditions. That is,
each condition has the same amount of mRNA/cell. Figure
3A and C show examples in which this assumption holds.

Methods
Total Count normalization [9] divides each read count by the
number of reads in its sample. The reads per kilobase per

million mapped reads (RPKM) [26] method is essentially the
same as Total Count normalization, but with the added compo-
nent of accounting for gene length as well. FPKM [27] and
ERPKM [12] are variants of RPKM.

Motivation
After dividing by library size, the normalized counts reflect the
proportion of total mRNA/cell taken up by each gene. If the total
mRNA/cell is the same across conditions, this proportion re-
flects absolute mRNA/cell for each gene.

Normalization by distribution/testing

If technical effects are the same for DE and non-DE genes, then
normalization could be done by equilibrating expression levels
for non-DE genes. This set of methods attempts to capture in-
formation from non-DE genes. Normalization by distribution
compares distributions (either of read counts or some function
of read counts) across samples; normalization by testing at-
tempts to detect a set of non-DE genes through hypothesis
testing.

Assumptions
1. DE and non-DE genes behave the same: Technical effects are

the same for DE and non-DE genes.
2. Balanced expression: There is roughly symmetric differen-

tial expression across conditions (same number of up-
regulated and down-regulated genes). This assumption

(a)

(c)

(d) (e)

(b)

Figure 2. Global shift in expression. There are two genes, and an experiment is performed to compare expression between condition A and condition B. (A) There is glo-

bal up-regulation under condition B versus condition A, with both genes having twice the expression under condition B. Within each condition, the two genes produce

the same amount of mRNA/cell (measured in bp). (B) In the RNA-Seq experiment, the same number of molecules are sequenced from each of the two samples.

Proportionally, the mRNA composition is the same under each condition, and so the composition of molecules sequenced is also the same. Within each condition, the

two genes produce the same amount of mRNA (in bp) but gene 2 is four-fifth the length of gene 1, so must produce five-fourth the number of molecules that gene 1

does. (C) Sequenced reads are aligned to the reference genome and mapped to each gene. The distribution of reads is the same in each sample, but by chance the sam-

ple for condition A happens to have more reads in total. (D) Normalization is performed, which removes the differences in read count from technical variability, so the

read count for each gene is the same across conditions. (E) Because the normalized read counts are the same, the observed fold change for each gene is 1, indicating no

differential expression. However, genes are really twice as expressed under condition B and so in truth we should see half the expression when comparing A with B.
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holds in Figure 3C and D. Normalization by testing can toler-
ate a larger difference in number of up- and down-regulated
genes for higher proportions of DE than can normalization
by distribution (see Figure 6).

Methods
Normalization by distribution. Quantile normalization [28] forces
the distribution of the normalized data to be the same for each
sample by replacing each quantile with the average (or median)
of that quantile across all samples. Other methods do not force
all quantiles to be the same, but instead focus on a specific
quantile. Upper Quartile normalization [10] divides each read
count by the 75th percentile of the read counts in its sample.
Median normalization [9] is essentially the same, but uses the
median rather than the 75th percentile. The DESeq normaliza-
tion method [24] finds the ratio of each read count to the geo-
metric mean of all read counts for that gene across all samples
(the denominator serving as a pseudo-reference sample [24]).
The median of these ratios for a sample, called the ‘size factor’,
is used to scale that sample. This idea was expanded in the
CuffDiff 2 software; CuffDiff normalization calculates ‘internal’
and ‘external’ size factors using the DESeq approach. The in-
ternal size factors are found for each sample by only consider-
ing other samples performed under the same biological
condition when taking the geometric mean, while the external
size factors are calculated after normalization by the internal
size factors. The Trimmed Mean of the M-values (TMM) [7] ap-
proach is to choose a sample as a reference sample, then calcu-
late fold changes and absolute expression levels relative to that
sample. The genes are trimmed twice by these two values, to re-
move DE genes, then the trimmed mean of the fold changes is
found for each sample. Read counts are scaled by this trimmed
mean and the total count of their sample. Note: The edgeR
package [29] uses TMM normalization, and so TMM could rea-
sonably be called edgeR normalization instead. However, the

name TMM seems to be more commonly used in the literature,
and so we use it here. Median Ratio normalization (MRN) [14] is
a method similar to TMM, with the goal of being more robust. In
MRN, read counts are divided by the total count of their sample,
then averaged across all samples in a condition for a given
gene. This produces an average count-normalized value for
each gene and each condition, and the median of the ratios of
these values between conditions is taken. The original counts
are then normalized by this median and their library size.

Normalization by testing. ‘PoissonSeq’ [30] uses an iterative
process that alternates between estimating a set of non-DE
genes, and estimating the scaling factor for each sample using
that set. Given estimates of the scaling factor, expected values
for the read counts can be determined and non-DE genes are
identified using a v2 goodness-of-fit test. A similar iterative
strategy is implemented by Differentially Expressed Gene
Elimination Strategy (DEGES) [11], which alternates between cal-
culating scaling factors from a set of genes identified as non-DE
and estimating which genes are non-DE using differential ex-
pression hypothesis testing.

Motivation
Non-DE genes should have, on average, the same normalized
counts across conditions. Clearly, we want to normalize to
equilibrate the non-DE genes. If technical effects impact non-DE
genes and DE genes alike, then we can normalize all genes with
the same normalization factor as the non-DE genes. So, we
need to compare the non-DE genes; assuming balanced expres-
sion means we can estimate the differences in read counts be-
tween non-DE genes across samples.

Normalization by controls

Controls are needed for normalization when the assumptions
of other methods are violated. For example, Figure 2 demon-
strates how a global shift in expression can go undetected.

Figure 3. Differential expression and (a)symmetry. There are six genes, and two experimental conditions. (A) Differential expression is asymmetric (three up-regulated

genes under condition A, one under condition B). The total mRNA/cell (summed over the six genes) is the same under both conditions. (B) Differential expression is

asymmetric. The total mRNA/cell is different (less total mRNA/cell under condition B). (C) Differential expression is symmetric (two up-regulated genes under each

condition). The total mRNA/cell is the same under both conditions. (D) Differential expression is symmetric. The total mRNA/cell is different (more total mRNA/cell

under condition B).
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When controls are used, such as the negative controls illus-
trated in Figure 4, then it is possible to correctly normalize by
performing normalization on the controls. Because the controls
are not affected by the biological conditions but the same
amount of controls/cell are present in each condition (Figure
4A), then different numbers of control molecules are sequenced
(Figure 4B). This leads to a share of the reads reflective of the
share of mRNA for the control (Figure 4C). By normalizing on
the control, the correct levels of expression are seen (Figure 4D)
and so accurate fold changes are observed (Figure 4E).

