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Abstract

Bacterial pathogens subvert host cells by manipulating cellular pathways for survival and replication; in turn, host cells re-
spond to the invading pathogen through cascading changes in gene expression. Deciphering these complex temporal and
spatial dynamics to identify novel bacterial virulence factors or host response pathways is crucial for improved diagnostics
and therapeutics. Dual RNA sequencing (dRNA-Seq) has recently been developed to simultaneously capture host and bac-
terial transcriptomes from an infected cell. This approach builds on the high sensitivity and resolution of RNA sequencing
technology and is applicable to any bacteria that interact with eukaryotic cells, encompassing parasitic, commensal or mu-
tualistic lifestyles. Several laboratory protocols have been presented that outline the collection, extraction and sequencing
of total RNA for dRNA-Seq experiments, but there is relatively little guidance available for the detailed bioinformatic ana-
lyses required. This protocol outlines a typical dRNA-Seq experiment, based on a Chlamydia trachomatis-infected host cell,
with a detailed description of the necessary bioinformatic analyses with currently available software tools.
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Introduction
Background

On infection or other interactions, bacteria and their host eu-
karyotic cells engage in a complex interplay, as they negotiate
their respective survival and defense strategies. Unraveling
these coordinated regulatory interactions, virulence mechan-
isms and innate responses is key for our understanding of
pathogenesis, disease and the development of therapeutics [1].
Traditional transcriptomic approaches such as microarrays
have typically focused on either the prokaryotic or eukaryotic

organism to investigate the host–bacteria interaction network
[2]. However, this approach cannot decipher reciprocal changes
in gene expression that contribute to the global infection sys-
tem. Instead, an integrated approach is required that acknow-
ledges both interaction partners, i.e. both bacteria and host,
from the same biological sample. Owing to the increasing af-
fordability and resolution of next-generation sequencing, this is
now achievable via dual RNA sequencing (dRNA-Seq) [1].

RNA sequencing (RNA-Seq) was developed for the study of
transcriptomes based on the massively parallel sequencing of
RNA [3]. In a typical experiment, total mRNA from a sample is
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subjected to high-throughput next-generation sequencing and
mapped to a reference genome to deduce the structure and/or
expression state of each transcript [4]. Gene expression changes
can be accurately measured between samples with high cover-
age and sensitivity, while alternative splicing analyses can be
applied to identify novel isoforms and transcripts, RNA editing
and allele-specific expression [5]. The high sensitivity and
dynamic range of RNA-Seq has expanded our capability for
whole-transcriptome analysis and enabled new insight into the
functional elements of the genome [6].

dRNA-Seq extends these capabilities to two (or potentially
more) interacting organisms, allowing the simultaneous monitor-
ing of gene expression changes without disturbing the complex
interactions that define host–bacteria infection dynamics. We
applied dRNA-Seq to map host and bacteria transcriptomes from
Chlamydia-infected host epithelial cells, which highlighted a dra-
matic early response to infection and numerous altered path-
ways within the host cell [1]. dRNA-Seq has since been
successfully used to study host–bacteria interactions for
Salmonella enterica [7], Azospirillum brasilense [8], Mycobacterium tu-
berculosis [9], Haemophilus influenzae [10], Yersinia pseudotuberculosis
[11, 12], Streptococcus pneumoniae [13] and Actinobacillus pleuropne-
moniae [14]. Published dRNA-Seq laboratory protocols have
focused on the generation of sequencing libraries from ribosomal
RNA (rRNA)-depleted samples [15, 16]. Here, we provide a detailed
protocol for the critical bioinformatic analysis of dRNA-Seq data.

Advantages and limitations

Complementary DNA (cDNA) microarrays first enabled large-
scale transcriptome analyses, allowing the expression pattern
of tens of thousands of known genes to be measured.
Drawbacks include (1) a high background signal [17], (2) cross-
hybridization between genes of similar sequence, (3) the limit of
expression-level detection to the 1000-fold range, compared
with the actual cellular 1 000 000-fold range [18], (4) restriction of
analysis to known or predicted mRNAs [19] and (5) the inability
to detect novel transcripts [18]. Some of these were overcome
with tiling arrays to measure antisense RNA expression and
other noncoding RNA (ncRNA) transcripts, but the large size of
eukaryotic genomes makes this inordinately costly [20]. Tag-
based sequencing does enable the enumeration of individual
transcripts, but this method requires existing gene structure in-
formation, can only sample a small region of a transcript and is
incapable of capturing diverse classes of RNA and its isoforms.

RNA-Seq provides a wider dynamic range, higher technical
reproducibility and a better estimate of absolute expression lev-
els with lower background noise [21–23], and has become the
primary method to examine transcriptomes. By allowing an un-
biased determination of gene expression, high-resolution data
on potentially transcribed regions upstream and downstream of
the annotated coding region and posttranslational rearrange-
ments such as splicing and different RNA isoforms can be re-
ported [24]. As a result, RNA-Seq improves genome annotation
and identifies new open reading frames, transcription start
sites, the 50 and 30 untranslated regions of known genes and
ncRNAs such as microRNA (miRNA), promoter-associated RNA
and antisense 30 termini-associated RNA [25]. dRNA-Seq can re-
port these data for two (or potentially more) organisms from the
same sample while providing powerful insight into novel inter-
action dynamics. For example, gene expression changes in one
organism can be correlated with the responses of the other to
capture crucial events that signify the dynamic mechanisms of
host adaption and the progression of infection [1, 4, 7, 10, 26].

Despite these advantages, dRNA-Seq remains technically
challenging. Up to 98% of the total RNA is rRNA [27]. Bacterial
mRNA levels are typically low compared with the host, espe-
cially during early infection periods, often requiring mRNA de-
pletion and/or enrichment approaches for cost-effective
sequencing. Additionally, the quantity of mRNA detected by
RNA-Seq is often a poor indicator for protein abundance be-
cause of mRNA instability and turnover [28, 29]. The wide range
of expression levels can result in nonuniform coverage where
only a few reads can be captured for genes subject to lower ex-
pression levels, while short isoforms and repeat sequences
derived from the same gene may result in assembly ambigu-
ities. These ambiguities are compounded when using de novo
methods for genomes that are partially or fully unsequenced
[21] but can be avoided when assembling reads to a reference
genome. Transcript length bias can distort the identification of
differentially expressed genes (DEGs) in favor of longer tran-
scripts [30] but can be standardized with appropriate normaliza-
tion techniques. Despite these challenges, dRNA-Seq is a
powerful, economical, sensitive and species-independent plat-
form for investigating the gene expression dynamics of host–
bacteria interactions [4].

