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Abstract

The accumulation of somatic mutations in a genome is the result of the activity of one or more mutagenic processes, each
of which leaves its own imprint. The study of these DNA fingerprints, termed mutational signatures, holds important poten-
tial for furthering our understanding of the causes and evolution of cancer, and can provide insights of relevance for cancer
prevention and treatment. In this review, we focus our attention on the mathematical models and computational tech-
niques that have driven recent advances in the field.
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Introduction

Cancer is a disease of the genome, in which uncontrolled clonal
proliferation is initiated and fuelled by genomic alterations in
somatic cells [1]. Despite the fact that a cancer genome may carry
between tens and millions of somatic mutations [2, 3], only a
small subset of these, termed ‘driver’ mutations, are thought to
be under selection and to cause neoplastic expansion [1, 4]. The
remaining ‘passenger’ mutations are generally believed not to
confer selective advantage, and to arise from the processes
involved in mutagenesis [5, 6]. The collection of mutations in a
somatic cell genome is the result of one or more mutational proc-
esses operating, continuously or intermittently, during the organ-
ism’s lifetime [7]. Such mutational processes include DNA
damage by exogenous or endogenous agents, defective DNA rep-
lication, insertion of transposable elements, defects in DNA re-
pair mechanisms and enzymatic modifications of DNA, among
others [8]. Many of these processes imprint a distinct pattern
of mutations in the genome, known as a ‘mutational signature’
[2, 9]. Therefore, the compendium of somatic changes in a cancer
genome constitutes a record of the combined mutagenic effect of
the specific mixture of processes moulding it [2]. Furthermore,
because most mutations are passengers, they are largely beyond
the effect of adaptive selection [10].

Although mutational signatures are a relatively recent con-
cept in cancer biology, the first descriptions of genomic aberra-
tions caused by a specific process date back to the early
twentieth century, when X-rays were found to induce chromo-
some breakage in irradiated cells [11–13]. More-detailed muta-
tional patterns were reported in the 1960s, notably the
crosslinking of adjacent pyrimidine bases (CC, CT, TC, TT) be-
cause of ultraviolet radiation, which produces cytosine-to-
thymine (C>T) and cytosine–cytosine-to-thymine–thymine
(CC>TT) transitions at dipyrimidine sites [14–16]. Other causal
links between mutagenic agents and patterns of somatic
changes have also become established, such as the guanine-to-
thymine (G>T) transversions resulting from guanine adducts
that are caused by carcinogens present in tobacco smoke
[17, 18]. Furthermore, some chemotherapeutic agents are muta-
gens as well, and may imprint their own mutational signature
in the cancer genomes of patients with secondary malignancies
[19, 20]. These examples illustrate the importance of studying
somatic mutation patterns to our understanding of the molecu-
lar mechanisms of neoplasia, potentially enabling the discovery
of novel mutagens [2, 7, 8, 21]. Moreover, several authors have
emphasized the potential of mutational signature analysis to
provide insights of clinical significance, by informing and
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guiding diagnostic procedures, personalized cancer interven-
tions and prevention efforts [19, 22–27].

Recent advances in high-throughput DNA sequencing tech-
nologies have enabled studies which examine many thousands
of whole cancer genomes or exomes. In parallel, new scientific
avenues have been explored to identify and analyse genomic
aberrations, among them the extraction of mutational signa-
tures from collections of somatic mutations. This has produced
catalogues of signatures that operate in a variety of human neo-
plasias [2, 28–31]. While the development of methods for discov-
ery of mutational signatures has achieved considerable success,
this is still an emerging field, stemming from recent analytical
and technological breakthroughs. In this review, we aim to
summarize current methodologies, in particular the mathemat-
ical models and computational techniques, which form the
basis of mutational signature analysis.

Mathematical modelling of mutational
signatures

A mutational signature can be mathematically defined as a rela-
tionship between a (known or unknown) mutagenic process
and a series of somatic mutation types. Many classes of gen-
omic alterations can serve as features of a mutational signature,
including single-nucleotide or dinucleotide substitutions, small
insertions and deletions (indels), copy number changes, struc-
tural rearrangements, transposable element integration events,
localized hypermutation (kataegis) and epigenetic changes. In
practice, only a limited number of features can be incorporated
into the mathematical abstraction of a mutational signature,
with the attention of most studies to date being focused on
single-base substitutions. However, signatures based on indels
[29, 32] or structural variants [27, 29, 32] have also been
described. Furthermore, certain substitution signatures are con-
sistently associated with features such as increased numbers of
indels or rearrangements of a particular class, kataegis events,
or biases in the transcriptional strand in which mutations occur
[2, 28–30, 33]. It is therefore useful to consider such features as
biological constraints for the identification of signatures, even if
precisely modelling them is more challenging.

The selected set of K mutation types can be expressed as a fi-
nite alphabet A, with Aj j ¼ K, every symbol in A representing a
distinct mutation type. This alphabet constitutes the domain of
a mutational signature, which is modelled as a discrete prob-
ability density function, S : A ! R

K
þ. Hence, the mathematical

representation of a given signature, Sn, is a K-tuple of probability
values, Sn ¼ ½s1n; s2n; . . . ; skn�T, with skn denoting the probability
of the mutation type represented by the k-th symbol in A being
caused by the mutational process associated with Sn. As prob-
ability values, the elements of Sn are intrinsically non-negative
and their sum is always 1:

XK

k¼1

skn ¼ 1: (1)

skn � 0; 1 � k � K: (2)

The same mutational process operating in multiple genomes
may produce different numbers of mutations in each. The in-
tensity at which a mutational process with signature Sn oper-
ates in a genome g, expressed in terms of the number of
mutations caused, is known as the ‘exposure’ to (or the ‘contri-
bution’ or ‘activity’ of) the process, and denoted by eng.

Regarding the catalogue of somatic mutations in a cancer gen-
ome g, this is also defined as a vector of mutation counts over
A, Mg : A ! N

K
0 , and expressed as a second non-negative

K-tuple: Mg ¼ ½m1g; m2g; . . . ; mKg�. (This notation of mutational
catalogues, signatures and exposures will be maintained here-
after for coherence.)

