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Abstract

Power/sample size (power) analysis estimates the likelihood of successfully finding the statistical significance in a data set.
There has been a growing recognition of the importance of power analysis in the proper design of experiments. Power analysis
is complex, yet necessary for the success of large studies. It is important to design a study that produces statistically accurate
and reliable results. Power computation methods have been well established for both microarray-based gene expression studies
and genotyping microarray-based genome-wide association studies. High-throughput sequencing (HTS) has greatly enhanced
our ability to conduct biomedical studies at the highest possible resolution (per nucleotide). However, the complexity of power
computations is much greater for sequencing data than for the simpler genotyping array data. Research on methods of power
computations for HTS-based studies has been recently conducted but is not yet well known or widely used. In this article, we de-
scribe the power computation methods that are currently available for a range of HTS-based studies, including DNA sequencing,
RNA-sequencing, microbiome sequencing and chromatin immunoprecipitation sequencing. Most importantly, we review the
methods of power analysis for several types of sequencing data and guide the reader to the relevant methods for each data type.
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Introduction

Recent advancement in high-throughput sequencing (HTS)
technology has stimulated a range of new possibilities for bio-
medical research. At the same time, these advances have intro-
duced a series of bioinformatics challenges including quality
control, data storage and complexity in data analyses. Power
analysis is often one of the overlooked aspects of HTS data
analysis.

Power calculation is the first step in designing a successful
study. Its importance is reflected by its role as the non-optional
component in National Institute of Health funding applications.
Sample size and power analysis have been well established for
traditional biological studies, such as genome-wide association

study (GWAS) and microarray gene expression studies.
Compared with power analysis in GWAS and microarray gene
expression studies, power analysis for HTS data-based experi-
ments is more complicated for two major reasons. The first rea-
son regards the unique parameters for HTS read depth and read
dispersion that directly affect the ability to detect variants or
gene expression, and thus need to be considered in the power
analysis. Second, the number of possible applications for HTS
greatly exceeds the number for microarray, introducing a vari-
ation of unique statistical scenarios for power analysis.

The most common method for categorizing HTS is by the target
sequencing source (DNA versus RNA) and the analysis goal such as
DNA-seq [1] (exome whole genome), RNA sequencing (RNA-seq) [2]
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(messenger RNA and total RNA), chromatin immunoprecipitation
sequencing (ChIP-seq), methylation sequencing (bisulfite sequenc-
ing) [3], microbiome sequencing (16S ribosomal RNA sequencing)
[4], GRO (Genomic Run-on or nuclear run on)-seq [5], cross-linking
immunoprecipitation sequencing (CLIP-seq) [6], photoactivatable
ribonucleoside-enhanced cross-linking and immunoprecipitation
sequencing [7], etc. Each type of sequencing is designed to examine
a completely different problem, and often the data follow distinctly
different distributions, thus requiring a specific strategy for com-
puting power. Simply put, the power of a study is the probability of
successfully detecting a given effect size. Traditional power ana-
lysis estimates the power from a given sample size, effect size and
required level of statistical significance. In HTS, other factors
unique to HTS data such as sequencing depth and dispersion play
significant roles in determining the true power, adding an unfamil-
iar layer of complexity to the analysis.

It is vital to not let the excitement and challenges of HTS data
overshadow the importance of power analysis. Given the high di-
versity of HTS applications and the complexity of power analyses
for these applications, we provide a detailed review of the current
status of power analysis for all major types of HTS applications,
as well as recommendations for the appropriate approach to deal
with power analysis in different types of study design scenarios.

DNA

Exome sequencing examines the exonic regions of the genome.
Other types of DNA sequencing commonly used include whole-
genome sequencing, mitochondrial DNA sequencing and other
types of targeted region sequencing. The immediate goal of DNA
sequencing is to identify variants such as single-nucleotide
polymorphisms (SNPs), somatic mutations, insertion/deletions
(indels) and structural variants (translocations, inversions, etc.)
The end goal of DNA sequencing is usually to carry out a variant–
phenotype association or to estimate variant frequencies in a
given population. Sometimes, DNA sequencing is performed just
to confirm the existence of certain variants in a few special sam-
ples or estimate the population variant frequency.