Overview of the technique

This protocol provides a detailed bioinformatics analysis pipe-
line for a typical dRNA-Seq host–bacteria analysis. We describe
an experiment based on human epithelial carcinoma (HeLa)
cells (host) infected with Chlamydia trachomatis (bacteria), which
is a well-defined host–bacteria system; Chlamydia is an obligate
intracellular bacterial pathogen that is reliant on its host epithe-
lial cell for survival, and HeLa cells are routinely used for
Chlamydia-based experiments. In the context of the protocol,
HeLa–Chlamydia can be substituted for any host–bacteria system
of interest. The protocol includes all steps for total RNA se-
quence quality control and trimming, the in silico rRNA deple-
tion and segregation of host and bacteria reads, distinct
sequence alignment and sorting techniques for host and bac-
teria data, alignment visualization, read quantification and nor-
malization and the separate statistical analysis of host and
bacteria data (Figure 1).

The protocol

The analysis of dRNA-Seq data sets is a daunting task, espe-
cially when presented with the ever-expanding number of soft-
ware packages and statistical methodologies. In response, we
have a prepared a detailed, yet easy-to-follow protocol to de-
scribe each bioinformatic step for a complete dRNA-Seq ana-
lysis. The protocol is based on our experience with dRNA-Seq
and has been refined over time to ensure its reproducibility and
accuracy. While it has been designed to be applicable to any
host–bacteria system, the possibility for alternative approaches
is also discussed. The reader is encouraged to also consider
these when designing a dRNA-Seq experiment, depending on
their research goals, resources and experimental design.

Experimental design

The experiment should be designed to address the biological
question(s) of interest, and key initial questions include the
type and relevance of the host cell to be used and the RNA spe-
cies to be investigated (i.e. mRNA, miRNA, small nuclear RNA,
etc.). To capture sufficient RNA from both organisms, the ratio
of bacteria to host genome size is a useful starting point
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followed by an estimation of the desired fold coverage. This can
be determined by considering the number of replicates, the ex-
pected influence of housekeeping and structural RNA [rRNA
and transfer RNA (tRNA)], the possibility of host:bacteria

sequence overlap, the number of time points and the multipli-
city of infection (MOI). We suggest at least three biological repli-
cates for each sample rather than technical replicates taken
from the same sample to minimize Type I and II errors and en-
sure an adequate estimation of within- and between-sample
variation.

As �95% of the total RNA will be ribosomal, a method of
rRNA depletion and/or mRNA enrichment is recommended to
prevent uninformative ‘noise’ from biasing the analysis. There
are several commercial kits available for hybridization-based
depletion or poly(A) depletion of rRNA during the RNA extrac-
tion stage, but these differ in their efficiency and should be eval-
uated carefully [4]. An alternative (or supplementary) approach
that we describe in the protocol is the in silico removal of rRNA,
but sufficient sequencing depth is critical to ensure that the re-
maining ‘informative’ reads can be statistically supported.
Deeper sequencing will also be necessary for the detection of
low copy number transcripts, alternate isoforms or bacterial
reads at early time points, and a depth of 50X coverage is usu-
ally recommended. However, increased sequencing depth can
also increase the detection of transcriptional noise, spurious
cDNA transcripts or genomic DNA contamination, so careful
consideration is required [31, 32].

The time points of interest should be carefully considered as
the initiation, and period of transcriptional response can differ
between host and bacteria [33]. Ideally, multiple time points
should be collected to suitably capture the dynamic host–bac-
teria transcriptional landscape. Finally, a suitable bacteria MOI
should be selected to maximize the transcriptional signal from
both host and bacteria while reducing bias toward the unin-
fected cells that will flourish at the later time points.
Importantly, a high(er) MOI may also lead to a heightened and/
or distorted host response with decreased biological relevance,
depending on the system under investigation. Optionally, the
addition of RNA spike-ins and unique molecular identifiers can
be useful for the quantitative calibration of RNA levels [34, 35].

Data preparation

Sequence data from dRNA-Seq comprises cDNA as input from
the experiment, with the majority derived from the eukaryotic
host (depending on the experimental conditions and system
under study). Thus, careful attention is required to accurately
segregate the reads from each organism. For paired-end
sequencing, host and bacteria read data are generally provided
as two FASTQ format files, which are composed of a unique
read identifier, the sequence read, an optional alternate identi-
fier and the quality scores for each read position. There are a
number of approaches to detect sequence contamination,
including an assessment of alignment statistics with SAMtools,
as described below. Another popular method is to submit a sub-
set of FASTQ files to the BLAST database to confirm that the hits
are in agreement with the expected organisms. We find that the
most unambiguous approach is to use FASTQ Screen (http://
www.bioinformatics.babraham.ac.uk/projects/fastq_screen/),
which accurately screens the total reads against a sequence
database and will identify the expected host and bacterial reads
as well as any contaminating organisms, sequencing adapters,
rRNA, as well as unknown hits (Figure 2).

The reads are then checked for quality using FASTQC, a
Java-based software that reports several quality control statis-
tics and a judgment on each metric (pass, warn and fail)
(Figure 3) [36]. Of particular importance is the per base sequence
quality plot, which should indicate a lower quartile >10

Figure 1. Flow chart for the bioinformatic data analysis of dRNA-Seq of host and

bacteria.
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(corresponding to 90% accuracy), while the per sequence quality
score should have a mean base quality of �25. The per base se-
quence content plot should indicate an even proportion of each
base, and the per sequence GC content plot should demonstrate
a normal distribution of GC content; an abnormal distribution is
likely evidence of contamination. Sequences that fall outside
these parameters may benefit from trimming to remove prob-
lematic ends, but the user should bear in mind that over-
trimming of low- or medium-coverage data can introduce
biases and reduce the statistical significance of DEGs.
Nevertheless, we find Trimmomatic to be most useful tool for
processing low-quality reads and adapter removal, which calcu-
lates an average quality score and associated cutoff if reads fall
below a predetermined threshold [37]. Other available QC tools
available include PRINSEQ [38] and FASTX-Toolkit (http://han
nonlab.cshl.edu/fastx_toolkit/).

The organisms of interest and experimental question will
dictate which mapping software is most appropriate; we cur-
rently use HISAT2 [39], a powerful yet efficient program capable
of identifying the splice junctions between exons that are char-
acteristic of eukaryotic data, while the short-read aligner,
Bowtie2 [40], is sufficient for bacterial read mapping. Other non-
splice-aware aligners for bacterial reads include SEAL [41] and
SOAP2 [42], and alternative splice-aware aligners for host reads
include MapSplice [43], STAR [44] and Tophat2 [45]. It is import-
ant to note that read aligners are an active area of research,
with new tools and updates frequently appearing [46].

The combined host and bacteria reads are mapped to the
host reference genome with specific settings to preserve un-
mapped (bacterial) reads, which are then mapped to the bac-
teria reference genome. Assembly to a reference transcriptome
is also possible, but this relies on the accuracy of annotated
gene models, which may restrict the discovery of novel genes
and isoforms. If no reference genome is available, de novo as-
sembly to a transcriptome can be completed, but this also limits
the identification of novel transcripts. Mapping to closely
related genomes is not recommended as this often leads
to errors, lower coverage and ultimately unreliable assemblies.
If available for the organisms of interest, reference genomes

and the annotation file can be obtained from either NCBI [47],
UCSC [48] or Ensembl [49]. Each repository formats these files
slightly differently, and so it is important to obtain both
files from the same source. This protocol uses the GRCh38 re-
lease of the Homo sapiens genome and annotation file from
Ensembl and the C. trachomatis serovar D genome from NCBI
(NC_000117.1).