A mutational catalogue can be approximately considered as
a linear superposition of the signatures of the latent mutational
processes that have acted at some point in the somatic cell lin-
eage giving rise to the sampled neoplastic cells, each signature
weighted by the exposure to the corresponding process. In add-
ition, catalogues are expected to contain some level of noise
arising from sequencing or analysis errors and sampling noise.
Neglecting such noise, the number of mutations of the k-th type
in the catalogue Mg, mkg, can be approximated by the sum of the
k-th element of the N operative mutational signatures, each
weighted by its respective exposure:

mkg �
XN

n¼1

skn eng: (3)

Most of the existing mathematical approaches to mutational
signature inference have focused on single-base substitutions as
mutation features, maintaining the convention established by
Nik-Zainal et al. [33] and Alexandrov et al. [2]. In this scheme, sub-
stitutions are first classified into six categories, by representing
the change at the pyrimidine partner in the mutated base pair
(e.g. a guanine-to-adenine substitution, G>A, is instead expressed
as a cytosine-to-thymine change, C>T, in the complementary
strand). This classification is then extended by considering the im-
mediate sequence context of the substitution, usually the adjacent
50 and 30 bases. The six substitution types are thus translated into
96 trinucleotide mutation types (six substitution types� four types
of 50 base� four types of 30 base). An extensive literature supports
the need for at least a trinucleotide context of mutations to distin-
guish the mutational patterns induced by a variety of mutagens.
In addition, there have been attempts to deconvolute signatures
using a five- or seven-base sequence context, resulting in 1536
and 24,576 mutation types, respectively [27, 34, 35]. Further elabor-
ation can also be achieved by considering the transcriptional
strand of mutations in transcribed regions. Nevertheless, expand-
ing the range of mutation types normally implies a decrease in the
observed number of mutations per type, which may curb the
power to identify patterns.

In a generalization that considers N different mutational
processes acting in a collection of G cancer genomes, with
mutational catalogues defined over K mutation types, the
catalogues, signatures and exposures can be mathematic-
ally expressed as matrices named M, S and E, respectively
(Figure 1A):

MK�G ¼

m11 m12 � � � m1G

m21 m22 � � � m2G

..

. ..
. . .

. ..
.

mK1 mK2 � � � mKG

26666664

37777775

SK�N ¼

s11 s12 � � � s1N

s21 s22 � � � s2N

..

. ..
. . .

. ..
.

sK1 sK2 � � � sKN

26666664

37777775
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EN�G ¼

e11 e12 � � � e1G

e21 e22 � � � e2G

..

. ..
. . .

. ..
.

eN1 eN2 � � � eNG

26666664

37777775

Consequently, the approximate description of a mutational
catalogue as a sum of signatures multiplied by their exposures,
expressed in Equation (3), is generalized into matrix form:

M � S E (4)

By adopting this mathematical representation, the problem of
inferring the mutational signatures and exposures that best ac-
count for a given collection of observed catalogues becomes
equivalent to finding the instances of S and E that reproduce M
with minimal error. This is, in turn, connected to the problem of
determining the number of signatures, N, that optimally explains
the data in M (Figure 1B). This process is sometimes referred to as
de novo extraction, inference, deciphering or deconvolution of mu-
tational signatures. In contrast, the simpler problem of signature
refitting is characterized by both M and S being known a priori.

Computational approaches for mutational
signature discovery

A host of computational strategies have been advanced to
tackle the problem of signature discovery as formulated above;
these are presented below and summarized in Table 1.

Non-negative matrix factorization

The unsupervised learning technique of non-negative matrix
factorization (NMF) [43, 44] was devised to explain a set of
observed data using a set of components, the combination of
which approximates the original data with maximal fidelity.
NMF is distinguished from similar techniques, such as principal
component analysis (PCA) or independent component analysis,
in that non-negativity is enforced for the values composing
both the components and the mixture coefficients, and that no
orthogonality or independence constraints are imposed (there-
fore permitting partially or entirely correlated components).
These features make NMF especially well suited to the problem
of mutational signature inference because of the intrinsic non-
negativity of the matrices in the mathematical model presented
above. Moreover, NMF has repeatedly stood out as a powerful
technique for the extraction of meaningful components from
various types of high-dimensional biological data [45–49], be-
sides successful applications in other fields [46].

Figure 1. Mathematical modelling and deconvolution of mutational signatures. (A) Diagram illustrating the modelling of mutational signatures as probabilistic rela-

tionships between mutation types and mutational processes operative in genomes, for a general case with K mutation types, N mutational processes and G genomes.

The notation of signatures, exposures and mutational catalogues follows that used in the main text. The varying widths of the links between mutation types and sig-

natures (mutation probabilities), and between signatures and catalogues (signature exposures) represent the observation that varying values of skn and eng reflect the

specific mutational profile of each signature and the exposure composition of each genome. Non-negativity constraints for mutation probabilities and signature expos-

ures are specified directly below them. (B) Example of de novo signature extraction, for a case with K¼6 mutation (single-base substitution) types, N¼3 mutational sig-

natures and G¼4 mutational catalogues. Starting from the set of catalogues (depicted here as mutational profiles, each bar corresponding to a distinct mutation type),

de novo extraction methods determine the set of mutational signatures (represented as consensus mutational profiles) and exposures (depicted here as proportions of

the mutations in each catalogue, for simplicity) that reconstruct the original mutational catalogues with minimal error.
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NMF constituted the basis of the first computational method
for mutational signature inference, the Wellcome Trust Sanger
Institute (WTSI) Mutational Signature Framework (hereafter
referred to as the WTSI Framework). This was published, to-
gether with the mathematical model introduced above, in a
landmark work by Alexandrov et al. [34], which enabled the first
detailed delineations of mutational signatures in human cancer
[2, 33, 50]. The WTSI Framework performs NMF on a set of muta-
tional catalogues by building on an implementation, developed
by Brunet et al. [45], of the multiplicative update algorithm
devised by Lee and Seung [43, 51]. More formally, given a set of
mutational catalogues, M, composed of G genomes defined over
K mutation types, the method extracts exactly N mutational sig-
natures (with 1�N�min{K, G}�1), by finding the matrices S and
E that approximately solve the nonconvex optimization prob-
lem derived from Equation (4), with the selected matrix norm
being the Frobenius reconstruction error:

min
S�0; E�0

kM – S Ek2
F : (5)