Assumptions
1. Existence of controls: The controls needed for the experi-

ment do in fact exist, and their expression behaves as ex-
pected (e.g. for negative controls they are non-DE under the
conditions of the experiment).

2. Controls behave like non-control genes: The technical ef-
fects for the controls in some way reflect the technical ef-
fects for all the genes, so that the controls can be used for
normalization.

Methods
Housekeeping genes. Housekeeping genes (HG) are genes that
play a role in the basic functions of a cell [31], and so are
believed to be non-DE under the biological conditions of interest
[10, 31]. HG normalization assumes that these genes are truly
not DE, and furthermore that they are affected by technical ef-
fects the same way as DE genes. These HG must be identified a
priori, and the appropriate choice of HG likely changes across
different conditions and cell/tissue types. Normalization using
HG can either equalize the read count of the gene (if one house-
keeping gene) [10] or perform a conventional normalization

procedure on a set of HG [9]. It is generally recommended to use
a set of HG, as the use of one housekeeping gene is not robust.

Conventional normalization with spike-ins. A set of syn-
thetic spike-in controls is available through the External RNA
Controls Consortium (ERCC) [32], and these can be used in-
stead of HG. The use of spike-ins with conventional methods
assumes that the spike-ins are not affected by the biological
conditions under investigation, and that they have the same
technical effects as the real genes [33]. Conventional normal-
ization methods, such as Upper Quartile, may be applied to
the spike-ins [33], as with HG controls. The conventional nor-
malization methods are applied only to the spike-ins, and
then used to calculate normalization factors for all genes.
One approach is proposed by Lovén et al. [22], which uses cyc-
lic loess normalization on the spike-ins (CLS). Spike-ins are
added to RNA in proportion to the number of cells from
which RNA is extracted. Then, cyclic loess normalization is
performed on the RPKM values (more details can be found in
the Supplementary Information). The loess curve is fit using
only the spike-ins, but used to adjust all RPKM values so that
the other genes are normalized with the spike-in informa-
tion, which is not affected by differential expression.

Factor analysis of controls. To address perceived problems
with the use of spike-ins, Remove Unwanted Variation (RUV)
[33] uses factor analysis to remove factors of unwanted vari-
ation in RNA-Seq data. Using a set of negative control genes or
samples, singular value decomposition is used to estimate a
matrix for the factors of unwanted variation. Normalization to
remove the factors of unwanted variation is then performed. It
is divided into three sub-methods: RUVg, RUVs and RUVr. The
two assumptions listed above indicate slightly different things
for the different sub-methods, and RUVr does not require con-
trols (it is an adaptation of the RUV method to be used when

(a)

(c)

(e)(d)

(b)

Figure 4. Use of negative controls with shift in expression. Two genes are investigated for differential expression between condition A and condition B. A negative con-

trol is used for normalization (could be a known non-DE gene or spike-in control). (A) Both non-control genes are up-regulated under condition B versus condition A,

having twice the expression under condition B. As a negative control, the control has the same expression under both conditions. (B) In the RNA-Seq experiment, the

same number of molecules is sequenced from each sample. As the control has a smaller share of the mRNA in condition B, there are fewer control molecules in the

sample for condition B. (C) Variability leads to differences in the total read count for the two samples. The share of the reads aligned to the control is the share of

mRNA from the control. (D) The control should have the same expression in both conditions, so normalization is performed to equalize the normalized read count for

the control, resulting in normalized read counts that reflect the correct mRNA/cell levels. (E) Because normalized counts correctly reflect mRNA/cell, the observed fold

change agrees with the truth.
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controls are not available) [33]. Here we list the meaning of the
assumptions for each of the three sub-methods:

1. RUVg. Existence of controls: negative controls exist (non-DE
across conditions). Controls behave like non-control genes:
the factors of unwanted variation for the controls span the
same space as the factors for the entire set of genes.

2. RUVs. Existence of controls: negative controls exist (non-DE
across conditions) and there are also negative control sam-
ples (expression not related to biological condition). Controls
behave like non-control genes: the factors of unwanted vari-
ation for the controls span the same space as the factors for
the entire set of genes, and the factors of unwanted vari-
ation are not correlated with experimental condition.

3. RUVr. Does not require existence of controls. Assumes that
factors of ‘wanted’ variation are known (i.e. the design ma-
trix) and the factors of unwanted variation are not correlated
with experimental condition.

Motivation
Controls should be non-DE across conditions, and hence, on
average, normalized counts for the controls should be the same
across conditions. If technical effects impact controls like they
impact genes, then we can apply the adjustment for the con-
trols to all genes. The reasoning for normalization by controls is
similar to normalization by distribution/testing, but in the for-
mer it is assumed that an explicit set of controls is known, while
in the latter we aim to capture the information from non-DE
genes without knowing beforehand which genes are non-DE.

Importance of the assumptions

At first glance it makes sense that correcting for differences in
sequencing depth can be done simply by library size normaliza-
tion, which works if the total amount of mRNA in each cell is
the same across experimental conditions. Then, a gene that
produces the same amount of mRNA under each condition will
produce the same proportion of total mRNA in each condition.
We thus expect the same proportion of reads to be aligned to
that gene under each condition, and Total Count normalization
gives us exactly the proportion of reads aligned to each gene.
Likewise, differences in expression correspond to differences in
proportion of reads in the sample. However, differences in total
mRNA/cell can lead to both failing to detect DE genes (Figure 2)
and incorrectly calling non-DE genes DE (Figure 1) when nor-
malization by library size is performed in situations where total
mRNA/cell is not constant.

On the other hand, normalization by distribution and by
testing are impacted by differences in the number of up-
regulated versus down-regulated genes, but not by the relative
amounts of mRNA/cell. The greater the disparity between the
number of up-regulated genes and the number of down-
regulated genes under a given condition, the higher the asym-
metry of the differential expression under that condition. Both
Figures 1 and 2 show differences in total expression (mRNA/
cell) between the two conditions, but there is much more asym-
metry in Figure 2 (that is, 100% of the genes are up-regulated).
Accordingly, normalization by distribution and by testing can
handle differences in mRNA/cell in the case of a few highly ex-
pressed genes (small asymmetry), but not a global shift in ex-
pression (large asymmetry). If there are only a few DE genes,
these DE genes will not do much to change the estimated nor-
malization factor. For example, the Upper Quartile normaliza-
tion strategy compares the 75th percentile of read counts

between samples. If the 75th percentile of all the read counts is
similar to the 75th percentile of the non-DE read counts, this is
a reasonable approach. The normalization statistic for all genes
will be similar to the normalization statistic for non-DE genes if
there are only a few DE genes. The two statistics will also be
similar when there is a small proportion of asymmetry. When
differential expression is mostly symmetric, the values for DE
genes should more or less balance out on either side of the stat-
istic for non-DE genes, so that the statistic for all genes is close
to the statistic for non-DE genes. A small proportion of asym-
metry can allow distribution/testing methods to tolerate higher
proportions of differential expression.