The resulting alignment files for both host and bacteria are
sorted by position (i.e. chromosomal location) with SAMtools
[50] to produce alignment quality statistics, including the num-
ber of mapped reads, the number of mapped first mates and se-
cond mates (for reads from paired-end sequencing), reads with
multiple hits in the genome and host reads mapping to exonic,
intronic and intergenic regions. Ideally, >70% of the host reads
should map to exonic regions of the genome, while <5% of the
reads mapping to intronic regions and <1% of the reads map-
ping to intergenic regions [44]. The alignment file is further con-
verted to a BigWig format for the visualization of the number of
reads aligned to every single base position in the genome using
Integrated Genome Viewer (IGV) (Figure 4) [51], or other visual-
ization tools such as UCSC Genome Browser or JBrowse [52].
Using IGV, the coverage of aligned reads across the genome for
both host and bacteria can be visualized to identify genomic re-
gions of high/low coverage that could indicate technical or bio-
logical errors, as well as host exon–intron boundaries, splice
sites, exon junction read counts and read strand [53]. The align-
ment files are then sorted by read name to facilitate feature
counting.

Feature counting and normalization

Both host and bacteria counts are generated from their respect-
ive alignment files using the python wrapper script htseq-count
from the HTSeq package [54]. This process quantitates the num-
ber of reads that align to a biologically meaningful feature such
as exons, transcripts or genes [54], and is guided by the refer-
ence annotation file. At this point, in silico rRNA depletion is rec-
ommended, especially if no depletion or enrichment step was
completed before sequencing. For this, the reference annotation

Figure 2. FASTQ Screen processing report of raw host and bacteria FASTQ sequencing reads. As expected, the majority of reads map to the human genome (70%), while

30% of the reads map to the Chlamydia genome.
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file is edited to remove all rRNA (as well as tRNA) sequence an-
notations, which is a computationally inexpensive approach to
prevent those features from being counted. The remaining
reads are then quantified on a gene level, where a gene is

considered the union of its exons. Any reads that map to several
genomic locations are automatically discarded by HTSeq, and
we generally take a conservative approach to also discard reads
that overlap with more than one gene.

Figure 3. FASTQC report for per base sequence quality and adapter content. (A). Sequence quality before removal of adapters with Trimmomatic. (B). Sequence quality

after removal of adapters with Trimmomatic.
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Sample read counts are collapsed into a single file containing
a matrix of genes (rows) and samples (columns), with one file
each for host and bacteria (Figure 5). To minimize statistical noise
and enable better adjusted P-values, the matrix is prefiltered, so
that greater than three counts remain in more than two of the
samples [36]. Additionally, the last five lines of the matrix con-
taining statistics for ambiguous counts from htseq-count are
removed. Raw counts are normalized to minimize technical bias
because of transcript length and sequencing depth; there are sev-
eral normalization methods available, including Reads Per
Kilobase Per Million (RPKM) [24], EDASeq [55], conditional quantile
normalization [56], upper quartile [57] and transcripts per million
(TPM) [58], and each have their benefits. Methods that divide the
total number of mapped reads from a library, such as RPKM,
should be used with caution, as they have difficulty in dealing
with highly abundant transcripts (including rRNA), and can sig-
nificantly bias the analysis. Instead, we prefer the trimmed mean
of M-values (TMM), which corrects for differences in RNA compo-
sition and sample outliers, while providing better across-sample
comparability [59]. For an in-depth assessment of normalization
techniques, see Eder, et al. [60].

Data analysis

Before differential expression analysis, both a multidimensional
scaling (MDS) plot and hierarchical cluster plot are constructed
to visualize the distances between samples and help identify
problematic and outlying samples (Figures 6 and 7). A metadata
table is generated to list the experimental variables, which in
turn guides the construction of design and contrast matrices,
which are mathematical representations of the experimental
design and a description of the relevant treatment comparisons,
respectively. This protocol describes a simple design and con-
trast matrix that allows differential expression comparisons to
be made between infected and uninfected cells within each
time point. Additional time points and other experimental fac-
tors would lend themselves to more complex design matrices
and may be added by the user if required.

Owing to the nature of the host and bacteria count data, dis-
tinct statistical analyses are required for each. For bacterial
transcripts, TPM is the most appropriate measure of relative
transcript abundance, but this approach can suffer from biases
where the calculated abundance of one transcript can affect

other transcripts in the sample. Alternatively, absolute abun-
dance may be calculated with the use of spike-in controls.
Whichever method is chosen, these abundances represent a
qualitative measurement of the Chlamydia transcriptome at the
1 and 24 hpi time points, which can then be interpreted in con-
text with differential expression in the host to gain deeper in-
sight into the host–bacteria interactome.

For the host, genes are identified that are differentially ex-
pressed between infected and time-matched noninfected sam-
ples [5]. There are multiple differential expression packages
available, including BaySeq [61], Cufflinks [62], DESeq [63], edgeR
[64], Salmon [65] and Kallisto [66]. The majority of these packages
model RNA-Seq counts via a negative binomial distribution and
apply distinct statistical methodologies to calculate reliable dis-
persion estimates. Alternatively, this protocol describes the use
of the Linear Modeling for Microarray Data (Limma) package,
which uses linear modeling to describe the expression data for
each gene [67]. In contrast to these other RNA-Seq packages,
Limma attempts to correctly model the mean–variance relation-
ship between samples to achieve a more probabilistic distribution
of the counts (Figure 8). This has proven to be the best method for
analyzing both simple and complex experimental designs of
dRNA-Seq experiments that incorporate different sample types
and time points [68], but the reader is encouraged to consider the
requirements of the experiment when selecting an appropriate
method. For a comparison of differential expression analysis
methods, see Soneson and Delorenzi [69].

The analysis of the host data set yields a list of genes that
are differentially expressed compared with the uninfected con-
trol. A false discovery rate (FDR) cutoff �0.05 (i.e. 5% false posi-
tives), a log fold change (LFC) of at least 2-fold upregulation/
downregulation, and expression levels >1 percentile in either
condition (Table 1) are suitable benchmarks for identifying sig-
nificant genes. These lists can then be used as input for down-
stream analysis of the enrichment of gene ontology and
metabolic pathways using several tools, including GOSeq [70],
DAVID [71] and Ingenuity Pathway Analysis Toolkit (QIAGEN
Redwood City, www.qiagen.com/ingenuity).