The algorithm first initializes S and E as random non-
negative matrices, and reduces the dimension of M by removing
those mutation types that together account for �1% of all the
mutations. Two steps are then iteratively followed: (a) Monte
Carlo bootstrap resampling of the reduced catalogue matrix,
and (b) application of the multiplicative update algorithm to the
resampled matrix, finding the instances of S and E that minim-
ize the Frobenius norm in Equation (5). After completion of the
iterative stage, partition clustering is applied to the resulting set
of signatures, to structure the data into N clusters. The N con-
sensus signature vectors, which compose the averaged signa-
ture matrix, �S, are obtained by averaging the signatures in each
cluster. As each signature is related to a specific exposure, the
averaged exposure matrix, �E, can be inferred from �S. In cases
where the mutational catalogues have been derived from can-
cer exomes, the extracted mutational signatures should there-
after be normalized to the trinucleotide frequencies of the
whole genome.

The WTSI Framework requires the number of signatures to
infer, N, to be defined as a parameter. Because the number of

Table 1. Published software packages for mathematical inference of mutational signatures

Software Mathematical
framework

De novo
signature
extraction

Incorporation
of mutational
opportunity

Notable aspects Programming
language(s)

Reference(s)

WTSI Mutational
Signature
Framework

NMF Yes No • First mathematical
model of signatures

• Extensive develop-
ment and application

• ‘Gold standard’ status

MATLAB [34]

Somatic
Signatures

NMF Yes No • Ease of use
• Integration in

bioconductor

R [36]

MutSpec NMF Yes No • Ease of use
• Graphic user interface

R, Perl (Galaxy
platform)

[37]

EMu Probabilistic (EM,
Poisson model)

Yes Yes (tumour-
specific)

• First probabilistic
model of signatures

• First modelling of mu-
tational opportunity

• Automatic estimation
of number of
signatures

Cþþ [38]

BayesNMF Bayesian NMF
(Poisson model)

Yes No • Automatic estimation
of number of
signatures

R [39, 40]

signeR Bayesian NMF
(MCMC EM,
Poisson model)

Yes Yes (tumour-
specific)

• Automatic estimation
of number of
signatures

• Differential exposure
analysis

• Unsupervised sample
classification

R, Cþþ [41]

pmsignature Probabilistic (EM,
independent
model)

Yes Yes • Simplified mathemat-
ical model

• Increased number of
signature features

• Alternative visual
representation

R, Cþþ [35]

deconstructSigs Multiple linear
regression

No Yes • Analysis of signature
activities in individual
tumours

R [42]
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signatures present in the data is normally not known a priori,
the framework needs to be applied for values of N ranging be-
tween 1 (or the smallest plausible number of signatures) and
min{K, G}�1. For each value of N, the overall reproducibility
(measured as the average silhouette width [52] of the signature
clusters, using cosine similarity) and Frobenius reconstruction
error are calculated, and the best value is selected such that the
resulting signatures are highly reproducible and exhibit low over-
all reconstruction error. Nevertheless, the manual determination
of N on the basis of these criteria is perhaps the most heavily
criticized aspect of the WTSI Framework. Accurate estimation of
the number of mutational signatures, besides remaining one of
the thorniest facets of mutational signature analysis, is crucial,
given the associated risks of inferring signatures that merely de-
scribe the noise in the data by overfitting (through overesti-
mation of N), or insufficiently separating signatures present in
the data by underfitting (through underestimation of N).

Although the NMF approach has proven highly effective, es-
pecially when applied to large cohorts of cancer genomes, it is
not without conceptual limitations [34]. The first of these lies in
the number of catalogues required, which is a limiting factor on
the number of signatures that can be accurately extracted, and
rises exponentially with N. The number of mutations per cata-
logue also influences the power to infer signatures, with a small
set of densely mutated genomes being more informative than a
large number of sparsely mutated genomes. In fact, the influ-
ence of catalogues with extreme mutation burdens (hypermu-
tated genomes) on the NMF process can hinder the detection of
signals from less-mutated catalogues. Furthermore, mutational
signatures exhibiting higher exposures can generally be identi-
fied more easily and accurately. Sensitivity to initial conditions
is another major limitation, arising from the high dimensional-
ity and inherent nonconvexity (presence of multiple local min-
ima) of the optimization problem posed by Equation (5). This
aspect of NMF has attracted particular attention in the past,
leading to the proposal of alternative initialization strategies
[53, 54] that might outperform the random initialization
adopted by the WTSI Framework.

In more recent analyses, the WTSI working group has signifi-
cantly refined their own application of the WTSI Framework, to
enhance power and accuracy; however, such refinements have
not been incorporated in the publically available software. First,
an additional analysis step can follow the deconvolution of con-
sensus mutational signatures, which centres on precisely esti-
mating the contribution of each signature to each genome [28].
This is individually achieved for each catalogue through mini-
mization of a variation of the function shown in Equation (5);
the difference lies in S now being known, and harbouring only
the consensus mutational patterns of the processes that oper-
ate in the tumour type of the sample (these are known from the
signature extraction process). Notably, additional biological
constraints are imposed in the selection of the processes
included in S; these require that, for each candidate process, at
least one associated genomic feature (e.g. transcriptional strand
bias or enrichment in aberrations of a specific type) be present
in the examined sample. The second enhancement consists of a
‘hierarchical signature extraction’ process [29], which is directed
to increase the power to identify signatures exhibiting either
low activity or limited representation across the sample cohort.
Here, the WTSI Framework is initially applied to the original
matrix, M, containing all the somatic catalogues. After identifi-
cation of signatures, those samples that are well explained by
the resulting mutational patterns are removed from M, and the
method is re-applied to the remaining catalogues. The process

is repeated until no new signatures are discovered, and the add-
itional step for estimating signature contributions described
above is then applied to all the consensus patterns.