For variant–phenotype association studies, the goal is the same
as in GWAS, and traditional power analysis for GWAS will apply the
assumption that all variants have been inferred correctly. Power
analysis for GWAS is a well-established field [8–10]. The goal for
GWAS variant–phenotype association studies is to determine
whether there is a statistically significant difference for the fre-
quency of an allele between a case and a control population. The
common parameters required to compute power in this situation
are sample size N, effect size q (often stated as an odds ratio), dis-
ease prevalence and allele frequency. These types of power analysis
are still relevant for association studies of common variants derived
from HTS methods. However, for HTS, extra complexity is intro-
duced with sequencing depth and read dispersion, which directly
affect the probability of correctly identifying a variant, introducing a
series of additional power analysis methods that we review below.

Power to detect a heterozygous variant

In traditional GWAS, SNPs are detected using genotyping arrays
by clustering algorithms based on fluorescent intensity data.
Traditional GWAS power analysis has been well established
[11–14]. These power analyses are based on collected SNP data,
and do not model the process of detecting SNPs. The goals for
the HTS experiment are not limited to GWAS; for example, de-
tecting a heterozygous variant can be the intent of the study.
Currently, there is no dedicated power analysis tool for the

detection of heterozygous variant using HTS data. However, for
HTS, the probability of detecting an allele A (or allele B) at a
given diploid genomic position follows a binomial distribution:
BinomialðD; pÞ, where D is the depth, and P is the probability of
allele A after sequencing one read that is 0.5 for all diploid gen-
omic regions. For all heterozygous germline variants, a read has
a 50% chance to represent one of the two alleles (Figure 1). In a
simplified scenario, the power of detecting an alternative allele
can be modeled using the binomial distribution: BinomialðD; pÞ.
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where n is the sample size, p0 is the true probability of the alter-
native allele, p is the observed alternative allele frequency, Uð:Þ
is the standard normal distribution function, z1�a=2 is the 100(1-
a=2) percentile of the standard normal distribution and a is the
type I error rate [22].

However, in practice, other minor details, such as reference
preferential bias, need to be considered carefully. Reference
preferential bias is a form of bias that occurs when the aligner
penalizes a read’s alignment score when that read has a mis-
match compared with the reference; this, in turn, causes the
alignment score to slightly favor toward the reference allele. In
HTS data, reference preferential bias can lower the observed al-
ternative allele frequency to a range of 0.48–0.5 [23]. This refer-
ence preferential bias is usually not considered when modeling
the power of SNP detection. Furthermore, the binomial distribu-
tion BinomialðD; pÞ merely demonstrates the probability of de-
tecting the alternative allele. By detecting, we mean finding a
single read that supports the alternative allele, which in many
cases could be the result of noise or error from the library prep-
aration, sequencing or alignment process. Many variant callers
will only call heterozygous variants after certain fixed number
or a fraction of reads support the alternative allele. Some callers
such as the Genome Analysis Tool Kit’s [24] variant caller used a
Bayesian approach by considering prior information in Single
Nucleotide Polymorphism database (dbSNP) to adjust their vari-
ant calling. The power associated with different variant callers
may vary depending on the exact methodology applied.

