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Abstract

The paper reviews the use of the Hadoop platform in Structural Bioinformatics applica-
tions. Specifically, we review a number of implementations using Hadoop of high-throughput
analyses, e.g. ligand-protein docking and structural alignment, and their scalability in com-
parison with other batch schedulers and MPI. We find that these deployments for the most
part use known executables called from MapReduce rather than rewriting the algorithms.
The scalability exhibits a variable behaviour in comparison with other batch schedulers, par-
ticularly as direct comparisons on the same platform are generally not available. We do note
there is some evidence that MPI implementations scale better than Hadoop. A significant
barrier to the use of the Hadoop ecosystem is the difficulty of the interface and configuration
of a resource to use Hadoop. This will improve over time as interfaces to Hadoop e.g. Spark
improve, usage of cloud platforms (e.g. Azure and AWS) increases and approaches such as
the Workflow Definition Language are taken up.
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1 Introduction

The Apache Hadoop project [73] is a software ecosystem i.e. a collection of interrelated, interacting
projects forming a common technological platform [48] for analysing large data sets.

Hadoop presents three potential advantages for the analysis of large Biological data sets. In
the first instance, it is designed for the analysis of large semi-structured data sets; secondly it
is designed to be fault tolerant (in essence by ensuring a very large amount of overall redun-
dancy) which becomes almost inevitable for sufficiently large numbers of processors; finally the
MapReduce formalism for describing the data sets allows for the easy construction of work flows.

On the other hand, Hadoop also presents barriers to its adoption within the community for
Bioinformatics and the analysis of structural data. In the first instance Hadoop runs as a series of
Java libraries and hence there is a learning curve for any Bioinformatician or Structural Biologist
who hasn’t used Java before, though we note that more recent additions to the Hadoop ecosystem
such as Spark [67] have a wider range of languages. Correspondingly, unlike data parallel languages
such as High Performance Fortran [77], Hadoop cannot be easily retro-fitted into a stable code
base even if the original code is written in Java though it is possible to use Hadoop to deploy
instances of executables in the same way that batch schedulers do. Finally, implementing Hadoop
on a local cluster is not trivial and requires a significant level of expertise from the relevant systems
administrator. As we note, this latter difficulty is obviated on cloud platforms such as Azure and
AWS [66].

This paper reviews the range of work that has been done on Hadoop in Bioinformatics and
in Structural Bioinformatics in particular. Specifically this paper will determine how stable these
platforms are in comparison to other approaches such as batch schedulers and MPI (discussed in
sections 1.3 and 1.4 respectively). The rest of this paper is organised as follows. In the first instance
a brief overview of the Hadoop system as well as a description of batch schedulers and MPI. It then
describes the Hadoop formalism. A brief review of the application of Hadoop in Bioinformatics is
provided followed by an in-depth review of the application of Hadoop in Structural Bioinformatics.
Finally this paper will draw some conclusions on the scalability of Hadoop and its application in
Structural Bioinformatics.

1.1 Distributed computing architectures

1.2 Hadoop and MapReduce

Apache Hadoop is a software framework for distributed processing and storage which is typically
installed on a Linux compute cluster to facilitate large scale distributed data analysis, though it
can be run on a standalone single computer node usually for the purposes of prototyping. Hadoop
clusters may be built using commodity hardware, for instance off the shelf equipment such as
used in computer farms, and key features are fault-tolerance and data-locality. In the former
case scaling up a cluster to add more machines and disks increases the probability of a failure
occurring and hence systems must have a built-in redundancy to compensate for it. In the latter
case data-locality provides the ability of the framework to execute code on the same node or at
least the same rack of the cluster as where the input data resides. This reduces the amount of
network traffic during processing thereby avoiding network bottlenecks [21]. The fault-tolerance
and data-locality of Hadoop are made possible by its distributed file system (HDFS) [5] and by
Hadoop’s resource scheduler YARN (Yet Another Resource Negotiator) [76] which is responsible
for cluster management, in particular resource allocation and job scheduling.