Following the success of the WTSI Framework, other soft-
ware tools have been released that exploit NMF to decipher mu-
tational signatures. The SomaticSignatures package, developed
by Gehring et al. [36], provides an R implementation of the NMF
algorithm by Brunet et al. [45]. It aims to offer a more accessible
approach to signature inference, featuring additional normal-
ization and plotting routines and allowing integration with
widely used Bioconductor [55] workflows and data structures.
On the other hand, this accessibility is accompanied by a not-
able shortage of options for fine-tuning of the inference process.
In addition, the package allows the application of PCA for de
novo signature extraction; however, as it does not enforce non-
negativity, PCA is implausible from a biological standpoint,
and unlikely to be fruitful. Despite this, and because of its
simplicity and adherence to the Bioconductor framework,
SomaticSignatures has become the tool of choice in a number of
recent cancer studies [56–62].

MutSpec is a third framework, presented by Ardin et al. [37],
that exploits NMF through the R package developed by Gaujoux
and Seoighe [63]; this provides an interface to several NMF im-
plementations, including that by Brunet et al. [45]. Moreover,
MutSpec stands out for being the first published tool in the field
that features a comprehensive graphical user interface, with a
view towards empowering a wider variety of researchers,
including those with limited bioinformatics expertise, to per-
form analyses of mutational catalogues. MutSpec accomplishes
this by building on the open-source Galaxy platform [64, 65],
which allows integration of multiple bioinformatics tools in an
accessible and reproducible manner.

Although both SomaticSignatures and MutSpec ultimately
apply the same implementation of the multiplicative update
algorithm for NMF [45] originally adopted by the WTSI
Framework, it should be noted that these packages may not pro-
duce identical results to those of the latter, as they lack the com-
putationally intensive preprocessing and bootstrapping routines
that complement the application of NMF in the method devised
by Alexandrov et al. [34]. Nevertheless, SomaticSignatures and
MutSpec do adopt the definition of mutational signatures as
probability vectors over single-base substitution types in a trinu-
cleotide context. It is worth noting that one recent study [27] that
applied both the WTSI Framework and SomaticSignatures for de
novo extraction of signatures from oesophageal adenocarcinoma
genomes reported a high similarity between the core mutational
patterns identified by both tools.

Expectation–maximization

In contrast to the numerical optimization approach to mutational
signature inference expressed by Equation (5), probabilistic
frameworks have also been devised, which exploit the intrinsic-
ally stochastic nature of mutagenesis. These frameworks have
been claimed to be better suited to deal with mutational stochas-
ticity, which is partly responsible for the noise observed in muta-
tional catalogues and becomes more prominent as less-mutated
genomes, or smaller genomic regions, are examined.

The first probabilistic approach in the field was developed by
Fischer et al. [38], under the name EMu. It builds on the insight
that the NMF optimization problem posed by the WTSI
Framework can be recast as a probabilistic model, in which the
observed mutation counts (M) are distributed as independent
Poisson random variables (the Poisson distribution is widely
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used to model count data), parameterized by the product of the
matrices of signatures (S) and exposures (E). Given some as-
sumptions, such as that the quantity being minimized in NMF
is a type of Bregman divergence [66], the two approaches are
equivalent [67–69]. Estimation of S and E is performed through
an expectation–maximization (EM) algorithm [70]. Notably, the
probabilistic setting also addresses the determination of the
most plausible number of signatures, N, as a model selection
problem.

Another novelty of EMu is the incorporation of tumour-
specific variation in mutational opportunity across different se-
quence contexts. Mutational opportunities, which derive from
the sequence composition of a genome, can be expressed as a
non-negative K-tuple containing the opportunity for each muta-
tion type in the genome g, Og ¼ ½o1g; o2g; . . . ; oKg�. For single-
base substitutions in a trinucleotide context, the opportunities
correspond to the frequencies of each trinucleotide type in each
genome. Explicitly accounting for the opportunity for mutations
to occur is especially relevant, given that the relative frequency
of certain sequences in the human genome (e.g. under-repre-
sentation of CpG dinucleotides) can exert undesired biases on
the inferred mutational patterns. In addition, copy number al-
terations, which are frequent in cancer genomes [1, 71], can sub-
stantially alter the mutational opportunity in affected regions
across tumours. The divergence in sequence composition
across genomic segments also makes opportunity a relevant
factor in the determination of signature contributions in a spe-
cific region. The probabilistic framework and explicit depend-
ence on opportunity are intended to increase adaptability for
the analysis of signatures in short genomic regions.

Fischer et al. make use of a Poisson-distributed probabilistic
model to describe the mutational catalogue of a given genome
as the result of a stochastic process of mutation accumulation.
Assuming the N mutational processes to be mutually inde-
pendent, the probability of observing the catalogue Mg ¼ ½m1g;

m2g; . . . ; mKg� is given by:

p Mg

����� Eg; Og; S

 !
	
YK
k¼1

Pois mkg

����� okg

XN

n¼1

skn eng

 !
(6)

In this model, the mutational signatures, S, act as the shared
model parameters, and the signature exposures, E, as the hid-
den data. The end of the EM procedure is to find maximum like-
lihood estimates of both, thereby solving the deconvolution
problem. The algorithm starts by making an initial guess of the
model parameters, Sð0Þ, and thereafter iterates through two
steps. In the first, denoted E-step, an estimate is obtained for
the signature exposures, bE, given the current parameter guess,
SðkÞ. In the subsequent M-step, bE is used to update the param-
eter estimate for the next iteration, Sðkþ1Þ. Iteration through
these steps finishes when the likelihood of the observed data,
pðMjSÞ, converges to a local maximum.

The data likelihoods obtained for different values of N are
compared to determine the number of mutational processes
involved. Because increasing N normally leads to a better ex-
planation of the data, as a result of the higher number of avail-
able model parameters, the likelihood generally rises with N.
Overfitting of the data is avoided applying the Bayesian infor-
mation criterion (BIC) [72], a model selection criterion whose se-
cond term corrects for the model complexity:

BIC ¼ 2 log p MjSð Þ – N K – 1ð Þ log G: (7)

The BIC is calculated for each of the models, and the one ex-
hibiting the highest BIC value is selected [72, 73]. After inference
of signatures, EMu can estimate both the global exposures in
each genome and the local exposures per genomic region.
Inference of local exposures is performed by dividing each gen-
ome into non-overlapping segments of equal length, and using
the estimated global exposures as an informed prior distribu-
tion. The patterns of variation in local exposures can subse-
quently be compared within and across genomes.