Power to detect somatic mutations and mutation frequency

Cancer treatment often benefits from knowing the expected mu-
tation frequency in a certain gene in the patient population.
Mutation frequencies have been used to guide targeted therapy in
cancer treatment [25, 26]. Unlike SNPs, which are germline muta-
tions, somatic mutations may be acquired at any time. To truly
identify a somatic mutation, tumor samples need to be compared
with a reference sample. Blood is usually considered the best
reference [27], with the obvious exception of blood cancers. The
power to identify a somatic mutation involves considering both
the reference and tumor samples. The expected allele frequency
for a somatically mutated allele still follows a binomial distribu-
tion: BinomialðD; p), where D is the depth; however, the expected
mutation percentage is no longer 0.5, as the tumor purity varies
by sample. Studies [28, 29] have shown that the read depth ratio
(reference allele versus mutated allele) can be used as an estima-
tion of the tumor purity, which can be obtained by conducting a
simulation study or using existing, similar public data. However,
the mutation percentage at each genomic position might also
vary, which makes modeling the power for somatic mutation
detection difficult. The power to detect somatic mutations is
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dependent on several parameters: the depth of sequencing of the
normal/reference sample, the depth of the tumor sample, the ex-
pected tumor contamination rate in the normal sample and the
expected mutation percentage in the sample.

The power to detect somatic mutations can be modeled based
on Fisher’s exact test for two proportions. The power analysis using
Fisher’s exact test is rather complicated (see Sahai and Khurshid
[30] for details). Fortunately, the power analysis for Fisher’s exact
test has been implemented in the R package exact2�2 and the SAS
procedure PROC POWER with option TWOSAMPLEFREQ.

After one successfully identifies SNPs or somatic mutations,
one can estimate the population frequency of these single-nucleo-
tide variants (SNVs). The power to correctly estimate population
SNV frequency is dependent on the sample size and the true popu-
lation SNV frequency. Moreover, the power is also affected by the
accuracy of the variant callers, and thus, it depends on the exact
methodology applied. Assuming the accuracy among the variant
callers is similar, the power analysis in this scenario becomes a
traditional statistical problem of sample size needed for estimating
a proportion. This can be implemented in the R package pwr and
the SAS procedure PROC POWER with option ONESAMPLEFREQ.

Power to detect association for common variants

A parameter considered by some power calculators is budget,
which is not directly considered during power computation in
GWAS. For HTS, under a fixed budget, the investigator can
choose to either sequence more samples at a lower depth or to
sequence fewer samples at a higher depth, a consideration that
is not applicable for genotyping arrays. Increased depth will in-
crease the power of detecting a variant in a sample, and
increased sample size will increase the power to correctly

identify the variant allele frequency in the population. This
trade-off has been thoroughly discussed by Shen et al. [31]. Based
on their model of power analysis, the authors found that the
maximum power for detecting phenotype association can be ob-
tained by selecting the optimal balance between the average
depth and the number of samples. A practical approach is to
only sequence cases, and use existing public data, such as the
1000 Genome Project [32], as the control group. While this may
work for phenotypes with a low population frequency, where the
control group is nearly identical to the general population, this
approach fails for common phenotypes. Furthermore, it is highly
susceptible to artifacts because of differences between the local
study population and the reference population. When both cases
and controls have to be sequenced and the cost is proportional to
the number of subjects, the optimal fraction of cases with the
maximum power of detecting associations has been suggested to
be 1/e, where e is the base of the natural logarithm [31].

Power to detect association for rare variants (aggregated
power)

Traditional GWAS aims to identify common variants in com-
mon diseases using genotyping arrays under the common dis-
ease–common variant (CDCV) hypothesis, which states that
common diseases are caused by common variants. Under the
CDCV hypothesis, each common variant has a small-to-modest
additive or multiplicative effect on disease phenotype [33, 34].
An alternative hypothesis is the common disease–rare variant
hypothesis, which states that risks for common diseases may
be caused by multiple rare variants in the same gene or same
pathway [35]. Furthermore, rare Mendelian diseases are usually
caused by rare variants with large effects.