Application

dRNA-Seq can be used to address a number of experimental
questions. Host differential mRNA and miRNA expression,

Figure 4. Screen shot of IGV showing host mapped reads the associated GTF annotation file. The first bar labeled ‘chr1’ indicates which portion of the human genome

(or chromosome) is displayed, with the length (8764 bp) and specific genomic region shown underneath. The graphs indicate read coverage, and the sequence align-

ment tracks are shown below this. The bottom row is the GTF annotation file indicating, which annotated transcripts the reads are aligning to.
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Figure 5. The count matrix. Following read quantification with HTSeq, the count files are combined to form the matrix of raw counts for each sample and replicate in

the data set.

Figure 6. MDS plot. This is a two-dimensional plot that visualizes the similarity between samples and replicates across conditions. It enables the identification of prob-

lematic samples that may obscure the subsequent statistical analysis. In this case, all replicates cluster together as expected.
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differential exon usage, alternative splicing and novel transcript
and isoform discovery in response to the bacteria can be deter-
mined [5], which may be correlated with the transcriptomic re-
sponse of the bacteria to determine interaction dynamics. These
results can be further integrated with other sources of biological
input, including genotyping data to identify genetic loci respon-
sible for gene expression variation, epigenetic information (tran-
scription factor binding, histone modification, methylation etc.)
to highlight the influence of transcription factor binding, miRNA-
Seq data to identify the regulatory mechanisms of gene

expression changes via ncRNA and proteomic data to build a sys-
tem-level analysis of host–bacteria regulation [72, 73].

Procedure
Materials

Hardware requirements
The analysis of dRNA-Seq experiments is a computationally in-
tensive process that requires the manipulation of gigabytes of

Figure 7. Hierarchical clustering dendrogram. An extension of the MDS plot, the hierarchical clustering dendrogram illustrates sample similarity. As expected, all repli-

cates for each condition cluster together.

Figure 8. Limma voom plots. The mean–variance trend plot displays the gene-wise square-root residual SDs plotted against average log count, with the LOWESS fit rep-

resented by the red line. The sample-specific weights are the result of the ‘voomWithQualityWeights’ function and represents the sample-specific quality weights that

can be applied to down-weight outlier samples.

Table 1. Statistical output of the differential expression analysis of host reads in R

logFC AveExpr t P.Value adj.P.Val B

ENSG00000003096 0.6525066 13.791554 28.40683 1.447731e-10 4.921022e-09 14.94091
ENSG00000005483 0.6818259 14.119036 28.15577 1.574679e-10 4.921022e-09 14.85045
ENSG00000003436 0.6141746 15.274943 28.06727 1.622315e-10 4.921022e-09 14.60957
ENSG00000004766 0.5506978 13.234187 27.08358 2.273831e-10 5.172965e-09 14.52388
ENSG00000003147 4.2364651 6.880526 22.53363 1.289647e-09 2.252721e-08 11.79033
ENSG00000001630 �1.8429486 11.760177 �22.19781 1.485311e-09 2.252721e-08 12.61091

Note: The first column contains the ENSEMBL ID for the genes, logFC indicates the LFC observed, AveExpr is the expression value for each gene, t is the moderated

t-statistic, P.Value is the raw P-value, adj.P.Val is the FDR-adjusted P-value and B is the log odds that the gene is differentially expressed.
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data. Depending on the experimental design, the size of a
standard alignment file in BAM format can range from 15 to
50 GB. Access to a computer cluster, core facility or cloud service
is recommended to expedite the analysis and free up resources
on the local system. The time to complete the analysis will also
depend on the experimental design and computing infrastruc-
ture, but the process can usually be finalized within 8 h.

Operating system
This protocol provides commands that are designed to run on a
Unix-based operating system such as Linux or macOS. The
protocol was specifically designed to run on the Ubuntu 16.04.1
operating system on a Linux machine. Please ensure you have
administrative rights.

Command line nomenclature
This protocol assumes a basic understanding of both the Linux
command line interface and the R statistical computing envir-
onment. All Linux commands are shown following a dollar sign
($), while R commands are shown following a greater-than
sign (>):

$ linux command
> R command

Software requirements

• FASTQ Screen: Contamination screening (http://www.bioinfor

matics.babraham.ac.uk/projects/fastq_screen/)
• FASTQC: Sequence quality control tool (http://www.bioinfor

matics.babraham.ac.uk/projects/fastqc/)
• Trimmomatic: FASTQ sequence file trimming (http://www.usa

dellab.org/cms/?page¼trimmomatic)
• HISAT2: Graph-based alignment of sequences to genomes

(https://ccb.jhu.edu/software/hisat2/index.shtml)
• SAMtools: Manipulation of sequence alignments and mapped

reads (http://www.htslib.org)
• Bedtools genomecov and bedGraphToBigWig: genomic analysis

tools (http://bedtools.readthedocs.io/en/latest)
• IGV: Alignment and visualization tool (https://www.broadinsti

tute.org/igv)
• HTSeq: read counting (http://www-huber.embl.de/users/anders/

HTSeq/doc/overview.html)
• R statistical computing environment (https://www.r-project.org)
• Bioconductor packages: edgeR, limma, org.Hs.eg.db, Genomic

Features and their dependencies (see below)
• Bowtie2: Short-read aligner (http://bowtie-bio.sourceforge.net/

index.shtml).

Always check that you are downloading and installing the
latest version of each piece of software and consult the official
user guide for more in-depth guidelines and options for trouble-
shooting any errors that may arise.

Samples and filenames

The protocol is arranged so that identical naming conventions
are used for each sample and condition. For example,
‘1hpi_Host_infected_rep1’ indicates that the sample relates to
the first replicate of host cells infected with Chlamydia at the
1 hpi time point, and ‘1hpi_Host_uninfected_rep1’ indicates the
first replicate of host cells only (i.e. uninfected host cells) at the
1 hpi time point. Conversely, the samples relating to the bac-
teria are named, ‘1hpi_Bacteria_rep1’. While subsequent repli-
cates for both host and bacteria would have names ending in
‘rep2’ and ‘rep3’, for conciseness, this protocol describes the

commands using ‘1hpi_Host_infected_rep1’ as an example, and
it is expected that the user will repeat the process for the re-
maining replicates and samples. The filenames associated with
raw FASTQ sequence files will depend on the sequencing facil-
ity pipeline, and in this protocol are named ‘fastq_file_1_R1.fq’,
where ‘R1’ indicates read number 1 of paired-end reads (the cor-
responding read file would be ‘fastq_file_1_R2.fq’). In some
cases, an output directory is required, which is noted as
‘<output_directory>’ for the user to input their working direc-
tory of choice (without the ‘<>’ symbols). Finally, reference, an-
notation and gene info files are prefixed with the relating
organism, i.e. ‘host_reference.fa’ indicates a FASTA file contain-
ing the host reference genome.

Equipment setup

Download and install the following software. Check the devel-
oper Web site to ensure you are installing the latest version and
for further information about dependencies and prerequisites.