It is worth noting that, while EMu builds on a valid alterna-
tive interpretation of NMF, which considers the latter as an ap-
plication of EM to a particular problem [68], the novel concepts
and advantages of the method presented by Fischer et al. are
not intrinsic properties of the EM paradigm, but explicit en-
hancements that are amenable to assimilation by other
approaches. On the other hand, EMu suffers from the same sen-
sitivity to initial conditions as conventional NMF, and it may as
well benefit from alternative initialization strategies. Despite
this, EMu successfully exploits a probabilistic formulation of
mutational signature inference to address previously unex-
plored aspects, namely, the incorporation of context- and
tumour-specific opportunity for mutations, the estimation of
local signature exposures and the direct determination of the
number of mutational processes.

Bayesian NMF

As noted above, the WTSI Framework has been criticized for
requiring a manual selection of the number of mutational signa-
tures, N, on the basis of heuristics that are indicative of the good-
ness of the solutions. While EMu addresses this issue by means
of a purely probabilistic methodology, alternative approaches
have proceeded by wrapping NMF in a Bayesian framework,
partly with a view towards improving estimation of N.

The BayesNMF software by Kasar et al. [39] and Kim et al. [40]
is based on a variant of NMF proposed by Tan and Févotte [74].
Similarly to the strategy introduced by Fischer et al. [38],
BayesNMF exploits the compatibilities between NMF and a
Poisson generative model of mutations. More specifically, the
number of mutations of the k-th type in a genome g, mkg, is
assumed to be the combination of N independent mutation bur-
dens, mn

kg (with 1� n�N); such burdens are in turn assumed to
be generated by a Poisson process parameterized by mutation-
type- and genome-specific rates, such that the expected num-
ber of mutations attributed to signature Sn is:

E mn
kg

h i
¼ skn eng: (8)

The properties of the Poisson process [75] then imply that
mkg is also Poisson-distributed as:

mkg 
 Pois
XN

n¼1

skn eng

 !
: (9)

Consequently, as already seen, the estimation of signatures
(S) and exposures (E) by maximizing the likelihood of the
observed data (M), given the expectation E[M]¼ S E, is equivalent
to the minimization of a particular Bregman divergence [66] be-
tween M and the matrix product S E through NMF [74]. However,
BayesNMF addresses the selection of N implicitly through a
technique known as ‘automatic relevance determination’ [74],
which ‘prunes’ or ‘shrinks’ those components in S and E which
are inconsequential, not contributing to explaining M. Each
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signature Sn is therefore assigned a relevance weight, Wn; then,
after imposing appropriate priors on the parameters, NMF infer-
ence is performed via numerical optimization. During this pro-
cess, the columns of S and rows of E corresponding to
inconsequential pairs of signatures and exposures are shrunk
to zero by their relevance weights. The effective dimensionality,
corresponding to the estimated number of mutational signa-
tures, is given by the final number of non-zero components.

Notably, the authors have extended their method to expli-
citly incorporate the transcriptional strand of mutations [40],
resulting in a model with 192 trinucleotide mutation types (96
for each strand). While the WTSI Framework does not explicitly
account for transcriptional strand biases, some studies have
used this and other genomic features as biological constraints
for validating the presence of specific signatures in a sample
[28]. Moreover, models incorporating transcriptional strand in-
formation are only suitable for mutations in transcribed
regions.

Another notable aspect of the application of BayesNMF, par-
ticularly that presented by Kim et al. [40], is the manner in which
the excessive influence of hypermutated catalogues on the in-
ference is moderated. This is based on equally partitioning the
mutations in hypermutated genomes into multiple artificial
catalogues, which maintain the mutational profile of the ori-
ginal tumour. The number of artificial catalogues is chosen
such that their contribution becomes similar to that of non-
hypermutated samples, without altering the overall number of
mutations. Because of the linear properties of NMF [43], the
number of mutations attributed to each signature in the original
genomes can be reconstructed by summing the exposures in
their respective artificial catalogues. As a measure to overcome
sensitivity to initial conditions, Kim et al. [40] also performed
multiple applications of the method with random initial
conditions.

A second Bayesian approach to NMF has been recently pro-
posed by Rosales et al. [41] in the form of the signeR package. This
follows an empirical Bayesian approach to NMF, which consider-
ably differs from the strategy devised by Kasar et al. [39] and Kim
et al. [40]. First, the authors account for tumour-specific muta-
tional opportunities, following the example set by Fischer et al.
[38]. The number of mutations of the k-th type in a genome g,
mkg, is assumed to be a Poisson-distributed variable, with a rate
incorporating the mutational opportunity, okg:

mkg 
 Pois okg

XN

n¼1

skn eng

 !
: (10)

The matrices S and E, which are the parameters of the gen-
erative Poisson process, are initialized either by sampling from
their (Gamma) prior distributions or by applying numerical NMF
via the implementation developed by Gaujoux and Seoighe [63].
The central method for inference is based on a combination of
Markov chain Monte Carlo (MCMC) and EM techniques, which
are applied in an iterative fashion [76]. This MCMC EM strategy
provides a posterior distribution of the NMF model, from which
estimates for the mutational signatures and exposures can be
derived. The MCMC EM algorithm, in which the chosen MCMC
variant is a Metropolized Gibbs sampler, is applied to obtain a
series of MCMC samples from the posterior distributions of the
model parameters (S and E), hyperparameters and hyperprior
parameters. These samples can be subsequently used to derive
point estimates and posterior statistics for signatures and ex-
posures. Estimation of the number of mutational signatures is

tackled, as in EMu, by means of the BIC, which is described in
Equation (7) and computed as the median of the BIC values
across the MCMC samples.