The distributed data on HDFS is accessed programmatically using the MapReduce formalism,
originally implemented in Java. In this formalism the distributed data accessed from HDFS is a
set of tuples i.e. pairs of keys and values < ki, vi >, 1 ≤ i ≤ N where N are the total number of
data entries. For example, the entries in the Protein Data Bank (PDB) would be a set of pairs
where ki would be a specific PDB id and vi could be a single string with the corresponding PDB
data in XML format. All operations are based on these tuples, either creating new tuples (i.e.
through a Map step) or summarising the data stored in the tuples (i.e. through a Reduce step).
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Extending the above example, via a Map step, a specific executable (e.g. a docking program run
with a specific small molecule) could be run on each PDB entry to create a log file for each PDB
entry. In the MapReduce formalism this means creating a new set if tuples < ki, li > where ki is
again the PDB entry and li is a single string with the log file. A Reduce step could then be applied
on this second set of tuples to create a single tuple which carries some specific set of summary
data (e.g. how many structures had a docking score greater than some threshold in the previous
Map step).

The rise of the use of Hadoop has mirrored the increasing use of cloud platforms. MapReduce
is offered as a Platform as a Service (PaaS) by all of the major cloud-service providers (Amazon
AWS, Google Cloud and Microsoft Azure) [20].

1.3 Batch schedulers

A batch-scheduler (also referred to as a job-scheduler or workload management software), is a
central software component of a compute cluster that manages the workload of computational jobs
on a cluster and allocates cluster resources to them [30]. We will refer to the technique as batch-
scheduling and the central software component as the job-scheduler. Generally a computational
job on a batch-scheduled system is a normal user program that runs on a single compute node,
but can also be a more specialist distributed program that comprise of components written to run
on multiple nodes which communicate by passing messages, for example using message passing
interface (MPI) (discussed in the following section). Computational jobs are submitted in a batch
to the job scheduler which adds them to a queue. The job scheduler decides on how to prioritise
competing jobs, what resources to allocate to the jobs. The jobs are then submitted by the job
scheduler to compute nodes of the cluster using a scheduling algorithm [12].

Batch-scheduled cluster systems couple job flow control with the ability to reserve (and limit)
the allocation of cluster resources such as, for example, CPU cores, physical RAM, virtual mem-
ory and execution time. However batch-scheduled clusters offer only “course granularity” con-
trol of concurrency at the job-level (unlike MPI systems) and does not render the same level
of fault-tolerance and data-locality through lack of a distributed file system such as HDFS that
Hadoop provides (discussed above). Batch-scheduled cluster systems use the job scheduler to de-
ploy “whole” executable programs to compute nodes of the cluster which may or may not run in
a parallel fashion - for instance a single program when submitted will run on only one node, while
multiple submitted jobs may run either on a single node or be distributed across multiple nodes
depending on the load on each compute node and the scheduling rules set.

1.4 MPI

High performance computing (HPC) systems are typically reliant on a high degree of inter-process
communication. The Message Passing Interface (MPI) is a standard for the development of parallel
programming software and libraries for parallel computing architectures that standardises syntax
[47]. MPI facilitates concurrent programming by specifically dictating the standard syntax to be
used for the messages passed between communicating processes. MPI supports a wide variety
of architectures such as multiple computers with distributed memory, shared memory multiple
processors and heterogenous combinations of these.

MPI offers an extremely fine granularity of control over the processes involved in the execution
of parallel, concurrent programs running across networked computers in clusters. Although MPI is
extensively used in high performance computing, it can be used on clusters of standard machines
or workstations. MPI requires the programmer to explicitly handle parallel functionality at a
lower level than for instance Hadoop which automates parallelism of users programs through
the MapReduce formalism. Whilst MapReduce has parallels to MPI programming, especially in
relation to MPI functions scatter and reduce, it offers automatic parallelism, as well as data-locality
and fault-tolerance (discussed previously) [27].
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2 Applications of Hadoop in Bioinformatics