Create a directory to install program executables and add to
PATH

$ mkdir $HOME/bin
$ export PATH¼$HOME/bin:$PATH
$ echo “export PATH¼$HOME/bin:$PATH"”��/.bashrc

FastQ Screen installation
$ wget http://www.bioinformatics.babraham.ac.uk/projects/

fastq_screen/fastq_screen_v0.11.1.tar.gz
$ tar –zxf fastq_screen_v0.11.1.tar.gz
$ cd fastq_screen_v0.11.1
$ cp fastq_screen $HOME/bin

FastQC installation
$ sudo apt-get install default-jre
$ wget http://www.bioinformatics.babraham.ac.uk/projects

/fastqc/fastqc_v0.11.5.zip
$ unzip fastqc_v0.11.5.zip
$ cd FastQC/
$ chmod 755 fastqc
$ cp fastqc $HOME/bin

Trimmomatic installation
$ wget http://www.usadellab.org/cms/uploads/supplemen

tary/Trimmomatic/Trimmomatic-0.36.zip
$ unzip Trimmomatic-0.36.zip
$ cd Trimmomatic-0.36
$ cp trimmomatic $HOME/bin

HISAT2 installation
$ wget ftp://ftp.ccb.jhu.edu/pub/infphilo/hisat2/downloads

/hisat2-2.0.5-Linux_x86_64.zip
$ unzip hisat2-2.0.5-Linux_x86_64.zip
$ cd hisat2-2.0.5
$ cp hisat2 $HOME/bin
$ cp hisat2-build $HOME/bin

Samtools installation
$ sudo apt-get install samtools

Bedtools installation
$ sudo apt-get install bedtools

bedGraphToBigWig installation
$ mkdir bedGraphToBigWig
$ cd bedGraphToBigWig

dRNA-Seq of bacteria and their host | 1123

Deleted Text: 50 
Deleted Text: gigabytes
Deleted Text: ,
Deleted Text: eight 
Deleted Text: ours
http://www.bioinformatics.babraham.ac.uk/projects/fastq_screen/
http://www.bioinformatics.babraham.ac.uk/projects/fastq_screen/
http://www.bioinformatics.babraham.ac.uk/projects/fastqc
http://www.bioinformatics.babraham.ac.uk/projects/fastqc
http://www.usadellab.org/cms/?page=trimmomatic
http://www.usadellab.org/cms/?page=trimmomatic
http://www.usadellab.org/cms/?page=trimmomatic
https://ccb.jhu.edu/software/hisat2/index.shtml
http://www.htslib.org
http://bedtools.readthedocs.io/en/latest/
Deleted Text: Integrated Genome Viewer (
Deleted Text: )
https://www.broadinstitute.org/igv/
https://www.broadinstitute.org/igv/
http://www-huber.embl.de/users/anders/HTSeq/doc/overview.html
http://www-huber.embl.de/users/anders/HTSeq/doc/overview.html
https://www.r-project.org
Deleted Text: ,
http://bowtie-bio.sourceforge.net/index.shtml
http://bowtie-bio.sourceforge.net/index.shtml
Deleted Text: &hx0022;
Deleted Text: &hx0022; 
Deleted Text: 1 
Deleted Text: &hx0022;
Deleted Text: &hx0022; 
Deleted Text: 1 
Deleted Text: &hx0022;
Deleted Text: &hx0022;. 
Deleted Text: &hx0022;
Deleted Text: &hx0022; 
Deleted Text: &hx0022;
Deleted Text: &hx0022;, 
Deleted Text: &hx0022;
Deleted Text: &hx0022; 
Deleted Text: &hx0022;
Deleted Text: &hx0022;, 
Deleted Text: &hx0022;
Deleted Text: &hx0022; 
Deleted Text: one 
Deleted Text: paired 
Deleted Text: &hx0022;
Deleted Text: &hx0022;. 
Deleted Text: &hx0022;&hx003C;
Deleted Text: &hx003E;&hx0022; 
Deleted Text: &hx0022;&hx2009;&hx003C;&hx2009;&hx003E;&hx0022; 
Deleted Text: ,
Deleted Text: &hx0022;
Deleted Text: &hx0022; 
Deleted Text: <bold>-</bold>
http://www.bioinformatics.babraham.ac.uk/projects/fastq_screen/fastq_screen_v0.11.1.tar.gz
http://www.bioinformatics.babraham.ac.uk/projects/fastq_screen/fastq_screen_v0.11.1.tar.gz
http://www.bioinformatics.babraham.ac.uk/projects/fastqc/fastqc_v0.11.5.zip
http://www.bioinformatics.babraham.ac.uk/projects/fastqc/fastqc_v0.11.5.zip
http://www.usadellab.org/cms/uploads/supplementary/Trimmomatic/Trimmomatic-0.36.zip
http://www.usadellab.org/cms/uploads/supplementary/Trimmomatic/Trimmomatic-0.36.zip
http://ftp://ftp.ccb.jhu.edu/pub/infphilo/hisat2/downloads/hisat2-2.0.5-Linux_x86_64.zip
http://ftp://ftp.ccb.jhu.edu/pub/infphilo/hisat2/downloads/hisat2-2.0.5-Linux_x86_64.zip


$ wget -O bedGraphToBigWig https://github.com/ENCODE-
DCC/kentUtils/blob/v302.1.0/bin/linux.x86_64/bedGraph
ToBigWig?raw¼ true

$ chmod 755 bedGraphToBigWig
$ cp bedGraphToBigWig $HOME/bin

IGV and IGVtools installation
$ wget http://data.broadinstitute.org/igv/projects/downloa

ds/IGV_2.3.88.zip
$ unzip IGV_2.3.88.zip
$ wget http://data.broadinstitute.org/igv/projects/downloa

ds/igvtools_2.3.88.zip
$ unzip igvtools_2.3.88.zip
$ cd igvtools_2.3.88
$ cp igvtools $HOME/bin

HTSeq installation
$ sudo apt-get install build-essential python2.7-dev python

-numpy python-matplotlib
$ wget –no-check-certificate https://pypi.python.org/pack

ages/source/H/HTSeq/HTSeq-0.6.1p1.tar.gz
$ tar –zxvf HTSeq-0.6.1p1.tar.gz
$ cd HTSeq-0.6.1p1
$ python setup.py build
$ sudo python setup.py install
$ cd scripts
$ cp htseq-count $HOME/bin

R and Bioconductor package installation
$ sudo apt-get install libcurl4-openssl-dev libxml2-dev
$ sudo apt-get update
$ echo “deb https://cran.rstudio.com/bin/linux/ubuntu xen

ial/" j sudo tee -a/etc/apt/sources.list
$ gpg –keyserver hkp://keyserver.ubuntu.com:80 –recv-keys

E084DAB9
$ gpg -a –export E084DAB9 j sudo apt-key add -
$ sudo apt-get update
$ sudo apt-get upgrade
$ sudo apt-get install r-base
Open R and install Bioconductor packages using the biocLite

installation tool. All packages dependencies will automatically
be installed.