In addition to this Bayesian NMF framework, Rosales et al.
[41] introduce two novel applications of the method. The first is
the incorporation of an a priori categorization of samples, on
the basis of independent knowledge (e.g. clinical data), to deter-
mine whether the exposure of any of the mutational signatures
diverges significantly between the defined categories. Secondly,
a measure known as ‘differential exposure score’, which results
from this analysis of exposures, can be used to assign unclassi-
fied samples to one of the categories, using a k-nearest neigh-
bour algorithm [77]. This ability for unsupervised clustering of
tumours may prove especially relevant for clinical cancer
prognosis.

Independent probabilistic model

An unconventional approach to mutational signature discovery,
which stands out for the adoption of a novel probabilistic model
of signatures, has been introduced in the pmsignature R pack-
age by Shiraishi et al. [35]. Their model is termed ‘independent’
because, in contrast to the conventional ‘full’ model used by all
other methods, it decomposes mutational signatures into sep-
arate features (such as substitution type, flanking bases or tran-
scriptional strand bias), which are assumed to be mutually
independent. The notion of independence across features of a
signature, if counter-intuitive, simplifies the model drastically
by reducing the number of parameters per signature. This, in
turn, allows incorporation of additional signature features, such
as extended sequence context. For instance, the mutational pat-
tern defined by single-base substitutions in a pentanucleotide
sequence context results in K¼ 1536 mutation types, or 1535
free parameters per signature, in the full model. Generally, ac-
counting for the n adjacent bases 50 and 30 of the mutated site
results in (K�1)¼ (6� 42n�1) free parameters in the full model.
This imposes a practical limit on the number of features that
can be incorporated into a signature because both inference sta-
bility and interpretability of the inferred signatures decline as
the parameter space gains in dimensionality. The consequence
is a constrained flexibility of full models; these, for example,
normally consider only a trinucleotide sequence context, thus
ignoring the information potentially harboured by farther adja-
cent nucleotides [78, 79].

The work of Shiraishi et al. [35] can be seen as a quantum
leap in the modelling of mutational signatures. Instead of be-
longing to a single mutation type, each mutation is modelled as
having L distinct features, each with its own range of discrete
values, and is therefore represented by a feature vector of
length L. A signature Sn is characterized using an L-tuple of par-
ameter vectors, Fn ¼ ½f n1; f n2; . . . ; f nL�, where f nl is the probabil-
ity vector of the l-th feature in signature Sn, its length being
equal to the number of possible values of the feature. In this
model, single-base substitutions on a pentanucleotide context
are represented using five features (substitution and four flank-
ing bases). Each feature being an independent probability vec-
tor, this involves (6�1)þ 4� (4�1)¼ 17 free parameters, instead
of 1535. In general, incorporating the n adjacent bases on each
side of the mutated site requires only (5þ 6n) parameters.
Remarkably, this independent model of signatures can be con-
sidered as a generalization of the full model; the latter would be
the simplest case of independent model, where all the signature
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features have been collapsed into a single attribute, the ‘muta-
tion type’, which contains all the possible feature combinations.

Instead of using numbers of mutations, pmsignature models
the contribution of a signature as the proportion of mutations
attributed to it in each genome. Such proportions, denoted by
qgn, are termed ‘membership parameters’, because of the close

relationship between this model of mutations and the so-called
mixed membership or admixture models [80] (also known as la-
tent Dirichlet allocation models [81]), which have been exten-
sively applied to population genetics and document clustering
problems. In pmsignature, each mutation is assumed to be the
result of a two-step generative model: first, a mutational signa-
ture is selected according to the membership parameters of the
current catalogue; secondly, the features of the mutation are
generated according to the multinomial distribution described
by the chosen signature. Of note, informative parallelisms be-
tween NMF and admixture models have been previously noted
by other authors [82], suggesting that current methods could
benefit from the experience gained in applications of the latter.

The central parameters of the independent model, namely,
the sample membership proportions, qgn, and the signature
parameters, Fn, need to be estimated from the observed cata-
logues; this is done by means of an EM algorithm [70]. To ac-
count for the tendency of EM to converge to different local
maxima depending on the initial conditions, the algorithm is
applied on multiple initial configurations, before choosing the
solution that exhibits maximum likelihood overall. To model
mutational opportunity, instead of using probabilistic coeffi-
cients, pmsignature uses a ‘background signature’ correspond-
ing to the genome frequencies of the types of nucleotide
association considered (e.g. pentanucleotides). However, this
background signature is based on the human reference genome,
thus negating incorporation of sample-specific variegation in
opportunity. Regarding the estimation of the number of muta-
tional processes, an analogous strategy to that implemented by
Alexandrov et al. [34] is adopted, with N being manually chosen
such that the likelihood is sufficiently high, and the standard
errors of the parameters are sufficiently low. In addition, N is se-
lected such that the resulting set of mutational signatures does
not contain any pair of signatures which seem to correspond to
the same mutational process (signatures exhibiting similar fea-
ture patterns and membership parameters). Hence, a more ver-
satile strategy to automatically determine N would constitute a
major improvement of the method.

The consequence of adopting a simpler model in pmsigna-
ture, as reported by the authors [35], is a gain in power
and stability, which allows inference of more-accurate and
more-reproducible signatures from smaller sample cohorts.
Moreover, the reduction in parametric complexity enables the
incorporation of additional contextual features, such as ex-
tended sequence context, transcriptional strand, copy number
and epigenetic states. The consequent gain in signature reso-
lution can potentially prompt the unveiling of novel mutational
patterns and associated biological insights. Nevertheless, it
must be noted that an independent model of signatures is
implicitly unable to reflect interactions between the different
features of a signature, such as flanking bases and substitution
type, which may exist in some signatures.

To simplify the visualization of signatures with multiple fea-
tures, the authors have also introduced a novel graphical repre-
sentation [35], closely related to sequence logos [83], that
provides a schematic view of the distinctive characteristics of a
signature. Albeit reliant on the illustration of probabilities as
surface areas, which are often difficult to interpret visually [84],

diagrammatic representations of this kind will likely become in-
dispensable if the resolution of signatures is to be significantly
enhanced, as the interpretation of mutational patterns ex-
pressed as plain probability distributions would soon become
impractical.