The emergence of MapReduce based platforms that we have discussed such as Hadoop and Spark
have not been overlooked by researchers in different areas of bioinformatics. A number of projects
within the Apache Hadoop ecosystem find useful application in bioinformatics [73]. These include
the data-warehousing framework Hive [74] which has an SQL type query language, the high level
data-flow language Pig [55] which compiles scripts into sequences of MapReduce steps for execution
on Hadoop, the machine-learning and clustering facilities offered by Mahout [41], and HBase a
distributed scalable database [18]. All of these projects utilise Hadoop’s cluster infrastructure and
distributed file system and therefore gain from the scalability and fault-tolerance inherent in their
design, as discussed earlier.

In terms of software applications MapReduce has been employed for a variety of problems in
processing biological and sequencing datasets. Some notable projects in the area of sequence align-
ment are, Cloudburst [63] and CloudAligner [52], which are both based on the RMAP alignment
algorithm [70], and CloudBlast [43] which is based on the BLAST algorithm [3]. It is noteworthy
that MapReduce can be especially suited for, for example the construction of a de Bruijn graph for
de novo genome assembly. For example, Contrail is able to build adjacency lists for all the k-mers
in the genomic sequence reads and then uses distributed aggregation functions such as reduce to
compress simple chains of length N in O(log(N)) rounds using a randomized parallel list ranking
algorithm [64].

There are also tools implemented in MapReduce for the analysis of assembled sequencing data,
for instance Crossbow [36] is designed for SNP (Single Nucleotide Polymorphism) detection. It
uses the Bowtie [75] and the SNP caller SOAPsnp [38]. Differential expression (using RNA-Seq)
can be measured using the Myrna software pipeline [35] - pipelines are data-flows comprising of
sequential steps in which bioinformatics software are applied to the data [37].

Additionally, a number of programming libraries that facilitate the manipulation and process-
ing of sequencing data file formats such as SAM Sequence Alignment Map and BAM (Binary
Alignment Map) have arisen such as the Java based libraries Genome Analysis Toolkit (GATK)
[45] developed by the Broad Institute and Hadoop-BAM [53] as well as the Scala based SparkSeq
[80] (discussed below). The GATK provides functions for data management in the form of data
access patterns, namely the low level implementation is separated from higher level functions,
and also provides functions for analysis calculations. The Broad Institute have also developed a
Workflow Definition Language (WDL) for use in data analysis pipelines (discussed in the next
section). It is a high-level language that is designed to be human readable and writable. It al-
lows researchers to describe analysis tasks, daisy-chain tasks into workflows, and utilise advanced
features such as parallelization [8]. WDL was developed out of the necessity for standardisation
amongst a number of different pipeline solutions, thereby providing a universal standard. In order
to execute analysis pipelines written in WDL, an execution engine is necessary. Cromwell is such
an engine, also designed by the developers of WDL, to run on many platforms (Locally, HPC or
Google - support for other platforms such as Microsoft Azure and AWS is forthcoming) and can
scale elastically to workflow needs [7].

The provision of pipeline development specifically for the Hadoop platform is also available.
For instance, SparkSeq is a MapReduce library for building genomic analysis pipelines using Scala
on Apache Spark. Whilst Scala is supported on the Spark platform it lacks the same user base in
bioinformatics as it enjoys amongst the data analytics and machine learning communities. Given
the vast amounts of sequencing data being produced [72, 79], the purpose of these tools is to exploit
the scalability that is characteristic of MapReduce and which the Hadoop and Spark platforms
offer, and this offsets any difficulty in developing or re-writing applications using the MapReduce
paradigm. However, the development of universal standards, such as WDL offers researchers a
means of utilising tools developed for such platforms in a more user-friendly way.
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3 Applications in Structural Bioinformatics

The Protein Data Bank (PDB) is an archive of data describing the 3D shapes of proteins, nucleic
acids, and molecular-complex assemblies derived from x-ray crystallographic, Nuclear Magnetic
Resonance spectroscopy (NMR) and electron microscopy techniques [1, 6]. It also serves as a
portal for structural genomics [34].