Figure 1. Flow chart for selecting the proper power/sample size (PS) method for RNA-seq experiment. The researcher first needs to decide which statistical model will

be used to describe the count data. If the limma model is selected, the method proposed by Bi et al. [14] is the correct tool for conducting a PS analysis; if Poisson-lognor-

mal model is selected, the method proposed by Busy et al. [16] is the correct tool for conducting a PS analysis; if Poisson model is selected for conducting single-gene

comparison, the model proposed by Fang et al. [17] is the correct tool; if Poisson model is selected for conducting multiple-gene comparisons, the model proposed by Li

et al. [18] is the correct tool. If the negative binomial model is selected to conduct two-group comparisons, the method proposed by Wu et al. [19] is the simulation-based

tool; if the negative binomial model is selected to conduct two-group comparison, the method proposed by Zhao et al. [20] is the correct tool; if the negative binomial

model is selected to conduct multiple-group comparisons, the method proposed by Ching et al. [19] is the simulation-based tool; and if the negative binomial model is

selected to conduct multiple-group comparison, the method proposed by Li and Shyr [21] is the correct tool.
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Genotyping arrays are not designed to detect all common
variants (even after imputation with linkage disequilibrium) or
the rare variants with a large effect [36]. Even genotyping arrays
that include rare variants in their design can only detect a small
fraction of the true rare variants in a study population. HTS, on
the other hand, can interrogate the entire genome or exome at
the single-nucleotide resolution. However, because of a high per
sample unit price, using sequencing to perform a large GWAS is
still impractical economically. HTS (either whole genome or
exome) has been used to study rare diseases or common dis-
eases with limited sample sizes, which limit the power of a trad-
itional univariate regression analysis [37]. To overcome the
limitation in sample size in HTS data, a wide range of aggregated
methods has been developed, such as CAST [38], Combined and
Multivariate Collapsing [37], weighted sum method [39], variable
threshold [40], rare variant, weighted aggregate statistic [41], ker-
nel-based adaptive clustering method [42], C-alpha [43], data-
adaptive sum test [44], RareCover test [45], replication-based test
[46] and SNP-set Kernel Association Test (SKAT) [47].

The power increase in an aggregated approach can be attrib-
uted to two reasons. First, by collapsing SNPs from a genomic re-
gion of interest, usually defined as a gene or pathway, into one
score, the number of tests performed is substantially reduced, thus
alleviating the burden of multiple testing corrections. Second, it is
assumed that rare variants with different genomic positions in a
gene may disrupt the function of the gene, as this has often been
observed in Mendelian diseases such as cystic fibrosis [48]. Testing
at the single-variant level will not capture the collective effect of
these variants at the gene level, and collapsing these SNPs to one
value will increase the signal strength. Power analysis for an aggre-
gated test is complex, and restricted to many assumptions. Within
a region of interest, the effect of variants may be nonuniform, or it
could even be of the opposite direction (detrimental versus protect-
ive) and noncausal. Furthermore, many of the aggregated methods
use intractable mathematical formulas or calculations, making the
power analysis difficult and impractical.

Currently, there are several available approaches for comput-
ing power with aggregated approaches. Lee et al. [49] derived ana-
lytical formulas to compute power for SKAT analysis based on an
approximate noncentral chi-square distribution under distinct
scenarios: retrospective case-control studies, rare variant studies
and average power across different regions. This method is im-
plemented in the SKAT R package. However, Wu et al. [50]
showed that the power based on the analytical approach pro-
posed by Lee et al. (2012) could be inflated when the significance
level is small. To accurately and efficiently compute power, Wu
et al. proposed an exact method based on a new noncentral chi-
square approximation. To accurately calculate the power for
SKAT, Wu et al.’s method is more appropriate. The implementa-
tion of Wu et al.’s method is available as an R package KATSP. An
alternative to the analytical approach is the simulation approach.
SPS [51] is a Monte Carlo simulation-based power analysis de-
signed for SKAT with an advanced graphical user interface.
Moreover, SPS also can be used to estimate the power for meta-
analysis. Wang et al. developed SEQPower [52] that can perform
power analysis for allele frequency and quantitative trait-based
aggregated tests using a Monte Carlo approach applying forward-
time simulated [53] sequencing data. SPS and SEQPower are rec-
ommended when the aggregated test is not focusing on SKAT.