Mutational signature refitting

From the perspective of the NMF model, the problem of refitting
mutational signatures consists of estimating the exposures (E)
of a given set of signatures (S) in a collection of mutational cata-
logues (M), with the actual number of operative processes (N)
being known or unknown. Because S is known a priori, signa-
ture refitting is a much more tractable problem than de novo sig-
nature inference. In consequence, signature refitting does not
suffer the requirement of large sample cohorts to achieve power
and accuracy, being even applicable to individual genomes.

The deconstructSigs R package, recently developed by
Rosenthal et al. [42], is currently the only published method ex-
plicitly designed for mutational signature refitting. It adopts an
iterative multiple linear regression strategy to estimate the lin-
ear combination of signatures that optimally reconstructs the
mutational profile of each genome in M, imposing non-negativ-
ity on the inferred signature exposures. Mutational catalogues
are modelled as mutation proportions, instead of counts, and
normalization by mutational opportunity is enabled through
the incorporation of the trinucleotide frequencies from the ref-
erence human genome. The iterative fitting algorithm, which is
applied separately to each catalogue, starts by discarding those
signatures in which a mutation type that is absent from the
examined catalogue has a probability >0.2. This prevents con-
sideration of signatures that, according to their mutational pro-
files, are unlikely to be present in the tumour. An initial
signature is then selected, such that the sum of squared errors
(SSE) between the signature and the mutational profile of the
catalogue is minimized. The exposure value that minimizes the
SSE for the chosen signature is set as the only positive exposure.
In successive iterations, each of the remaining signatures is
evaluated to find the exposure value that minimizes the SSE be-
tween the reconstructed profile (including the previously incor-
porated exposures and the candidate one) and the mutational
profile of the tumour. The signature achieving minimum SSE is
selected, and its optimal exposure is incorporated to the recon-
structed profile. The process continues until the difference in
SSE before and after an iteration falls below an empirically
determined threshold of 10–4; the estimated exposures are then
transformed to proportions. Finally, any exposure <0.06 (6%) is
discarded, to exclude spurious signatures; this minimum expos-
ure threshold was also empirically determined from simulation
studies.

An iterative regression strategy has important associated
risks, the most prominent being the impossibility of reducing or
removing the contribution of a signature after it has been se-
lected. Consequently, a signature that is absent from the sam-
ple might be unalterably chosen in the initial iterations, only
because it fits the overall profile of the tumour better than any
other signature. This is not a rare situation, as one-third of the
currently published mutational signatures [31] (all of which are
by default included in S) are mostly composed of cytosine-to-
thymine (C>T) changes. Thus, for example, a mutational pro-
file arising from the combination of two given signatures may
initially be best fitted by a third signature, which does not con-
tribute to the mutational profile, but which significantly resem-
bles it. Two measures to minimize the risk of misfitting are (a)
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carefully selecting the signatures to include in S, preferring
those that have been already associated with the examined tu-
mour type; and (b) considering knowledge about additional gen-
omic features linked to the activity of a mutational signature in
a genome. Limiting the set of candidate signatures also lessens
the risk of overfitting, especially given that the number of signa-
tures, N, is indirectly determined in this method through the
empirically set thresholds for change in SSE and minimum ex-
posure value. On the other hand, the described measures in-
crease the opportunity for the biases of the investigator to
influence the outcome.

Despite such concerns, the identification of mutational signa-
tures in individual tumours through refitting harbours extreme
potential, as emphasized by Rosenthal et al. [42] and demon-
strated by the number of studies that have adopted their method
in the short time since its publication [60, 85–88]. When used for
refitting well-validated signatures in specific cancer types,
deconstructSigs has the power to detect mutational processes
that operate only in small subsets of genomes, without the com-
plexity or requirement of large cohorts that characterize de novo
approaches. Some remarkable applications are the comparison
between processes operative across different cancer subtypes,
and the analysis of variegation in signature activities over time
within a single tumour, or between primary and metastatic sites
in a same patient. As genomic examination of individual malig-
nancies is gradually incorporated into clinical practice, a straight-
forward method to ascertain which mutational processes operate
in a cancer genome, and to what extent, potentially including
their temporal and spatial evolution, will constitute an invaluable
instrument for the advancement of personalized cancer therapy.

Alternative approaches

Apart from the ones described here, both de novo inference and
refitting of mutational signatures are amenable to many other
computational approaches, including purely Bayesian techniques
(e.g. hierarchical Dirichlet processes), global optimization meta-
heuristics (e.g. simulated annealing) and non-linear optimization
algorithms capable of handling the sum-to-one constraint of sig-
nature distributions (e.g. sequential quadratic programming).
When considering the design of novel methods for the analysis of
mutational signatures, the special properties of each technique,
such as propensity for overfitting, sensitivity to initial conditions,
computational cost and scalability, should be thoughtfully con-
sidered. In the near term, fresh methodologies are likely to arise,
which build on either the mathematical models of signatures al-
ready developed or entirely new ones. Furthermore, because sig-
nature refitting poses a much simpler mathematical problem
than de novo signature deconvolution, approaches based on well-
established mathematical or statistical paradigms could be imple-
mented with little effort, as substantiated by works that have
already accomplished signature refitting through some of the
aforementioned techniques [27, 89, 90].