There are also a number of applications for Structural Bioinformatics implemented using
MapReduce on Hadoop, specificially to carry out high-throughput analyses of such data sets
which will be discussed. Whilst the focus of this section will be on systems developed for the
Hadoop platform, for purposes of comparison, it will also refer to similar systems implemented on
other platforms.

3.1 Molecular docking

Molecular docking typically involves simulating the electrostatic interactions between a ligand
(often a potential drug molecule) and a target protein [49, 46]. It is used to score ligands on their
affinity to the target, usually for the purposes of drug development - a process that is complex,
time-consuming and expensive [50, 61].

3.1.1 Docking of protein-ligand complexes on Hadoop

A number of molecular docking applications have been implemented to exploit the Hadoop plat-
form. For example, [15] at the Oak Ridge National Laboratory in the US, have utilised AutoDock4
on a private 68 node Hadoop cluster to perform the docking of 2,637 compounds from the Direc-
tory of Useful Decoys (DUD) database [24], against the Human estrogen receptor alpha agonist
protein (PDB entry 1L2I, [68]). They used the DUD database because it contains ligands that
bind to the target, as well as chemically similar ligands that do not (decoys). This allowed them
to test the reproducibility of the docking experiments - they found that the results of running
AutoDock on Hadoop were consistent with the experiments of [24], specifically that the percent-
age of known binding ligands correlated with the percentage ranked in the DUD database. In
their configuration they used 10 mappers per node on the 57 nodes of their cluster that were
dedicated to run MapReduce Tasks giving 570 mappers running in parallel. This resulted in a
450x speed-up of AutoDock in performing the docking task on Hadoop as compared with utilising
AutoDock itself to manage the parallelisation. Furthermore, they report that 95.59% of CPU time
is used by AutoDock, and, therefore, there is less than a 5% overhead in running AutoDock in a
Hadoop map process, and that, as the tails seen in the graphs of the CPU load were steep, this
indicates that job initialisation and termination are not resource intensive.

As a comparison, [83] conducted the same experiment using the DUD database with MPI and
a multi-threading parallel scheme at an extremely large scale (15,408 CPUs). They found that
VinaLC scaled very well up to with an overhead of only 3.94%. 17 million flexible compound
docking calculations were completed on 15,408 CPUs within 24 hours. 70% of the targets in the
DUD data set were recovered using VinaLC. These applications, and the others we will discuss
are listed in Table ?? for comparison.

Another system for protein-ligand binding on Hadoop, developed by [25] is a scalable dock-
ing service called Cloud-PLBS (Cloud Protein Ligand Binding Service), which utilises the SMAP
docking tool [81]. Their system employs an additional virtualisation system, whereby the Hadoop
slave nodes run on virtualised machines and are instantiated depending on the input job require-
ments. In terms of benchmarking performance, they compared stand-alone, sequential processing
of protein-ligand pairs using SMAP, with parallel execution of SMAP within a Hadoop map func-
tion - specifically 2, 4, 6 and 8 mappers. They observed that in docking 40 protein-ligand pairs,
reduction in execution time using Hadoop vs. stand-alone for 2, 4, 6 and 8 mappers was 33.92%,
56.97%, 70.21%, 77.65%, respectively.

They also tested the fault-tolerance of Hadoop in running their protein-ligand pair docking
system by simulating task failures in 50% of the map steps by removing node(s) from service.
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They observed that the docking jobs still completed. As discussed previously, fault-tolerant dis-
tributed computation is a feature of Hadoop based applications, and this resilience in the exe-
cution of tasks is important, because the likelihood of a node failing increases with the scaling-
up of a cluster. Fault-tolerance is also desirable in web-based services such as Cloud-PLBS,
which serve to automate computational jobs and present the results to the user, without requir-
ing third-party intervention to rectify failed jobs. However, it should be noted that no refer-
ence to source code for their system is provided in their paper, and the Cloud-PLBS service at
http://bioinfo.cs.pu.edu.tw/cloud-PLBS/index.html is no longer available.