Knowledge of the assumptions made by each normalization
method allows for good predictions of which biological experi-
ments are suitable for each method. Normalization by library
size should work well when total mRNA/cell is equivalent
across conditions, regardless of the amount of asymmetry
(Figure 3A and C). On the other hand, normalization by distribu-
tion/testing should generally work well when there is sym-
metry, regardless of differences in mRNA/cell (Figure 3C and D).
When there is both asymmetry and different levels of total
mRNA/cell (Figure 3B), we expect both sets of methods to per-
form poorly.

Simulations

To demonstrate the effects of asymmetry and different mRNA/
cell in a controlled scenario, we examined the performance of
several normalization methods on simulated data (Figures 5–8).
Simulations were performed with two combinations of number
of genes and number of samples: 10 000 genes and 4 samples
(two replicates per condition), and 1000 genes and 10 samples
(five replicates per condition). Figures 5 and 7 show the error in
fold change estimates for the different normalization methods,
while Figures 6 and 8 show empirical error rates in detecting dif-
ferential expression. The use of simulation allows us to isolate
the effects of asymmetry and mRNA/cell, and to vary the
amount of differential expression to see the effect of each com-
bination of (a)symmetry and same/different mRNA/cell at each
level of differential expression. We recognize that real experi-
ments contain additional sources of bias not present in our
simulations. Such biases are beyond the scope of this article; as
we are focused on the effects of normalization, we control for
other sources of error.

For the simulations, we chose methods that were represen-
tative and generally perform well in the literature, as summar-
ized in Table 2 (except for Total Count normalization, as all
normalization by library size methods perform poorly in the lit-
erature). We used Total Count, DESeq, TMM, PoissonSeq, DEGES
and finally Oracle normalization that uses the true normaliza-
tion factor known from the simulation parameters. To measure
how well the methods performed normalization, we used a
method similar to Maza et al. [14] and calculated the empirical
mean squared error (MSE) of the log fold change (LFC) for non-
DE genes (Figures 5 and 7), comparing each observed LFC to 0.
As these genes are not DE, if normalization is performed cor-
rectly, then the LFC between samples of different conditions
should be close to 0. Oracle normalization provides the baseline
for the MSE under perfect normalization; methods that track
closely with the Oracle are performing well.

The results are the same regardless of the number of genes
or samples, demonstrating that the results do not depend on
the number of genes or samples. Figures 5 and 7 show the MSE
results of the simulations, confirming that the methods perform

|782 Evans et al.

Deleted Text: ,
Deleted Text: IMPORTANCE OF THE ASSUMPTIONS
Deleted Text: which 
Deleted Text: differentially expressed
Deleted Text: differentially expressed
Deleted Text: .
Deleted Text: differentially expressed
Deleted Text: differentially expressed
Deleted Text: differentially expressed
Deleted Text: )
Deleted Text: )
Deleted Text: )
Deleted Text: 2 
Deleted Text: 5 
Deleted Text: paper
Deleted Text: which 
Deleted Text: ,
Deleted Text: log fold change
Deleted Text: differentially expressed
Deleted Text: log fold change
Deleted Text: which 


as expected. Total Count normalization follows the Oracle
closely when there is the same total mRNA/cell, but diverges
quickly when there is different mRNA/cell. DESeq, TMM and
DEGES perform well when there is symmetry, for all proportions
of differential expression. PoissonSeq does well under sym-
metry until too high a proportion of differential expression is
reached, at which point it diverges. This is likely because
PoissonSeq normalization uses a set of genes of a fixed size for
normalization; when the proportion of differential expression is
too high, the set necessarily contains DE genes that skew the
normalization estimate. When there is asymmetry, the normal-
ization by distribution/testing methods can tolerate a small pro-
portion of differential expression but eventually reach a break-
down point.

The effects on downstream analysis of applying the different
normalization methods are shown in Figures 6 and 8, which
show empirical false discovery rate (eFDR) measures for each
method after testing for differential expression (note: the down-
ward trend in the Oracle eFDR is because of the use of the
Benjamini–Hochberg (BH) procedure to control FDR, which is
conservative and controls at a level directly related to the

proportion of true null hypotheses, i.e. non-DE genes). When
methods normalize correctly, as shown in Figures 5 and 7, the
subsequent tests for differential expression are able to control
the false discovery rate in the absence of additional sources of
error. However, when normalization fails and the observed fold
changes depart sufficiently from the truth, the result is inflated
false positives. Our work illustrates how heavily analysis relies
on correct normalization, which in turn relies on assumptions.
When the assumptions are violated, normalization fails
(Figures 5 and 7) and as a result so does the downstream ana-
lysis (Figures 6 and 8). As the figures demonstrate, the optimal
normalization methods heavily depend on the biological cir-
cumstances, and so we can give no clear guideline for which
normalization method to use without knowing the conditions
at hand. Additionally, we emphasize that the simulations are
designed to isolate the effects of incorrect normalization; ana-
lysis of real RNA-Seq data will likely include additional biases
that, if not accounted for, can lead to spurious results even if
normalization is correct. The eFDR numbers given in the simu-
lations should not be treated as predictions of what the true
FDR will be in an experimental setting, but rather provide a way
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Figure 5. Impact of amount of asymmetry and amount of mRNA/cell on fold change estimates, 10 000 genes and four samples. These plots show the average log fold-

change MSE for non-DE genes of several methods. Simulated data are used, with 10 000 genes and two replicates per condition, and varying proportions of differential

expression (5–95%). Genes simulated to be non-DE should have an observed log fold-change close to 0; the MSE is thus calculated by averaging the squared observed

log fold-changes for each non-DE gene (treating the true log fold-change as 0). Because of variability in the generation of read count data, the observed log fold-change

will in general not be exactly 0, so the Oracle normalization method (normalizing the data with the correct normalization factors given the simulation) serves as a base-

line. Methods with MSEs that closely follow those of Oracle normalization are doing well. Asymmetric differential expression was simulated as 75% of the set of DE

genes up-regulated in one condition and 25% up-regulated in the other. Under symmetric differential expression, 50% of DE genes are up-regulated in each condition.