Discussion

In the relatively short time since its first reported application
[33, 50], the deconvolution of mutational signatures has proven a
successful analytical technique. Numerous authors have high-
lighted the potential of mutational signature analysis in the set-
tings of cancer treatment and prevention. The proposed
applications thus far include the use of signatures (a) as genetic
biomarkers of early malignancy or exposure to carcinogenic
agents, especially in combination with ‘liquid biopsy’ diagnostic

techniques [23, 26]; (b) to stratify patient cohorts into subgroups
indicative of distinct dominant aetiological factors, with the aim
of suggesting targeted therapies that may benefit some sub-
groups on the basis of the molecular mechanisms involved [19,
22, 24, 27, 91]; (c) to discover or support causative links between
exposure to known or novel carcinogens and the development of
particular cancer types, by determining the extent to which those
carcinogens contribute to mutagenesis [25, 26, 92, 93]; (d) to evalu-
ate the safety of chemotherapeutic agents, some of which have
been shown to contribute to the mutation burdens in exposed
patients, with a view towards minimizing the mutagenic impact
of novel therapies, especially in relation to potential resistant
clones [19, 20]; (e) to drive novel molecular research directed at
establishing links between mutagens or molecular processes and
currently unexplained (‘orphan’) signatures [19], or to tease apart
the individual fingerprints hidden in composite mutational pat-
terns, such as that of the complex chemical mixture in tobacco
smoke [26]; (f) to estimate the cancer risk posed by germ line vari-
ants affecting genes in DNA repair or detoxification pathways,
which may induce the appearance or reinforcement of character-
istic mutational patterns [94]; and (g) to contribute towards public
awareness and education of the cancer risk associated with pre-
ventable exposures to certain mutagens (currently, mainly to-
bacco smoke, ultraviolet light, aristolochic acid, aflatoxin B1 and
some pathogen infections) [2, 25, 26, 92, 93].

From a biological standpoint, the potential of mutational signa-
ture analysis to identify and quantify the contributions of muta-
genic processes operative in cancer genomes makes it an
outstanding tool for further delving into the fundamental causes
and mechanisms of tumorigenesis [7, 93]. For instance, in contrast-
ing the mutational mechanisms that operate in normal and cancer
genomes, the study of signatures has helped to settle the long-
standing debate around whether the mutation rates and processes
shaping the genomes of normal cells can account for the aberra-
tions found in cancer genomes [23, 95]. Another example is the
study of mutational processes affecting both cancer and normal
cells, some of which are associated with biological age [28, 98].

The WTSI Mutational Signature Framework, with a consider-
able number of successful applications in large-scale genomic
studies of cancer [2, 22, 24, 25, 27–30, 32, 33, 50, 92, 95], represents
the current state of the art of the NMF approach to signature de-
convolution. Consequently, it acts as a de facto ‘gold standard’ in
the field. Despite this, the method has several conceptual limita-
tions, especially the requirement of extensive cohorts of gen-
omes, and harbours potential for further methodological
refinements [34]. Different enhanced flavours of NMF have been
proposed [53, 74, 97, 99–106], which might hold the key to improv-
ing the effectiveness of the WTSI Framework’s model, for ex-
ample by incorporating additional sparsity constraints. Other
distinct statistical approaches to signature inference have been
proposed with a view towards overcoming the limitations of con-
ventional NMF, which turn to either Bayesian approximations to
NMF [40, 41] or entirely probabilistic models [35, 38, 42].
Interestingly, independent works [25, 27] have performed direct
comparisons between some of these methods and reported not-
able coherence between their outcomes, despite their divergent
mathematical frameworks. Other approaches, while still adher-
ing to the classic NMF formulation, intend to facilitate signature
analysis by means of user-friendly graphical interfaces [37] or in-
tegration in popular bioinformatic frameworks [36]. As a mount-
ing number of medium-scale studies aspire to probe the
mutational mechanisms operating in specific cancer types or
subtypes, methods that enable simple and accurate analysis of
signatures are definitely welcome contributions to the field.
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The identification of mutational signatures in cancer gen-
omes remains a daunting endeavour, despite the breakthroughs
it has spurred. In the short term, some of the computational
strategies reported here will likely be subjected to significant re-
finement, or extended through the release of new software,
while fresh approaches to signature discovery, using yet-
unexploited techniques, are also sure to arrive. In the longer
term, it must be noted that current methods base their signa-
ture models exclusively on mutational profiles, and fail to in-
corporate other experimental and clinical knowledge about
mutational processes. Instead, current studies rely on a manual,
informal consideration of the additional biological features
associated with certain signatures. Such features should be
quantified and formally accommodated in mathematical mod-
els, if methods for identification are to be further sharpened. At
the same time, the pursuit of high-resolution mutational signa-
tures by accounting for additional contextual features might be
hindered by the limitations of current models. It can be argued
that innovative models assuming neither complete mutual in-
dependence nor non-independence between the features of a
signature could prove key to achieving the ideal compromise
between flexibility and complexity that is warranted for power-
ful, stable and accurate delineation of mutational signatures.

As current and forthcoming approaches shed light on the
mathematical properties of mutational signature discovery, the
study of somatic mutation patterns will surely be extended
through the addition of new signatures, aberration classes, con-
textual features and previously unexamined cancer types.
Meanwhile, the insights yielded by advances in this field will
further our understanding of the causes, mechanisms and evo-
lution of human malignancy, and provide new opportunities for
cancer prevention and treatment.

Key Points

• The somatic mutations in a genome are the result of
the activity of one or more mutational processes, some
of which imprint a distinct mutational signature.

• NMF is the most widely used method for identifying
mutational signatures.

• Alternative approaches include partly and fully prob-
abilistic models, as well as NMF implementations offer-
ing greater ease of use.

• The study of mutational signatures can prove useful
for cancer prevention and treatment efforts, including
patient stratification and identification of novel
mutagens.

• The field will likely be expanded with the inclusion of
additional techniques, mutation classes, biological fea-
tures and tumour types.
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102. Morikawa Y, Yukawa M. A sparse optimization approach to
supervised NMF based on convex analytic method. In: 2013
IEEE International Conference on Acoustics, Speech and Signal
Processing, 2013, 6078–82, IEEE, Piscataway, New Jersey.

103. Peharz R, Pernkopf F. Sparse nonnegative matrix factoriza-
tion with ‘0-constraints. Neurocomputing 2012;80:38–46.

104. Sindhwani V, Ghoting A. Large-scale distributed non-
negative sparse coding and sparse dictionary learning. In:
Proceedings of the 18th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, 2012, 489–97, ACM, New
York.

105. Zheng CH, Huang DS, Sun ZL, et al. Nonnegative independ-
ent component analysis based on minimizing mutual infor-
mation technique. Neurocomputing 2006;69:878–83.

106. Chen M, Chen W-S, Chen B, et al. Non-negative sparse repre-
sentation based on block NMF for face recognition. In:
Biometric Recognition. 2013, 26–33, Springer, Cham.

88 | Baez-Ortega and Gori