3.1.2 Clustering of protein-ligand complexes

One of the challenges in the field of molecular docking studies arises from the requirement to search
the conformational space of protein-ligand complexes generated across docking experiments. This
is necessary to select the most likely conformations of protein-ligand complexes, and, therefore,
the putative ligands (potential drug molecules) which partake in these interactions. In such ex-
periments large numbers of protein-ligand complexes are generated, docked, and scored [16], and
it is, therefore, necessary to select a subset of putative ligands based on significant protein-ligand
interactions.

Estrada et al. observe that selecting the native conformation, based on the assumption that
the lowest energetically scored conformation (as computed by an energy function) represents the
native binding of the ligand and protein, is not reliable, even in larger sets of conformations. This is
often due to non-native ligand-protein complexes generating falsely low energy scores. They point
out that, whilst hierarchical clustering techniques are a logical way of addressing this problem -
as the lowest scoring, most densely populated clusters overlap with native conformation - most
clustering algorithms are computationally expensive, and scale poorly with large datasets. They
implemented a system using MapReduce on Hadoop to address this issue. They used two datasets,
of size 5 TB (3,872 million ligand conformations) and 1 TB (768 million ligand conformations),
generated from the Docking at Home volunteer grid computing project (Docking@Home) [17],
which utilised CHARMM [9] .

The examples discussed in the section 3.1.1 did not fully implement their solutions in MapRe-
duce. This would have involved implementing (or re-implementing) algorithms using MapReduce,
but instead exploited Hadoop’s map step to encapsulate and execute external applications. The
method discussed in [16] however, is fully implemented in MapReduce.

A map step is used which geometrically reduces the conformational space. This is stored in
an Octree data structure [62], together with a unique identifier (an Octkey) used for traversal.
This is achieved by projecting the x, y, z components of the conformations onto a 2D plane, and
calculating their gradients (for x, y, and z) which are then encoded into a single point in the
Octree. A reduce step is used to aggregate conformations in the Octree. Further MapReduce
operations are then used to traverse the Octree using the Octkey identifier.

In order to compare the accuracy of their Hadoop-based Octree method (for selecting native
conformations from the ensemble of complexes) against other approaches, namely Hierarchical
clustering and Minimum Energy selection, they docked 100,000 protein-ligand complexes each
for HIV, Trypsin, and P38alpha. They obtained 80%, 75% and 25% accuracy for Hadoop based
Octree, Hierarchical Clustering and Minimum Energy methods, respectively.

They also examined the accuracy of selecting native conformations from the cross-docking data
in the Docking@Home datasets, whereby each conformation of the ligand in the set of complexes
is docked with each conformation of protein. In doing so, they compared their Octree method
with the Energy Minimum approach, and observed 43.8% and 5.8% accuracy, respectively.

In testing the scalability in processing the 5 TB dataset which, as discussed contains 3,872
million ligand conformations, they used a Hadoop cluster where each node possesses 32 cores (4x
Octacore AMD Opteron 2.4 GHz), and up to a maximum of 32 nodes were available. The range
of the scaling used was 1 node of 32 cores (to process 121 million conformations) to 32 nodes with
a total of 1024 cores (to process the full dataset) and analysed 1, 2, 4, 8, 16, and 32 nodes - in all
cases, the number of ligand conformations processed per core was 3.8 million.
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It is not stated in their paper how many map processes were running per core, but it is assumed
that it is 1 map step per core. Whilst they demonstrated their method was amenable to scaling,
they observed an appreciable decrease in parallel efficiency with the increase in cores, from 99.1%
down to 43.8% for 64 cores (2 nodes) and 1024 (32 nodes), respectively. This appears to be due
to the increased overhead in communications between the processes as the number of processes
increases (communications to computation ratio).