$ R
> source("http://bioconductor.org/biocLite.R")
> biocLite("BiocUpgrade")
> biocLite(c("org.Hs.eg.db”, “edgeR”, “limma”, “Genomic

Features"))
Bowtie2 installation
$ wget https://sourceforge.net/projects/bowtie-bio/files/bo

wtie2/2.2.9/bowtie2-2.2.9-linux-x86_64.zip
$ unzip bowtie2-2.2.9-linux- x86_64.zip
$ cd bowtie2-2.2.9-linux-x86_64
$ cp bowtie2 $HOME/bin
$ cp bowtie2-build $HOME/bin

File preparation
Download reference genomes and gene model
annotation files
For the eukaryotic host, download the H. sapiens reference gen-
ome and Gene Transfer Format (GTF) annotation from Ensembl:
http://asia.ensembl.org/info/data/ftp/index.html and rename
the reference genome to ‘host_reference.fa’. For C. trachomatis,
download the reference genome in FASTA format from NCBI:
http://www.ncbi.nlm.nih.gov/nuccore/NC_000117 and rename
the file to ‘bacteria_reference.fa’. Download the C. trachomatis
GTF (000590675) file from bacteria.ensembl.org/info/website/ftp/

index.html and rename file to ‘bacteria_annotation.gtf’. Save all
files to your working directory. Reference genomes and annota-
tion files should be obtained from the same repository to ensure
consistent formatting and nomenclature.

Remove rRNA annotations from the GTF file
To prevent any rRNA reads from being counted, remove all lines
in the GTF annotation file annotated as rRNA:

$ grep -wv rRNA Homo_sapiens.GRCh38.87>host_annot
ation.gtf

Method: Host

1. Examine a subset of FASTQ sequence files for contamination
using FASTQ Screena:

$ fastq_screen –aligner bowtie2 fastq_file_1_R1.fq
2. Check the quality of FASTQ sequences using FASTQCb:

$ fastqc –noextract –o<output_directory> fastq_file_1_R1.fq
3. Remove sequencing adapters and low-quality reads using
Trimmomaticc:

$ java -jar trimmomatic-0.36.jar PE -threads 6 -phred33
fastq_file_1_R1.fq fastq_file_1_R2.fq fastq_file_1_R1_paired_
trimmed.fq fastq_file_1_R1_unpaired_trimmed.fq fastq_
file_1_R2_paired_trimmed.fq fastq_file_1_R2_unpaired_-
trimmed.fq ILLUMINACLIP:adapters.fa:2:30:10 LEADING:3
TRAILING:3 SLIDINGWINDOW:4:15 MINLEN:36

4. Build host transcriptome index and align host sequence
reads to reference using HISAT2d:

$ hisat2-build host_reference.fa host_reference.index
$ hisat2 –x host_reference.index –un-conc pair1_unmap-

ped.fastq -1 fastq_file_1_.R1.trim.fq -2 fastq_file_1_.R2.
trim.fq j samtools view –bS -> accepted_hits.bam

5. Sort BAM files generated by HISAT2 by both name and pos-
ition using SAMtoolse:

$ samtools sort accepted_hits.bam –o 1hpi_Host_infected_
rep1.sorted_position

$ samtools sort –n accepted_hits.bam –o 1hpi_Host_infected_
rep1.sorted_name

6. Convert ‘sorted by position’ BAM file to BigWig formatf:
$ samtools faidx host_reference.fa
$ cut –f1,2 host_reference.fa.fai>host_reference.genome
$ bedtools genomecov –split –bg –ibam 1hpi_Host_infecte-

d_rep1.sorted_position.bam –g
host_reference.genome> 1hpi_Host_infected_rep
1.sorted_position.bedGraph

$ bedGraphToBigWig 1hpi_Host_infected_rep1.sorted_po
sition. bedGraph host_reference.genome 1hpi_Host_in
fected_rep1. sorted_position.bigWig

7. Index the ‘sorted by position’ BAM file for visualization in
IGVg:

$ samtools index 1hpi_Host_infected_rep1.sorted_position.
bam

8. Index the GTF file for visualization in IGVh:
$ igvtools sort host_annotation.gtf host_annotation_sorted

.gtf
$ igvtools index host_annotation_sorted.gtf

9. Visualize alignments with IGVi:
$ java –jar igv.jar

10. Create count matrix with HTSeqj:
$ htseq-count –s no –a 10 –r name –f bam 1hpi_

Host_infected_ rep1.sorted_name.bam
Host_annotation.gtf> 1hpi_Host_
infected_rep1.sorted_name.count

11. Set working directory in Rk:
> R
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> data¼ setwd(. . .)
12. Create data frame in R containing experiment metadatal:

> group¼ factor(c(rep(“1hpi_mock”, 3), rep(“1hpi_infected”,
3), rep(“24hpi_mock”, 3),rep(“24hpi_infected”, 3)))

13. Combine count files into a DGEList in Rm:
> library(edgeR)
> counts.host¼ readDGE(list.files(pattern¼ “.count“), data,

columns¼ c(1,2))
14. Remove the last five rows from the count matrixn:

> counts.host$counts ¼ counts.host$counts[1:(nrow(count-
s.host$counts)-5),]

15. Filter counts to exclude low-expressing genes�:
> counts.host$counts¼ rowSums(cpm(counts.host$

counts)> 2) >¼ 2
16. Inspect the count matrixp:

> head(counts.host$counts, 20)
> dim(counts.host$counts)

17. Apply TMM normalization to the raw countsq:
> counts.host¼ calcNormFactors(counts.host)

18. Create the design matrix and define the contrasts of
interestr:

> design¼model.matrix(�0þ group)
> rownames(design) ¼ colnames(counts.host$counts)
> contrasts¼makeContrasts(“Host_1hpi“¼ group1hpi_infe

cted–group1hpi_mock, “Host_24hpi“¼ group24hpi_
infected–group24hpi_mock, levels¼design)

19. Apply voom transformation to normalized countss:
> library(limma)
> png(“host_voom.png“)
> y¼voomWithQualityWeights(counts¼ counts.host, de-

sign¼design, plot¼TRUE)
> dev.off()

20. Construct an MDS plot to identify any outlier samplest:
> plot.colors¼ c(rep(“blue”, 3), rep(“red”, 3), rep(“orange”,

3), rep(“black”, 3))
> png(“host_MDS.png“)
> plotMDS(counts.host, main¼ “MDS Plot for Count Data”,

labels¼colnames(counts.host$counts), col¼plot.colors,
cex¼ 0.9, xlim¼ c(-2,5))

> dev.off()
21. Construct a hierarchical clustering plot to visualize sample
groupingsu:

> counts.host.mod¼ t(cpm(counts.host))
> dist¼dist(counts.host.mod)
> png(“host_HC.png”)
> plot(hclust(dist), main¼“Hierarchical Clustering Dendr

ogram”)
> dev.off()

22. Fit the modelv:
> fit¼ lmFit(y, design)
> fit¼ contrasts.fit(fit, contrasts)
> fit¼ eBayes(fit)

23. Print the differentially expressed transcripts for both the 1
and 24 hpi time pointsw:

> top_1hpi¼ topTable(fit, coef¼ “Host_1hpi”, adjust¼ “fdr”,
number¼ “Inf”, p.value¼ 0.05, sort.by¼ “P”)