For simulations with the same mRNA/cell, non-DE genes had the same proportion of reads in each condition; simulations with different mRNA/cell resulted in non-DE

genes having different shares of the reads in the different conditions.
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to compare different methods with all other factors being equal.
As the methods generally perform similarly for a small propor-
tion of differential expression, under these conditions the
choice of method is less important. However, as studies have
demonstrated the existence of global shifts in expression
[17–20], we believe that the assumption of a small proportion of
differential expression can be dangerous. Hence, it is important
to consider the performance of the different methods for a wide
range of differential expression.

Simulation details

To assess the downstream results of violating the assumptions
of different normalization methods, simulations were run in
which the average MSE, on non-DE LFCs, and average eFDR
were computed for different proportions of differential expres-
sion (proportion of genes which are truly DE), amounts of asym-
metry and relative amounts of mRNA/cell. The code for the
simulations and the plots of the results can be found at https://
github.com/ciaranlevans/rnaSeqAssumptions, and was adapted
from the R code used in the simulations of Law et al. [34].

For each of the two combinations of number of genes and
number of samples, four sets of simulations were performed,
one for each combination of asymmetry versus symmetry and
same mRNA/cell versus different mRNA/cell. In each simula-
tion, read count data were generated, then normalized accord-
ing to one of six different methods: DEGES, DESeq, Oracle
(normalization with the true scaling factors, used for bench-
marking other normalization methods), PoissonSeq, TMM and
Total Count. The normalization methods were selected to repre-
sent different types of normalization: by library size (Total
Count), by distribution (DESeq and TMM) and by testing
(PoissonSeq and DEGES). DESeq and TMM were chosen to repre-
sent normalization by distribution methods, as they are widely
studied and generally perform well relative to other methods
(Table 2). Simulated RNA-Seq data were generated, then each
normalization method was performed. After normalization, two
normalized columns of the read count matrix (one from each
condition) were compared to produce LFCs for the non-DE
genes. These observed LFCs should be close to 0, so the MSE was
calculated by averaging the squared LFCs for the non-DE genes.
Differential expression hypothesis testing was performed on
the data for each normalization method. Testing was done
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Figure 6. Impact of amount of asymmetry and amount of mRNA/cell on error control, 10 000 genes and four samples. These plots show the average empirical FDR of

several methods on simulated data with varying proportions of differential expression (5–95%). The simulations are performed with two conditions, with 10 000 genes

and two replicates per condition. Asymmetric differential expression was simulated as 75% of the set of DE genes up-regulated in one condition and 25% up-regulated

in the other. Under symmetric differential expression, 50% of DE genes are up-regulated in each condition. For simulations with the same mRNA/cell, non-DE genes

had the same proportion of reads in each condition; simulations with different mRNA/cell resulted in non-DE genes having different shares of the reads in the different

conditions. The black dashed line is at 0.05, the nominal FDR using the Benjamini–Hochberg adjustment. Deviations of the oracle value from the nominal value (start-

ing above 0.05 and falling below as the proportion of DE increases) are a result of DESeq2 hypothesis testing and the conservativeness of Benjamini–Hochberg.
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separately from normalization, and was performed with the
DESeq2 [35] package after normalization with each method (the
data were not re-normalized with DESeq2). As in DESeq2, and as
is common in differential expression studies, P-values were ad-
justed using the Benjamini–Hochberg procedure for FDR control
[36]. Using the adjusted P-values, and knowledge of which genes
were simulated to be DE, the average eFDR (observed proportion
of false discoveries out of all discoveries) was calculated across
50 repetitions.

Simulations begin by creating initial proportions of expres-
sion, representing the proportion of the total expression for
each gene and each sample, with 10 000 genes and 4 samples
(two samples per condition), or 1000 genes and 10 samples (five
samples per condition). A random subset of genes is chosen to
be DE, with the number determined by the specified proportion
of differential expression.

Asymmetry, same mRNA/cell: Differential expression is
asymmetric (more genes up-regulated under one condition than
the other), but the absolute expression is the same for each con-
dition. In all, 75% of DE genes were 2-fold up-regulated under
condition A, and 25% were 4-fold up-regulated under condition B.

Asymmetry, different mRNA/cell: Differential expression is
asymmetric, and the absolute expression is different under the
different conditions. In all, 75% of DE genes were 2-fold up-
regulated under condition A, and 25% were 2-fold up-regulated
under condition B.

Symmetry, same mRNA/cell: Differential expression is sym-
metric (same number up-regulated under each condition), and
the absolute expression is the same for each condition. In all,
50% of DE genes were 2-fold up-regulated under condition A,
and 50% were 2-fold up-regulated under condition B.

Symmetry, different mRNA/cell: Differential expression is
symmetric, but the absolute expression is different under the
different conditions. In all, 50% of genes are 4-fold up-regulated
under condition A, and 50% are 6-fold up-regulated under con-
dition B.

Experimental data

In addition to a simulation study, we examined the perform-
ance of normalization methods on RNA-Seq data from the SEQC
project [37], in which the SEQC/MAQC-III consortium studied
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Figure 7. Impact of amount of asymmetry and amount of mRNA/cell on fold change estimates, 1000 genes and 10 samples. These plots show the average log fold-

change MSE for non-DE genes of several methods. Simulated data are used, with 1000 genes and 5 replicates per condition, and varying proportions of differential ex-

pression (5–95%). Genes simulated to be non-DE should have an observed log fold-change close to 0; the MSE is thus calculated by averaging the squared observed log

fold-changes for each non-DE gene (treating the true log fold-change as 0). Because of variability in the generation of read count data, the observed log fold-change will

in general not be exactly 0, so the Oracle normalization method (normalizing the data with the correct normalization factors given the simulation) serves as a baseline.

Methods with MSEs that closely follow those of Oracle normalization are doing well. Asymmetric differential expression was simulated as 75% of the set of DE genes

up-regulated in one condition and 25% up-regulated in the other. Under symmetric differential expression, 50% of DE genes are up-regulated in each condition. For

simulations with the same mRNA/cell, non-DE genes had the same proportion of reads in each condition; simulations with different mRNA/cell resulted in non-DE

genes having different shares of the reads in the different conditions.
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RNA-Seq technology across different platforms and alignment
methods. We used sequencing data from the Australian
Genome Research Facility, performed on the Illumina HiSeq
2000 platform and mapped with the AceView annotations. The
SEQC project collected data for four different samples A, B, C
and D, with many replicates per sample [37]. Following [33] and
[10], for tests of differential expression we performed compari-
sons between samples A and B (from Agilent’s UHRR cells and
Life Technologies’ HBRR cells, respectively). Data were obtained
from the seqc R package that is available through Bioconductor
[37]. Our code for analysis of the SEQC data can be found at
https://github.com/ciaranlevans/rnaSeqAssumptions.