A similar application [58] was developed on the Hadoop platform that partitions the results of
molecular dynamics simulations. The trajectories of atom positions, velocities and energies as a
function of time are clustered, as large datasets. This method yields important information about
the most probable conformations of proteins in ensembles. Their system employs the GROMOS
algorithm [65], which is not inherently parallel, by implementing it as a series of map and reduce
functions so as to utilise Hadoop. They tested their parallelised MapReduce implementation of
the GROMOS algorithm on a Hadoop cluster comprising of 1 master and 3 slave nodes, each
comprising two hexa-core Xeon E5645 CPUs 32 GB of RAM and 2 TB of disk space. They
observed up to 10 and 7 times speed-up (over using sequential GROMOS) of the first and second
phases, and final two phases of their algorithm, respectively.

A docking application also relevant to our discussion, although not implemented in Hadoop,
has been developed by [54] using a scientific workflow management tool, SciCumulus deployed on
AWS. Their system employed molecular docking, using AutoDock4 and Vina, on their platform to
explore both drug discovery and scalability. Their drug discovery objective was the identification
of putative drug ligands that bind to Cysteine Proteases of Protozoan genomes utilising 10,000
protein-ligand complexes. This aims to facilitate the development of drugs for the Neglected
Tropical Diseases (NTDs). In investigating the scaling-up of the computational task, they utilised
up to 32 heterogeneous nodes (containing varied numbers of cores) to include a total of 128 Amazon
AWS EC2 cores. They observed an almost linear relationship between number of nodes and speed,
but this plateaued as they approached the maximum of 32 nodes, suggesting less benefit in scaling
beyond this. They point out that this is likely due to more complicated load balancing in the set of
heterogeneous nodes. The result of their docking experiments using the Cysteine Protease-ligand
complexes identified 287 and 355 putative ligands for AutoDock4 and Vina, respectively. It is
important to note, however, that these potential drug molecules have, on average, RMSDs greater
than 2 − 3 Å (Angstroms) which is the maximum accepted value for a useful result.

3.2 Structural Alignment

The alignment of proteins by structure, as opposed to by sequence, is a computational technique
used to identify homologous polymer structures within proteins that may be conserved between
proteins. The technique facilitates the study of the structural and evolutionary relationships of
proteins with low sequence similarity [19, 56]. A variety of of algorithms have been developed to
perform structural alignment of proteins, such as, for example, STRUCTAL (Structural Analysis
Algorithm), DALI (Distant Alignment) [22], CE (Combinatorial Extension) [69], VAST (Vector
Alignment Search Tool) [19], and FATCAT (Flexible structure Alignment by Chaining Aligned
fragment pairs allowing Twists) [82], SSAP (Sequential Structure Alignment Program) [57], and
MUSTANG (Multiple Sequence Alignment Algorithm) [32]. The technique has been applied to
the study of protein binding sites, and solvent exposed surfaces (these effect the energetics of
protein-ligand conformations) [42, 33, 39].

Structural alignment algorithms are usually computationally complex, [31] present a method
which runs at best in approximately Polynomial time, but they also point out that approximations
are often used. There is also a need to apply such techniques at scale. For example, Hadoop has
been employed by [39] who implemented structural alignment for binding site prediction. Using
a test sets of 200 and 48 ligand-protein complexes, they were able to achieve 93% and 98%
accuracy, respectively, and were able to improve the efficiency of the experiment by exploiting
parallelisation. A service for structurally aligning pairs of proteins has also been implemented
for the Hadoop platform by the developers of Cloud-PLBS [26] (discussed in the previous section
3.1). It utilises the same distributed architecture as Cloud-PLBS, that is, individual Hadoop
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nodes running within their own VM, and each VM running a map and reduce process. As with
Cloud-PBS, a web-interface is used to enable the user to provide input of two PDB files by their
PDB-ID. To perform the structural alignment they state their system uses the DALI and VAST
algorithms. Whilst the authors do detail the basis of RMSD (Root Mean Square Deviation) in
structural alignment algorithms, and discuss refinement methods in their paper, they claim to
implement these algorithms in MapReduce. As previously noted with Cloud-PLBS, there is no
source code available, and the corresponding web service is unavailable. It is highly likely that,
given the complexity of these algorithms and that there are already implementations available,
the same method used in Cloud-PLBS - execution of an external program within a map step - is
employed.