RNA

RNA-seq uses the HTS technology to sequence complementary
DNA reverse transcribed from RNA. The raw data of RNA-seq

contain millions of short reads, which are aligned back to a ref-
erence genome or transcriptome. The reads aligned to each
gene serve as measurements of the mRNA expression levels.
Several power analysis methods have been proposed. Each
method has its own advantage and limitation. Selecting an ap-
propriate power assessment method is crucial to the study de-
sign. To provide researchers with better guidance for selecting
the tools to conduct a power analysis, we produced a flow chart,
shown in Figure 1. The researcher first needs to decide which
statistical model will be used to describe the count data. If the
Limma model is selected, the method proposed by Bi et al. [15] is
the correct tool for conducting a PS analysis; if Poisson-
lognormal model is selected, the method proposed by Busy et al.
[16] is the correct tool for conducting a PS analysis; if Poisson
model is selected for conducting a single-gene comparison, the
model proposed by Fang et al. [17] is the correct tool; if the
Poisson model is selected for conducting a multiple-gene com-
parison, the model proposed by Li et al. [18] is the correct tool; if
the negative binomial model is selected to conduct a two-group
comparison, the method proposed by Wu et al. [19] is the appro-
priate simulation-based tool; if the negative binomial model is
selected to conduct a two-group comparison, the method pro-
posed by Li et al. [20] is the correct tool; if the negative binomial
model is selected to conduct a multiple-group comparison, the
method proposed by Ching et al. [19] is the simulation-based
tool; and finally, if the negative binomial model is selected to
conduct a multiple-group comparison, the method proposed by
Li and Shyr [21] is the correct tool.

Poisson model

In statistics, the Poisson distribution is widely used to model
counting processes. Because RNA-seq data can be represented
as read counts, Fang et al. [17] used Poisson distribution to
model count data and derived a sample size formula based on a
Wald test or a likelihood ratio test (LRT) for single-gene differen-
tial expression analysis. There are two limitations for this
method. In reality, in RNA-seq data analysis, tens of thousands
of genes are examined and tested simultaneously. Thus, the
correction for multiple testing needs to be considered. For mul-
tiple gene comparison, Li et al. [18] derived sample size calcula-
tion formulas based on the most common test statistics,
including the Wald test and Rao’s score test, log transformation
of score test and log transformation of Wald test. Moreover, be-
cause it is difficult to derive a closed form to calculate the sam-
ple size based on a LRT, Li et al. [18] proposed a numerical
approach to address this issue. Their method was implemented
as an online calculator, RNAseqPS [54]. Currently, those are the
only two available methods that can assess power for tests of
differential expression from RNA-seq data based on a Poisson
model.

Negative binomial model

It has been repeatedly shown that RNA-seq data exhibit an
overdispersed read count distribution [55, 56], which means
that the variance of sequence counts exceeds the mean. The
power analysis methods based on a Poisson distribution are un-
able to take this variability into account. To compensate for this
overdispersion, the negative binomial distribution is a more
flexible for describing the mean–variance relationship. Based on
a negative binomial distribution, Hart et al. [57] proposed a
power analysis method based on the score test for single-gene
differential expression analysis. This method has been
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implemented in Bioconductor as part of the RNASeqPower
package. To handle multiple gene comparisons, Li et al. [58] pro-
posed a power analysis method, while also controlling for the
false discovery rate based on the exact test implemented in
Bioconductor package edgeR [55]. However, because the individ-
ual power analysis for the exact test involved infinite sums, and
the overall power of the study is estimated by summing the in-
dividual power, Li et al.’s method is computationally expensive.
Thus, in the same publication, to alleviate the computational
burden, Li et al. [58] further proposed a method for calculating a
conservative sample size based on the minimum average read
counts in the control group, the minimum fold change and the
maximum dispersion. Instead of using a single value for the
maximum dispersion and the minimum average read counts,
Zhao et al. [20] implemented Li et al.’s method to develop an al-
gorithm based on the distributions of read counts and disper-
sion estimated from prior data. This method is implemented in
the Bioconductor package RnaSeqSampleSize.