Additionally, the SEQC data include TaqMan qRT-PCR meas-
urements on about 1000 genes [37]. PCR data are often used to
determine ‘true’ differential expression and assess false posi-
tives and false negatives in an RNA-Seq analysis; for example,
[10] and [33] both use SEQC PCR data to evaluate performance of
differential expression testing. For the purposes of this section
we will use PCR data as a benchmark for assessing differential
expression calls. However, we note that the practice of treating
PCR as a ‘gold standard’ may not always be justified: there has
been concern over possible errors in PCR data [38], and PCR data
may not detect global shifts in expression in the absence of reli-
able controls [40].

The full SEQC qRT-PCR data contain 1044 genes. We
matched the PCR data with SEQC RNA-Seq data, selecting genes
that were represented in both data sets with enough informa-
tion, and removed duplicated genes. This results in 733 unique
genes with both RNA-Seq and PCR measurements. Following
the examples of [33] and [10], we divide the PCR-validated genes
into groups of ‘non-DE’, ‘no-call’ and ‘DE’ based on their abso-
lute average LFC (respective ranges are< 0.2, ½0:2; 0:1� and> 1).

After selecting genes to use in our analysis, we compared the
PCR expression measures between samples A and B by comput-
ing LFCs of the average expression. The distribution of the mean
LFCs is symmetric about 0 (Figure 9), with 401 genes expressed
more in sample A (LFC> 0) and 332 expressed more in sample B
(LFC< 0). The PCR data identified 268 DE genes with higher ex-
pression in sample A (LFC> 1), and 203 DE genes with higher
expression in sample B (LFC < �1). Approximately the same
number of up-regulated genes are observed in each condition,
indicating that differential expression is symmetric. Additionally,
the distribution has a similar shape on each side of 0 (Figure 9).
There is no reason to suspect that there are systematic differ-
ences between the amounts of mRNA/cell produced by genes
with higher expression in sample A versus higher expression in
sample B, and so having the same distributional shape suggests
that each sample produces approximately the same mRNA/cell.
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Figure 8. Impact of amount of asymmetry and amount of mRNA/cell on error control, 1000 genes and 10 samples. These plots show the average empirical FDR of sev-

eral methods on simulated data with varying proportions of differential expression (5–95%). The simulations are performed with two conditions, with 1000 genes and

five replicates per condition. Asymmetric differential expression was simulated as 75% of the set of DE genes up-regulated in one condition and 25% up-regulated in

the other. Under symmetric differential expression, 50% of DE genes are up-regulated in each condition. For simulations with the same mRNA/cell, non-DE genes had

the same proportion of reads in each condition; simulations with different mRNA/cell resulted in non-DE genes having different shares of the reads in the different

conditions. The black dashed line is at 0.05, the nominal FDR using the Benjamini–Hochberg adjustment. Deviations of the oracle value from the nominal value (start-

ing above 0.05 and falling below as the proportion of DE increases) are a result of DESeq2 hypothesis testing and the conservativeness of Benjamini–Hochberg.
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Symmetric expression and the same mRNA/cell indicate
that all normalization methods should perform approximately
equivalently, as illustrated by the simulations. Using each nor-
malization method from the simulations (DEGES, DESeq,
PoissonSeq, TMM and Total Count), we performed normaliza-
tion and differential expression testing, using the DESeq2 pack-
age for the hypothesis testing. To compare the different
normalization methods, we compared the results of differential
expression testing with the calls from the PCR analysis.

By varying the significance cutoff for the DESeq2 P-values, we
can change which genes are called DE from the RNA-Seq analysis.
That is, if the level of significance is set at 0.05, there will be fewer
false positives (and more false negatives) than if the level of sig-
nificance is set at 0.1. We then compared the RNA-Seq calls with
the ‘true’ PCR calls to create Receiver Operating Characteristic
(ROC) curves for each method (Figure 10), with the no-call genes

ignored when making the ROC curves. A steep initial slope of the
ROC curve indicates a large gain in sensitivity (ability to correctly
determine DE genes, i.e. true positives) for a small loss in specifi-
city (ability to correctly determine non-DE genes, i.e. true nega-
tives). Methods perform better when, for a given level of
specificity, they have higher sensitivity. Graphically, this corres-
ponds to the top left in the ROC graph. In the case analyzed here
we expect each method to perform similarly; DESeq, Total Count,
TMM and DEGES do so, but PoissonSeq performs somewhat
worse than the others, with an ROC curve noticeably below the
rest.

For further comparison with our simulations, we calculated
eFDRs for each method. In our simulations, we had two or five
replicates for each condition, but in the SEQC data there are 64
replicates for sample A and sample B. To make eFDR calcula-
tions comparable with our simulations, we randomly selected
two replicates from sample A and two from sample B, then
tested for differential expression (using the BH procedure at
level 0.05) and calculated an eFDR using the PCR data as a
benchmark. Selecting two replicates and testing for DE was re-
peated 100 times to get an average eFDR for each normalization
method. We then performed the same procedure with random
selections of five replicates from sample A and five from sample
B. The results are displayed in Table 1. Note that the eFDR calcu-
lations treat no-call genes as DE, so the exact values in Table 1
are likely not a true representation of the FDR. Rather, we are
interested in the relationship between the values for each
method. We note that, consistent with our simulations, all
methods are approximately equal with a slightly higher empir-
ical FDR for PoissonSeq, and furthermore that empirical FDR in-
creases when more samples are used in the differential
expression testing.

Initial ROC analysis was performed using a full set of 733
genes, for which differential expression is approximately sym-
metric. To evaluate the different normalization methods under
asymmetric differential expression, we took a subset of 619
PCR-validated genes such that 75% of DE genes were up-
regulated (according to PCR) in sample A, and the remaining
25% were up-regulated in sample B (the DE genes made up
about 57% of the 619 genes in the subset). As illustrated by the
simulations, we expect DEGES, DESeq, PoissonSeq and TMM to
perform worse if the proportion of differential expression is
high enough. The performance of Total Count normalization
depends on the relative levels of mRNA/cell, which we are un-
able to definitively measure with the RNA-Seq or PCR data.
However, under our previous assumption that production of
mRNA/cell is unrelated to whether a gene is up-regulated or
down-regulated in sample A, we would expect some difference
in mRNA/cell when there is asymmetric differential expression.