A similar bioinformatics SaaS (Software-as-a-Service) for structural alignment of proteins, has
been developed for the Microsoft Azure platform - Cloud4Psi developed by [51]. Their service
utilises three newer algorithms that are implemented in the BioJava project, and which are derived
from CE (jCE), and FATCAT (jFATCAT-rigid and jFATCAT-flexible) [60]. They tested their
system on a subset of 1,000 PDB structures for both scalability and reproducibility. For scalability,
two different scaling methods were compared: horizontal-scaling (i.e. by adding more nodes to
the system) and vertical-scaling (i.e. by using nodes with more CPU cores). They found that,
whilst both scaling methods increased the n-fold speed-up for each of the three algorithms, both
suffered a decrease in the performance gains - for horizontal scaling, this was found to be the
result of increased disk I/O due to multiple nodes utilising a shared VHD (Virtual Hard-Disk),
and for vertical scaling this was due to an increase in processes on the same node (due to higher
specification of each node), resulting in increased CPU utilisation. As the horizontal scaling
method suffered less from this effect, it was the method chosen. For reproducibility of results,
they found that each of the three algorithms produced the same results independent of cluster
configuration and scaling used.

3.3 Other Structural Bioinformatics applications using Hadoop

Large-scale processing of molecular data is desirable in both applications. Such techniques facil-
itate the in-silico study of vast arrays of molecular compounds and macromolecular structures
that are available from large molecular databases, which are also increasing in size and diversity
[14, 59, 2, 78, 1, 6]. A number of scalable Structural Bioinformatics methods have been provided by
the bioinformatics Group at UCL (University College London) as web-based services through their
Protein Analysis Workbench [11]. These are accessible via SOAP (Simple Object Access Protocol),
and XML-RPC (Extensible Markup Language-Remote Procedure Call) protocols. Importantly,
the most commonly used methods have also been deployed as Java packages specifically for the
Hadoop platform. This includes PSIPRED for protein structure prediction [44], GenTHREADER
for protein fold recognition method using genomic sequences [28], BioSerf - a homology modelling
protocol, MEMSAT for improving accuracy of transmembrane protein topology prediction [29],
DomPred for protein domain boundary prediction [10], MetSite for predicting clusters of metal-
binding residues [71], and FFPred which uses a machine learning approach for predicting protein
function [40].

4 Conclusions

This purpose of this review is to give an insight into the impact that Hadoop and the MapReduce
formalism has in Structural Bioinformatics. This is a apposite moment to consider this as there
have been a number of different applications of Hadoop in the field and Hadoop (and the wide
variety of different applications that have been built on it) has become more stable and accessible.

As noted previously the adoption of Hadoop is not a trivial step, particularly for a Structural
Bioinformatics lab that already has extensive experience in using traditional batch schedulers
running on a local cluster. Rewriting stable codes to make them use the MapReduce formalism
at the lowest level would require substantial effort though using MapReduce to call executables
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requires much less effort and can still make use of the fault-tolerance and data locality features of
Hadoop.

This article has focussed on

• determining the breadth of cases where Hadoop has been used,

• how well it scales and

• how dependent the installation of Hadoop is on its configuration (which is indicative of the
difficulty one would have in installing Hadoop).

In the first instance we see a range of traditional high-throughput applications in Structural
Bioinformatics (e.g. docking and structural alignment) where Hadoop has been employed.

With respect to scaling, the publications reviewed here indicate that some adjustment of pa-
rameters have been made, but these largely focused on how the applications scale with the number
of nodes. They show that performance is linear though the gains in performance tend to reduce as
the systems are scaled up. In molecular docking, [16] observed a fall in parallel efficiency of 55.3%
(99.1% - 43.8%) when scaling from 2 nodes to 32 nodes. In structural alignment, [39] observed
that performance degraded slightly after 8 mappers was increased to 30. Furthermore, this trend
has also been observed on the MS Azure platform we have discussed for comparison - in scaling
Cloud4Psi, also a structural alignment application [51], observed that horizontal scaling resulted
in performance degradation as a result of an increase in nodes sharing a virtual disk, and that
vertical scaling resulted in performance degradation as a result of increased CPU utilisation (due
to more processes running per node).