Similar to DNA sequencing studies, budget plays a signifi-
cant role in the design of the RNA-seq study. To incorporate
budget as part of power analysis, Wu et al. [19] introduced the
concepts of stratified power by coverage or biological variation
and cost of false discovery, then proposed a simulation-based
method for power analysis. The method was implemented as a
Bioconductor package, PROPER [19].

The aforementioned methods based on the negative bino-
mial model are designed for assessing the differential expression
between two groups. For complex RNA-seq experimental design
involving multiple group comparisons, Ching et al. [59] used a
simulation-based method under a generalized linear model
framework to perform power analysis for a given budget con-
straint. For power analysis, Wu et al. [19] and Ching et al. [59] con-
sidered a wide range of differential expression analysis packages
including DEseq [60], edgeR [55], DSS [61], DESeq2 [62], EBSeq [63]
and SSeq [64], respectively. Thus, those methods offered great
flexibility in downstream analysis. Most recently, to avoid com-
plex mathematical approximations, Li and Shyr [21] proposed a
power analysis method using an LRT under the generalized lin-
ear model. Because the Bioconductor packages edgeR, DESeq
and DEseq2 provided statistical methods using an LRT for as-
sessing the differential expression analysis, this method is dir-
ectly applicable. This method was implemented in a Web-based
user interface (http://140.116.152.140/shiny/App/GLM/).

Poisson-lognormal distribution model

Busby et al. [16] observed that in data sets, the distribution of
the log read counts appears to be approximated by a truncated
normal distribution. Thus, it is reasonable to model gene ex-
pression as a lognormal distribution. However, the abundances
of gene expression are measured with read counts. To combine
those observations, Busby et al. [16] assumed that the read count
follows a Poisson distribution and that the gene expression fol-
lows a lognormal distribution. Thus, the distribution of read
counts is more appropriately modeled by a Poisson-lognormal
distribution. A sample size calculation formula based on a t-test
for assessing a single-gene differential expression between two
groups was derived as following:

Tv ta=2;vj
dffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2
1=n1 þ r2

2=n2
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dffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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2=n2

q
0
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where d is the effect size, Tvð:jhÞ is distribution function of the
noncentral t-distribution with noncentral parameter h and degrees
of freedom v, ta=2 are 100(1-a=2) percentile of the t-distribution
with v degrees of freedom. To calculate the total power for mul-
tiple gene comparison, Busby et al. [16] proposed that the overall
power of the study is the mean power for assessing a single-gene
differential expression. Their method is implemented in a Web
interface: Scotty-Power analysis for RNA-seq experiments.

Limma model

Limma is a linear model-based method originally designed for
microarray gene expression analysis [65]. The defining feature
of the limma approach is the utilization of an empirical Bayes
method for borrowing information across genes, making the
analyses stable even for experiments with a small number of
arrays [66]. Recently, Ritchie et al. expanded the function of the
Bioconductor package limma to analyze RNA-seq data [67].

Based on the limma approach, Law et al. [68] introduced a
voom method, which applies precision weights to account for
the mean–variance relationship of the log count data. Based on
the voom and limma approaches, Bi et al. [15] proposed a one-
time simulation method for power analysis to assess the differ-
ential expression between two groups. Because of the flexibility
of the simulation approach, this method can be extended to
other experimental designs, such as paired-sample or multiple
treatment comparisons. This method has been implemented in
the R package ssizeRNA. In the same study, Bi et al. conduct a
simulation experiment to compare the performances among
the R packages ssizeRNA, RnaSeqSampleSize and PROPER. Bi et
al. showed that ssizeRNA provided a more accurate estimate of
power/sample size than RnaSeqSampleSize; ssizeRNA and
RnaSeqSampleSize provided results much faster than PROPER.
Thus, Bi et al. concluded that ssizeRNA works best when both
accuracy and computation time are considered.