Using the subset of genes with asymmetric differential ex-
pression, we again performed an ROC curve analysis (Figure 11).
As expected, DEGES, DESeq, PoissonSeq and TMM each perform
worse with asymmetric differential expression than with sym-
metric differential expression (each has a lower ROC curve in
Figure 11 than in Figure 10). Total Count normalization also per-
forms worse with the asymmetric differential expression, but
does noticeably better than the other methods.

Our simulations help illustrate that with symmetric differ-
ential expression and similar mRNA/cell, performance of each
normalization method should be approximately equivalent.
This is indeed what we observe with the SEQC PCR-validated
data, which appear to occur under those conditions. Based on
our analysis of the assumptions of each method, backed by our
simulation data, we expect differences in performance under
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Figure 9. Distribution of qRT-PCR mean LFC. The histogram shows the distribu-

tion of the LFC comparing the average PCR measures of expression between

SEQC samples A and B in each gene. The distribution is symmetric around 0,

indicating that each sample has the same number of up- and down-regulated

genes. Additionally, the shape of the distribution is similar on both sides of 0,

suggesting that there are similar amounts of mRNA/cell for each sample.
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different conditions. For example, many methods should per-
form worse under asymmetric differential expression, which
was observed in the SEQC data by taking a subset of genes to
force asymmetric expression. We are not aware of any large
PCR-validated data set that has strongly asymmetric expression
and/or a global shift in expression in the full data set, without
taking subsets (though as discussed above, it is not clear that
PCR data could detect a global shift).

Evaluation of methods and assumptions

Several papers have investigated the different normalization
methods described in the previous section. Table 2 summarizes
these comparisons by giving approximate rankings of the meth-
ods evaluated in each comparison. Here we expand on these
rankings to remark on several key ideas.

Differences in mRNA/cell result in poor performance of
library size normalization

As shown in Table 2, in many comparisons, Total Count and
RPKM/FPKM perform worse than all other methods, and several
authors expressly recommend against its use [9]. A likely cause
of this is that in these evaluations, the assumption required for
library size normalization (same amount of mRNA/cell) is vio-
lated. For example, Dillies et al. [9] observed that a few highly ex-
pressed genes had a large share of the read counts in Mus
musculus data they compared. Bullard et al. [10] and Lin et al. [13]
reported similar findings. Bullard saw 50% of the reads concen-
trated in 5% of the genes, and Lin found 50% of the reads in 45
genes for male flies and 186 genes for female flies. With such a
large proportion of the reads aligned to a small fraction of the
genes, if these genes are DE, it is likely that there will be differ-
ent amounts of mRNA/cell across the conditions, and Bullard
et al. [10] did observe that the highly expressed genes were DE.

DESeq and TMM generally perform well, but validity is
not certain

Dillies et al. [9], for example, note that DESeq and TMM are the
only methods that perform well both with the ability to detect
DE genes and with controlling false positives. This supports the
conclusion of Bullard et al. [10], who concluded that normaliza-
tion has the biggest impact on detection of DE genes.

Given that several authors have found that a few highly ex-
pressed genes have a large share of total expression [9, 10, 13]
and these genes may be DE, it is clear that assuming the same
amount of mRNA/cell is not always reasonable. The good per-
formance of DESeq and TMM in these studies suggests that per-
haps their assumptions (DE and non-DE genes behave the
same, balanced expression) are fairly reasonable, or at least not
too violated, for the data analyzed in the comparisons.
However, it is possible that for the real data analyzed in these
comparisons there is a global shift in expression that is not
picked up by these normalization methods. For example, a glo-
bal shift has been observed in DE analysis with low and high c-
Myc conditions [19, 20], and this shift was undetected without
the use of spike-in controls [22]. Other researchers [17, 18] have
found similar global up-regulation when using spike-ins, and it
has been suggested that such shifts were not detected by previ-
ous research owing to lack of proper normalization [18]. Even
qRT-PCR, often treated as a ‘gold standard’ for evaluating the
performance of DE analysis methods, might not be able to de-
tect a global shift without controls. Normalization for qRT-PCR
often relies on HG [10, 39, 40]. In the absence of non-DE genes,
as occurs with a global shift in expression, qRT-PCR results
might not be accurate. Furthermore, the use of PCR as a gold
standard for evaluation of normalization methods has been
called into question, as despite being highly accurate, PCR can
contain errors [38]. Hence, for methods which normalize by dis-
tribution or by testing, it is difficult or impossible to know
whether their assumptions have been met without additional
information.

Potential lack of HG

The possible absence of HG poses a problem for HG normaliza-
tion of RNA-Seq data as well as PCR data. While Bullard et al.
[10] found that HG normalization performed equivalently to UQ,
the housekeeping gene they used (POLR2A) was selected based
on previous studies and they caution that such information
may not always be available. Dillies et al. [9] also selected HG
from previous research, and state that one cannot be certain HG
will always be non-DE. As mentioned above, several authors
have found global shifts in expression, which would leave few,
if any, non-DE HG for use in normalization [17–20].

External controls may be needed

In the case of a global shift in expression, the assumptions are
violated for normalization methods that do not rely on external
controls. Global up-regulation necessarily leads to different
amounts of mRNA/cell (library size normalization), highly
asymmetric expression (distribution/testing normalization) and
an absence of non-DE genes (HG normalization). Without the
use of external controls, it is possible that many experiments
have resulted in incorrect conclusions [21]. Normalization with
spike-in controls attempts to rectify the problems of asym-
metry, by relying on genes/spike-ins that should have the same
expression under the different conditions.
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Figure 11. ROC curves for each normalization method using SEQC data. This fig-

ure displays the ROC performance of each method using RNA-Seq data for 619
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curves. The genes are a subset chosen for asymmetric differential expression, so

that 75% of DE genes are up-regulated in sample A and 25% are up-regulated in
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Table 2. Literature comparing normalization methods

Paper goal Evaluation criteria Approximate ranking

Global compare Equiv. normalized count distribution between replicates (real
data); variance of normalized counts within condition (real
data); equiv. expression of HG (real data); agreement on DE calls
(real data); false positives and power (simulation) [9].

DESeq & TMM
UQ & Med
Q
RPKM & TC

Introduces UQ DE detection compared with qRT-PCR (ROC curves) (real data); vari-
ability between replicates after normalization (real data); bias in
fold-change estimation compared with qRT-PCR (real data) [10].

UQ
Q
TC

Introduces MRN False positives, false negatives and power (simulation); MSE of ex-
pression fold-change estimates (simulation); number of DE calls
and agreement on DE calls (real data) [14].