> top_24hpi¼ topTable(fit, coef¼ “Host_24hpi”, adjust¼ “fdr”,
number¼ “Inf”, p.value¼ 0.05, sort.by¼ “P”)

24. Annotate the differentially expressed transcript tables with
gene symbol, description and type informationx:

> library(org.Hs.eg.db)

> gene.info¼ select(org.Hs.eg.db, key¼ rownames(top_1hpi),
keytype¼ “ENSEMBL”, columns¼ c(“ENSEMBL”, “SYM
BOL”, “GENENAME”))

> gene.info¼ gene.info[!duplicated(gene.info$ENSEMBL),]
> rownames(gene.info)¼ gene.info$ENSEMBL
> identical(rownames(top_1hpi), rownames(gene.info))
> gene.info¼ gene.info[, �1]
> host_DEG_table¼ cbind(top_1hpi, gene.info)

25. Write the annotated differentially expressed transcript table
to the local hard drivey:

> write.table(host_DEG_table, file¼ “Host_DEG_annotated.csv”,
sep¼ “,”, col.names = NA

Method: Bacteria

26. Build bacteria reference index file and map the unmapped
reads (bacterial reads) from HISAT2 to the bacteria reference
genome with Bowtie2z:

$ bowtie2-build -f bacteria_reference.fa bacteria_reference_
index

$ bowtie2 -q pair1_unmapped.fastq bacteria_reference_index
27. Repeat Steps 6–10 from the host-specific protocol above.

Sort the BAM files by both name and position, convert the
‘sorted by position’ BAM files to BigWig format and visualize
with IGV. Create count matrix with HTseq.

28. Repeat Steps 13–16 from the host-specific protocol above.
Combine the count files into a DGEList, remove the last five
rows from the counts, filter counts to remove low expression
genes, and inspect the counts for errors.

29. Apply TMM normalization to countsaa

> dge.bacteria gecalcNormFactors(dge_bacteria)
> bacteria.cpm¼ cpm(dge.bacteria, normalized.lib.sizes¼

TRUE)
30. Calculate gene lengthsbb

> library(GenomicFeatures)
> txdb¼makeTxDbFromGFF(“bacteria_annotation.gtf”, for-

mat¼ “gtf”)
> exons¼ exonsBy(txdb, by¼ “gene”)
> gene.length¼ sum(width(reduce(exons)))
> gene.length¼as.data.frame(gene.length)

31. Define a function to calculate TPMcc

> TPM¼ function(counts, lengths){rate¼ counts/lengthsrate/
sum(rate) * 1e6 }

> final.tpm¼apply(bacteria.cpm, 2, function(x) TPM(x, gene.
length))

> final.tpm¼as.data.frame(final.tpm)
> colnames(final.tpm)¼ colnames(bacteria.cpm)

32. Write TPM values to file:
> write.table(final.tpm, file¼ “Ct_relativeabundance.csv”, sep
¼ “,”, col.names = NA

Command reference
aThis command will run FASTQ Screen on the chosen FASTQ

file, checking against locally prebuilt databases for possible
sources of contamination. ‘fastq_screen’ runs the software, –
aligner Bowtie2 specifies the aligner used to create the data-
bases and ‘fastq_file_1_R1.fq’ is the input file. This step should
be repeated for a random number of samples. To generate a
database, the genomes of each species which to test against
should be downloaded. Using the host and bacterial genomes
already downloaded from the earlier steps, Bowtie2 (or other
aligners) is used to build an index (see Step 4). Once built, the
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location and index should be added to the FASTQ Screen config-
uration file (Figure 2).

bIn this command, ‘-noextract’ tells FASTQC to not uncom-
press the output file, while ‘-o’ defines the output directory.
‘fastq_file_1_R1.fq’ is the FASTQ sequencing file. These commands
produce a quality report with results saved to the directory
defined by ‘<output_directory> ’. The results are reported in
both illustrated form (the ‘fastqc_report.html’ file) and text form
(the ‘summary.txt’ file). Repeat for all FASTQ files. As the FASTQ
files are derived from total RNA sequencing, this step includes
both host and bacterial sequences (Figure 3).cRun this command
from the Trimmomatic installation directory. The command
specifies PE as paired-end data, six threads and the FASTQ files
are encoded with Phredþ 33 quality scores. ‘fastq_file_
1_R1.fastq.gz’ and ‘fastq_file_1_R2.fastq.gz’ specify the input
FASTQ files to use. As paired-end data are inputted, four output
files are needed to store the reads. Two ‘paired’ files from which
both reads survived after processing, and two ‘unpaired’ files from
which a single read survived, but the corresponding mate did not.
‘ILLUMINACLIP:adapters.fa’ uses the ‘adapters.fa’ file containing
sequences and names of commonly used adapters to remove.
‘2:30:10’ are three parameters used in the ‘palindrome’ mode of
Trimmomatic to identify the supplied adapters, regardless of their
location within a read. For a detailed description of the best use of
these three parameters, consult the Trimmomatic manual.
‘LEADING:3’ and ‘TRAILING:3’ remove a base from either the start
or end position if the quality is below ‘3’. ‘SLIDINGWINDOW:4:15’
performs trimming based on a sliding window method, ‘4’ is the
window size and ‘15’ is the required average quality. By examining
multiple bases, if a single low-quality base is encountered, it will
not cause high-quality data later in the read to be removed.
Finally, ‘MINLEN:36’ removes any remaining reads that are <36
bases long. Repeat for all FASTQ files. As above, this step includes
both host and bacterial sequences.

dThis ‘-x’ specifies the path to the index previously built by
Bowtie2: ‘host_reference.index’. The ‘—

un-conc’ argument tells HISAT2 to write a FASTQ file contain-
ing all unmapped reads (‘pair1_unmapped.fastq’), and ‘-1’ and ‘-2’
specify the paired-end FASTQ file mates. The ‘samtools view –bS
-’ argument converts to the output file from SAM to BAM format.
Ensure that the HISAT2 output files, ‘accepted_hits.bam’ and
‘pair1_unmapped.fastq’, are preserved in the working directory,
as these are required for bacterial read mapping.

eThe first command takes the ‘accepted_hits.bam’ file and
sorts it by position, with the output file called ‘1hpi_Host
_infected_rep1.sorted_position’. In the second command, ‘-n’
tells SAMtools to sort the ‘accepted_hits.bam’ file by name, with
the output file called ‘1hpi_Host_infected_rep1.sorted_name’.
Repeat for all BAM files.