Microbiome

Another popular application of HTS is to study the microbiome,
known as microbiome sequencing. Microbes (bacteria, fungi
and archaea) can be found throughout the human body.
Increasing interest in these microbes’ contribution to disease
has propelled the development of a series of microbiome
sequencing analysis pipelines [69, 70]. The basic goals of the
microbiome studies are to identify microbiome species diversity
within one sample (a-diversity), or multiple samples (b-diver-
sity) or the relative abundance of one or multiple microbes be-
tween two groups. Microbiome data are commonly modeled
with a multinomial distribution because the abundance of each
microbe is represented as a percentage of the total reads, and
the sum of the total microbe abundance within a sample is 1.
The probability mass function of the multinomial distribution
for microbiome data can be described as follows:

f x1; . . . ;xJ; p1; . . . ; pJð Þ ¼ N!

PJ
i¼1xi!

PJ
i¼1p

xi
i ;

where J is the number of taxa, N ¼
PJ

i¼1 xi is the total taxa count
and ðp1; . . . ; pJÞ are the abundance of species with

P J
i¼1pi ¼ 1.

Power to detect a-diversity

Thompson (1987) [71] provided a procedure for estimating
the parameters of a multinomial distribution. Because the
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a-diversity is a function of the species’ proportional abundance,
Thompson’s method can be applied directly. This method can
used to identify the number of detectable microbes within one
sample. In this scenario, the total read count is the determining
factor. Similar to RNA-seq experiments, the total number of
reads sequenced directly affects the ability to sequence the low-
abundant genes or microbes. The power for the measurement
of a-diversity can be defined as the proportion of abundance.

Power to detect b-diversity

Multiple distance-based methods [72–75] have been proposed
for estimating b-diversity. Details regarding those distance-
based methods can be found in reference [76]. Distance-based
methods have two limitations: they are underpowered when
the single distance is poorly chosen and they cannot handle the
variables that correlate with both the covariates of interest and
the microbiome composition [76]. To address these issues, Tang
et al. [76] proposed a new distance-based method to test the as-
sociation of microbial communities based on the permutation
multivariate analysis of variance (PERMANOVA). Their method
is implemented in software, which is available at https://med
school.vanderbilt.edu/tang-lab/software/miProfile. With the
rapid growth of estimating b-diversity, the power analysis has
lagged behind. Kelly et al. proposed a method for generating the
pairwise subject-to-subject distance matrix that permits model-
ing within-group distance according to prespecified parameters.
Based on the simulated distance matrix, the power of
PERMANOVA can be calculated for a given group-level effect
size, which is quantified by the adjusted coefficient of deter-
mination, Omega squared. Their method is implemented in the
R package micropower [77].

Power to detect relative abundance

In addition to a-diversity and b-diversity, the relative abundance
of a single or multiple microbes between two or multiple groups
can also be interesting to examine [78, 79]. If we do not assume
a Dirichlet distribution of the microbiome data, the microbes
can be tested for differential abundance individually. In such a
situation, the focus of interest is the differential abundance of a
single microbe. This problem could be simplified to the same
scenario as the differential gene expression analysis in RNA-
seq. Thus, we can apply power/sample analyses designed for

RNA-seq data. However, Rosa et al. [80] showed that microbiome
data are better modeled with a Dirichlet multinomial distribu-
tion when the overdispersion is present. Rosa et al. [80] pro-
posed a power method based on a Dirichlet multinomial
distribution, which was implemented in the R package HMP.

Chromatin immunoprecipitation sequencing

ChIP-seq experiments use chromatin immunoprecipitation
(ChIP) with HTS to identify the binding sites of DNA-associated
proteins. ChIP-seq data is similar to RNA-seq data, involving
quantifying the data as read count per peak instead of per gene.
A peak in this context is a genomic region that has been en-
riched with aligned reads as evidence of a DNA-binding protein
in that region. ChIP-seq data has been modeled using a local
Poisson model [81, 82]. Zuo et al. [83] developed a statistical
framework for ChIP-seq experiments based on the assumption
that the reads are generated by local Poisson processes with
shared Gamma prior distributions. To control the false discov-
ery rate, they defined a conditional power function and pro-
posed a numerical algorithm to compute the following
conditional posterior power.