MRN
DESeq & TMM
TC
UQ & Med
FPKM

Global compare Equiv. normalized count distribution between replicates (real
data); variance of normalized counts within condition (real
data); agreement on DE calls (real data); variability of results
under different filtering techniques (real data) [13].

DESeq
TMM
UQ, Med, & Q
RPKM & TC
(RUVg considered, but assumptions not met)

Global compare Correlation between normalized counts and qRT-PCR data (real
and simulated data) [12].

All were equivalent (DESeq, Med, Q, RPKM
and ERPKM, TMM, UQ)

Global compare Bias and variance in fold change estimation (compared with HG)
(real data); sensitivity and specificity in DE calls (using genes
believed to be DE and non-DE) (real data); prediction of DE genes
(real data); agreement on DE calls (real data) [16].

DESeq
PS
Q
UQ
TMM

Global compare Clustering of normalized counts agrees with condition (real data);
correlation between fold change estimates and qRT-PCR fold
changes (real data) [15].

All were equivalent (DESeq, PS, UQ, TMM, Q,
CuffDiff)

Introduces DEGES ROC curves and AUC (real and simulated data) [11]. DEGES strategy using a normalization
method generally performed better than
that method by itself

Introduces CLS Observed fold change for normalized data (real data) [22]. CLS
RPKM

Introduces RUV PCA (real data); variance and distribution of normalized data (real
data); distribution of P-values (real data); clustering and propor-
tion of reads mapping to spike-ins (real data); MA plots (real
data); ROC curves (real data); comparison with qRT-PCR (real
data) [33].

RUV
(UQ, CLS, RPKM, TMM, DESeq and Q)

Several papers that include comparisons of DE assumption normalization methods are summarized here. Short descriptions of the criteria used to evaluate the nor-

malization methods are provided, and the final results of the paper are condensed into an approximate ranking of the methods considered (best performing methods

at the top). These rankings are not explicit in all papers and for some have been inferred from the paper’s discussion of the strengths and weaknesses of the different

methods. Abbreviations: UQ, Upper Quartile; Med, Median; Q, Quantile; TC, Total Count; MRN, Median Ratio; PS, PoissonSeq; CLS, Cyclic Loess on Spike-ins.

Table 1. Empirical FDR for SEQC RNA-seq data with two and five replicates per condition

DESeq Total Count TMM DEGES PoissonSeq

2 replicates 0.0552 (0.0042) 0.0489 (0.0048) 0.0521 (0.0043) 0.0532 (0.0052) 0.0730 (0.0049)
5 replicates 0.0714 (0.0024) 0.0687 (0.0028) 0.0700 (0.0030) 0.0699 (0.0027) 0.0822 (0.0024)

Two replicates from sample A and two from sample B were randomly chosen and used to test for differential expression. The empirical FDR was then calculated, and

the process repeated 100 times. The procedure was also performed using five replicates from sample A and five from sample B. The average eFDR results are displayed

in this table, with the standard deviation of the eFDRs across 100 repetitions given in parentheses. Note: The empirical FDR is calculated as the ratio of the number of

non-DE genes (as determined by PCR), which are called DE by RNA-Seq testing to the total number of genes called DE by RNA-Seq testing, effectively treating ‘no call’

PCR genes as DE.
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Mixed performance of spike-ins

As we have seen, these methods come with their own set of as-
sumptions, and it is not clear that these assumptions can al-
ways be trusted. In an assessment of ERCC spike-in controls,
Jiang et al. found that only small fractions (0.5% and 0.01%) of
spike-in reads were incorrectly aligned to the actual genome of
the organisms in their experiment (Drosophila and humans) [32].
This indicates that as desired, there will be little error intro-
duced into the read counts by the controls. Furthermore, Jiang
et al. found a linear relationship between the amount of spike-in
and read count [32], which is evidence that the spike-in read
counts are representative of expression level. However, Risso
et al. [33] found violations of both assumptions necessary for
basic spike-in normalization (the assumptions that spike-ins
are non-DE across conditions and have the same technical ef-
fects as genes), and Qing et al. [41] found that read counts for the
spike-ins depended in part on the mRNA enrichment protocol
used in the experiment.

Recommendations: appropriate method depends on DE
definition and assumptions

Different circumstances call for different normalization meth-
ods. Correct normalization should cause non-DE genes to have
the same (expected) normalized read count across conditions.
This requires a definition of differential expression. In this art-
icle, we defined differential expression in terms of differences
in mRNA/cell across conditions, and it appears that this is the
definition used in previous research evaluating normalization
methods. Consequently, the majority of the commentary and
recommendations presented here is in the context of mRNA/
cell differential expression. However, other definitions of differ-
ential expression are possible and may be appropriate/neces-
sary in certain conditions [23]. One alternative is to define a
gene as DE if its share of mRNA in the transcriptome is different
across conditions; this bases differential expression on relative,
rather than absolute, measures of expression. The mRNA/tran-
scriptome definition may be appropriate in some circum-
stances: Ignatov et al. [42] performed an experiment which
found down-regulation of every gene when using the mRNA/
cell definition, so they chose instead to look for differences in
per transcriptome expression.

Choosing a normalization method depends on the definition
of differential expression. For example, library size normaliza-
tion generally performs poorly when defining DE in terms of
mRNA/cell, but should produce exactly the desired measure
when defining DE in terms of mRNA/transcriptome. Hence,
choosing a normalization method for an RNA-Seq experiment
must begin with choosing a definition of differential expression.
While one definition may be less often used than the other, it is
necessary to make a choice between the two definitions, and
the choice is particularly important if there is a possibility of a
global shift in expression.

Once differential expression is defined, the next step is to
determine which assumptions are appropriate for the experi-
ment at hand, and then choose a method that follows those as-
sumptions. Assumptions of each method depend on the
definition of differential expression; in this article, we consider
the assumptions necessary for each method under mRNA/cell
differential expression. However, these assumptions will not be
the same for mRNA/transcriptome differential expression. For
example, the assumption for library size normalization dis-
cussed above is that the total mRNA/cell is the same under each

condition. This assumption is necessary for the relative meas-
ures of expression obtained via library size normalization to be
valid measures of absolute expression. If a relative definition of
DE is used instead, such as mRNA/transcriptome, then it is not
necessary to assume equivalent total mRNA/cell across
conditions.

If spike-ins can be trusted, they are important to use in nor-
malization because there may be previously unknown shifts in
expression that cannot be detected without controls, and HG do
not seem a reliable choice for controls. RUV aims to address the
shortcomings of spike-ins, so may be a good method to use
when spike-ins are available.