fThe first command indexes the reference genome by creating
a ‘host_reference.fa.fai’ output file. The second command ex-
tracts the first two fields (sequence ID and sequence length) to
generate the ‘host_reference.genome’ file. The third command
generates a histogram illustrating alignment coverage according
to the reference genome. The ‘-split’ argument tells genomecov
to take into account spliced BAM alignments (as we used the
splice-aware aligner HISAT2 for the host reads), while the ‘-bg’ ar-
gument tells genomecov to report genome-wide coverage in
bedGraph format. ‘ibam 1hpi_Host_infected_rep1.sorted_posi-
tion.bam’ is the input file in BAM format, ‘-g host_reference.gen-
ome’ is the reference genome in FASTA format and
‘1hpi_Host_infected_rep1.sorted_position.bedGraph’ is the output
file in bedGraph format. The fourth command converts this
bedGraph file to BigWig format for use with IGV (below).

gThis command takes the ‘1hpi_Host_infected_rep1.sorted_
position’ BAM file created above and creates an indexed
‘1hpi_Host_infected_rep1.sorted_position.bai’ file for use with IGV.

hThe first command sorts the GTF file, specifying an input
file and output file. The second command creates an index of
the sorted GTF file.

iRun this command from the IGV installation directory.
Within the software, load the ‘host_reference.fa’ reference gen-
ome by clicking on ‘Genomes’ and then ‘Load genome from file’.
Load the sample BAM files from Step 9, the indexed GTF annota-
tion file (Step 10) and the bigwig file (Step 8) by clicking on File,
then Open. Inspect the mapped reads and visualize their align-
ment to the reference genome to ensure whole-genome cover-
age and that they align with exons as defined by the GTF file.
The sample BAM files and index files must be in the working
directory (Figure 4).

jThis command calls the htseq-count python wrapper script,
which performs the gene-level counts. ‘-s no’ indicates that the
reads are unstranded and ‘-a 10’ sets the minimum mapping
quality for a read to be counted as 10. ‘-r name’ indicates that
the input file is sorted by name, and ‘-f bam’ indicates that this
input file is in BAM format and named ‘1hpi_Host_
infected_rep1.sorted_name.bam’. ‘host_annotation.gtf’ is the
GTF annotation file from Ensembl, and ‘1hpi_Host_infected_
rep1.sorted_name.count’ is the output file produced. Repeat
command for each BAM file, which will produce a series of text
files counting the gene-level reads for each sample. The last five
lines of each file contain a list of reads that were not counting
because of alignment ambiguities, multimapping or low align-
ment quality.

kThe first command opens R, and the second command sets
the working directory to the folder location containing all the
relevant files from Step 12. Replace ‘. . .’ with the complete path
to this location, for example: setwd(‘/home/username/dRNA-
Seq/HTSeq_counts’).

lThis creates the metadata table containing all the experi-
mental variables, including sample name, treatment and time
point.

mA DGEList is an R object from the edgeR package that effi-
ciently compiles the count data set and experimental variables
that is fed into subsequent downstream analyses. The first
command loads edgeR into the current R workspace. The se-
cond command creates a variable called counts_host, which is a
DGEList containing all data from Columns 1 and 2 from all files
in the current working directory ending in ‘.count’ (Figure 5).

nThis command removes the last five rows of the count ma-
trix, which contain a summary of the ambiguous and non-
counted reads from htseq-count.

�This command returns the count matrix, so that there are
greater than three reads in at least two replicates across all of
the samples. Any nonconforming samples are removed.

pIt is often helpful to visualize the count matrix at this point
to confirm that it is formatted correctly and that there are no
errors. The second command provides the matrix dimensions,
which is useful for determining the number of genes remaining
following independent filtering.

qTMM normalization factors are calculated and incorporated
into the DGEList object.

rThese commands define the design matrix and the con-
trasts of interest to enable differential expression to be calcu-
lated. In this case, the contrasts we are interested are the host
genes differentially expressed when infected versus the host
genes differentially expressed when uninfected at the 1 and at
the 24 hpi time points. More complex experimental designs that
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include multiple samples, time points, batch effects and treat-
ments are possible and are explained in detail in the Limma
User’s Guide [74].

sThis command applies a voom transformation to the
counts, by converting them to log counts per million (CPM) with
associated precision weights [68]. We generally extend this by
using the voomWithQualityWeights function, which applies
sample-specific weights to down-weight any outlier samples.
This can be especially useful if outliers were identified in the
MDS plot constructed in Step 21 (below). This function takes as
input the normalized count matrix (‘counts_host’) and design
matrix (‘design’) and outputs two quality control plots: an esti-
mation of the mean–variance relationship and the sample-
specific weights that were applied. The output figure
‘host_voom.png’ is generated containing the voom transform-
ation plots (Figure 8).

tThese commands generate an MDS plot by taking the host
DGEList as input (‘counts_host’). The MDS plot allows the visual
inspection of sample proximities to highlight possible batch ef-
fects and sample outliers that may need to be addressed. The
MDS plot is saved to the working directory as ‘host_MDS.png’
(Figure 6).

uLine 1 converts the counts into CPM and then transposes
the resulting matrix. The second command generates the dis-
tance matrix between each of the 12 samples, and the
third command generates a hierarchical clustering dendrogram
from the normalized counts in ‘counts_host’ where the
most similar samples occupy closer positions in the tree. The
plot is saved to the working directory as ‘host_HC.png’
(Figure 7).

vThe first two commands estimate expression fold changes
and standard errors by fitting a linear model to each gene, using
the comparisons defined by the contrast matrix (‘contrasts’).
The third command applies empirical Bayes smoothing to the
standard errors to further weaken any outliers.

wThis command prints all the DEGs with a P-value of �0.05
after correcting for multiple testing using the FDR (Benjamini
and Hochberg) method. Additionally, a LFC threshold may be
included by adding an ‘lfc¼ 2’ argument, which would return all
DEG with a LFC in expression greater than two (Table 1).

xOften for downstream applications, it is necessary to
have the gene name or identifier for each DEG. These com-
mands are derived from the Limma documentation [74] and
extract gene annotation information stored in the org.Hs.eg.db
R package to annotate the DEG list with gene symbols descrip-
tions. Repeat for the ‘Host_24hpi’ DEG list.

yThis command writes the DEG list to a comma-separated
file. Repeat for the ‘Ct_24hpi’ DEG list.

zThe first command indexes the bacteria reference genome
‘-f bacteria_reference.fa’ and generates the ‘bacteria_refer-
ence_index’ output file. The second command performs the
read mapping using the unmapped reads from the host map-
ping step (‘pair1_unmapped.fastq’).

aaThe first command generates TMM normalization factors,
and the second command converts the raw counts to normal-
ized counts.

bbThese commands use the GenomicFeatures R package to ex-
tract the gene lengths from the ‘bacteria_annotation.gtf’ file,
which are required for the calculation of TPM values (below).

ccThis command creates a function (TPM), which is used to
convert the normalized counts in ‘bacteria.cpm’ to TPM.

Key Points

• dRNA-Seq is an emerging technique for the simultan-
eous capture of both host and bacterial
transcriptomes.

• This is a high-throughput method that enables a
deeper understanding of host–pathogen interactions.

• The technique is technically challenging and requires
careful consideration of the experimental goals, avail-
able resources and organisms of interest.
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