Pn
i¼1 wiE½pfYi > Tiðaq; c; sÞjky

i > re0li _ s;Bi 6¼ 0gjYi ¼ yi�Pn
i wi

where wi ¼ pfky
i > re0li _ s; Bi 6¼ 0jYi ¼ yig, aq the significance

level, Yi is the observed ChIP counts, c is the fold change, s is a
minimum intensity, e0 is a normalizing factor reflecting the pro-
portion of background reads, x _ y ¼maxðx;yÞ, Bi is used to indi-
cate the enrichment state of bin i. This method was
implemented in the R package CSSP. In addition, to measure the
reproducibility of the finding from an experiment design, Li
et al. [84] proposed a reproducibility score, the irreproducible
discovery rate (IDR). IDR could be considered as a post-
sequencing evaluation of the power a ChIP-Seq analysis.

Discussion

HTS technology has undoubtedly reshaped the landscape of
genomics. The true advantage of HTS lies in its versatility, and
the way it allows itself to be adapted for a wide range of applica-
tions. Each type of application of HTS aims to examine a unique

Table 1. Power/sample size computation tools

Article Test statistics Design Test Sequencing Package/software

[15] Binomial test Case-control Association DNA OPERA
[49] Score test (SKAT) Case-control Aggregated test DNA None
[52] Simulation MCMC Aggregated test DNA SEQPower
[41] Simulation MCMC Aggregated test DNA SPS
[50] Score test (SKAT) Linear model Aggregated test DNA R package KATSP
[17] Wald and LRT Case-control Single gene RNA None
[18] Wald, Score and LRT Case-control Multigene RNA None
[57] Score Case-control Single gene RNA RNASeqPower
[20] Exact Case-control Multigene RNA RnaSeqSampleSize
[19] Simulation Case-control Multigene RNA PROPER
[59] Simulation Linear model Multigene RNA powerSampleSizeCalculator
[16] t-test Case-control Multigene RNA Scotty-Power analysis
[15] Voom Linear model Multi gene RNA ssizeRNA
[77] PERMANOVA Multiple groups b-diversity Microbiome R package micropower
[80] Wald test Dirichlet Relative abundance Microbiome R package HMP
[83] Exact text Gamma Peak difference ChIP-seq R package CSSP
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biological problem. Combined with the complex format of HTS
data, and the distinct statistical assumption behind the differ-
ent types of HTS data analysis, the power analysis for HTS-
based experiments has been a challenging problem. In this re-
view, we have described the power analysis methods for four
types of HTS applications: DNA sequencing, RNA-seq, micro-
biome sequencing, and ChIP-seq. Each of these HTS application
can be further divided into subcategories depending on the
goals of the experiments. In each case, the definition of power
can vary greatly based on the goal of the study. The existing
tools developed for power analysis have been listed in Table 1.

For complex study design and tests, as demonstrated in the
DNA and RNA sequencing power analyses, simulation-based
methods are the only feasible approach to model intractable
mathematical computation. The major downside for simulation-
based approaches is the long time required for their accurate cal-
culation. Furthermore, there are many more less well-known ap-
plications of HTS technology whose power analyses have not
been properly studied, such as GRO-seq, CLIP-seq, etc. As de-
mand for these types of HTS applications increases, and new ap-
plications are created, additional power computation methods
for these types of methods will need to be developed.

Key Points

• The power analysis for HTS -based experiments is
more complicated than for microarray based experi-
ments because of extra parameters such as read
depth, read dispersion, etc.

• The power analysis varies greatly based on the type of
the HTS data and the goal of the experiment.

• The power analysis is an essential part of an experi-
ment’s success.
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