However, there are situations in which spike-in methods
are not an option. Coate and Doyle [23] note that application
of spike-in methods requires the ability to count the num-
ber of cells used in RNA extraction, and cell counting is not
possible in some tissue types. In these cases, normalization
by distribution/testing appears to be the best option,
and DESeq especially has generally been shown to perform
well.

Conclusion

The use of RNA-Seq experiments to study organisms’ genomes
is becoming ubiquitous, and the explosion in the use of
sequencing technology has led to a related explosion in the de-
velopment of statistical methods for processing and analyzing
RNA-Seq data. As previous research has demonstrated [10],
proper normalization is an essential step in the analysis pipe-
line. We have seen that incorrect normalization can result in
downstream errors such as inflated false positives. The need for
normalization arises from the inherent variability in the collec-
tion of RNA-Seq data, and a variety of normalization methods
have been devised to combat this variability. As we have seen,
the literature has not reached a consensus on which normaliza-
tion method to use.

Both the simulations and the real data allow us to under-
stand the effects of symmetric versus asymmetric differential
expression and the effects of differing amounts of mRNA/cell.
The simulations isolated all other conditions and allowed for a
direct comparison between methods. The real data told the
same story as the simulated data with respect to the (a)sym-
metry of the differential expression, validating the more com-
plete simulation results. In particular, it is worth noting that the
performance of Total Count normalization depends on the
amount of mRNA/cell and not differential expression sym-
metry. Indeed, Total Count normalization outperforms the
other normalization methods when the data are asymmetric
with same mRNA/cell, though we do not know how often such
conditions occur in real, full data.

Each normalization procedure relies on assumptions, and
when violated, the procedures lead to incorrect results. For each
assumption, there is evidence that it may not hold in some ex-
periments. Part of an analysis of RNA-Seq data requires choos-
ing a normalization procedure, and keeping the assumptions of
each method in mind can help to make the appropriate choice
for the experiment at hand. However, there may be many situ-
ations in which the validity of any assumption is unknown for
the given experiment. In such cases, normalization with exter-
nal controls would be the appropriate choice if the external con-
trols can be trusted. Unfortunately, several authors have found
problems with spike-ins and so propose additional methods to
handle these issues. It is clear that spike-ins are necessary in
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some circumstances, and we hope that as research progresses
their performance will improve.

To the best of our knowledge, there does not exist an exten-
sive analysis of published data, which evaluates the assump-
tions of normalization methods. Given the potential violations
to each normalization assumption, knowledge of the extent to
which each assumption holds in a given experiment would be
instrumental in helping to choose a normalization method for
RNA-Seq analysis. There is no clear way to perform such an
evaluation, however, considering that violations of assump-
tions (such as a global shift) may go undetected without add-
itional information, and the requisite information may not be
present in the original experiment.

Key Points

• Assumptions allow normalization to translate raw
read counts into meaningful measures of expression.

• The correct normalization method to use depends on
which assumptions are valid for the biological
experiment.

• Incorrect normalization leads to problems in down-
stream analysis, such as inflated false positives, that
mean results cannot be trusted.

• No normalization method is perfect, and for every
method there exists cases for which the assumptions
are violated. There are examples of global shifts in ex-
pression that violate assumptions of conventional nor-
malization methods, requiring controls.

• An understanding of assumptions can help pick the
most suitable normalization method for a given
experiment.

Supplementary Data

Supplementary data are available online at http://bib.oxford
journals.org/.
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28.Bolstad B, Irizarry R, Åstrand M, et al. A comparison of nor-
malization methods for high density oligonucleotide array
data based on variance and bias. Bioinformatics
2003;19(2):185–93.

29.Robinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconductor
package for differential expression analysis of digital gene
expression data. Bioinformatics 2010;26(1):139–40.

| 79 1Between-sample RNA-Seq normalization

http://bib.oxfordjournals.org/lookup/suppl/doi:10.1093/bib/bbx008/-/DC1
http://bib.oxfordjournals.org/
http://bib.oxfordjournals.org/
Deleted Text: FUNDING


30.Li J, Witten D, Johnstone I, et al. Normalization, testing, and
false discovery rate estimation for RNA-sequencing data.
Biostatistics 2012;13(3):523–38.

31.Eisenberg E, Levanon E. Human housekeeping genes,
revisted. Hum Genet 2013;29(10):569–74.

32. Jiang L, Schlesinger F, Davis C, et al. Synthetic spike-in standards
for RNA-seq experiments. Genome Res 2011;21(9):1543–51.

33.Risso D, Ngai J, Speed T, et al. Normalization of RNA-seq data
using factor analysis of control genes or samples. Nat
Biotechnol 2014;32(9):896–902.

34.Law CW, Chen Y, Shi W, et al. voom: precision weights unlock
linear model analysis tools for RNA-seq read counts. Genome
Biol 2014;15(2):R29.

35.Love MI, Huber W, Anders S. Moderated estimation of fold
change and dispersion for RNA-seq data with DESeq2.
Genome Biol 2014;15(12):550.

36.Benjamini Y, Hochberg Y. Controlling the false discovery rate:
a practical and powerful approach to multiple testing. J R Stat
Soc Series B Stat Methodol 1995;57(1):289–300.

37.Su Z, Labaj PP, Li S, et al. A comprehensive assessment of
RNA-Seq accuracy, reproducibility and information content

by the sequencing quality control consortium. Nat Biotechnol
2014;32:903–14.

38.Sun Z, Zhu Y. Systematic comparison of RNA-Seq normaliza-
tion methods using measurement error models.
Bioinformatics 2012;28(20):2584–91.

39.Lee P, Sladek R, Greenwood C, et al. Control genes and vari-
ability: absence of ubiquitous reference transcripts in
diverse mammalian expression studies. Genome Res
2002;12(2):292–7.

40.Kanno J, Aisaki K, Igarashi K, et al. “Per cell” normalization
method for mRNA measurement by quantitative PCR and
microarrays. BMC Genomics 2006;7(1):1–14.

41.Qing T, Yu Y, Du T, et al. mRNA enrichment protocols deter-
mine the quantification characteristics of external RNA
spike-in controls in RNA-Seq studies. Sci China Life Sci
2013;56(2):134–42.

42. Ignatov DV, Salina EG, Fursov MV, et al. Dormant non-
culturable Mycobacterium tuberculosis retains stable low-
abundant mRNA. BMC Genomics 2015;16(1):1–13.

43.Trapnell C, Hendrickson G, Sauvageau M, et al. Differential
analysis of gene regulation at transcript resolution with RNA-
Seq. Nat Biotechnol 2013;31:46–53.

|79 2 Evans et al.


	bbx008-TF2
	bbx008-TF1