The platform, and method of distribution, also dictate performance and scalability. In observ-
ing two identical docking operations on the DUD database, one using a 1,088 core Hadoop cluster
[15], and the other using 15,408 cores with a mixed parallel MPI implementation of AutoDock
[83], the Hadoop cluster took 69 hours, and the MPI implementation completed within 24 hours.
Whilst this is certainly a result of the number of cores, the MPI system scaled better, with only
very slight degradation in performance after 6,000 CPU cores. Although this comparison involved
the same docking operation and dataset using different platforms, currently, there are no compar-
isons of performance between Hadoop and batch-schedulers on the same cluster apparatus in the
literature.

The comparison of vertical and horizontal scaling in Cloud4Psi indicates significant change in
performance, so configuration is important. As noted with the Cloud4Psi example, there can be a
significant variation depending on configuration. Performance gains across applications, therefore,
are dependent on configuration.

As Hadoop platforms stabilise, the significant advantage of its employment is of using a plat-
form where the computation is expressed explicitly in terms of an algebra. This makes building
workflows easier by allowing the developer to concentrate on the calculation, rather than the pro-
cess such as WDL [8]. Nonetheless, there is a significant gap in take up as such systems remain
difficult to deploy.

The Hadoop ecosystem is rapidly evolving (as we have seen with the introduction of Spark) and
such gaps will reduce over time. On the other hand, it will also require regular release upgrades.
These can be potentially be difficult to deploy, and often add new components to the ecosystem
which increase the potential to introduce bugs that may affect different areas of the system.

To address this, organisations such as Cloudera and Hortonworks [13, 23] provide supported
Hadoop-stack releases, and cloud-service providers such as Amazon offer managed-services, for
example Elastic Map Reduce (EMR) [4]. Implementing systems on the Hadoop platform, as
discussed, also requires specialist programming knowledge of MapReduce, and if the relevant
Hadoop cluster is maintained in-house, specialist skills in maintaining an Hadoop cluster are also
required. For this reason, managed services are often utilised by enterprise companies because
such systems have been deployed and tested by technical experts and therefore mitigates risks,
and dispenses the need to employ or train in-house skilled personnel to maintain a Hadoop cluster.

8

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 25, 2018. ; https://doi.org/10.1101/376467doi: bioRxiv preprint 

https://doi.org/10.1101/376467
http://creativecommons.org/licenses/by/4.0/


Acknowledgements

The research in this article was made possible from support from the Department of Computer
Science, Royal Holloway, University of London.

References

[1] E E Abola, J L Sussman, J Prilusky, and N O Manning. Protein Data Bank archives of
three-dimensional macromolecular structures. Methods in enzymology, 277:556–71, jan 1997.

[2] Frank H Allen. The cambridge structural database: a quarter of a million crystal structures
and rising. Acta Crystallographica Section B: Structural Science, 58(3):380–388, 2002.

[3] Stephen F Altschul, Warren Gish, Webb Miller, Eugene W Myers, and David J Lipman. Basic
local alignment search tool. Journal of molecular biology, 215(3):403–410, 1990.

[4] Amazon. Amazon EMR (Elastic MapReduce). https://aws.amazon.com/emr/, 2016. [On-
line; accessed 14-April-2017].

[5] Apache Software Foundation. HDFS architecture documentation. http://hadoop.apache.

org/docs/current/hadoop-project-dist/hadoop-hdfs/HdfsDesign.html, 2016. [Online;
accessed 10-Jan-2017].

[6] H M Berman, J Westbrook, Z Feng, G Gilliland, T N Bhat, H Weissig, I N Shindyalov, and
P E Bourne. The Protein Data Bank. Nucleic acids research, 28(1):235–42, jan 2000.

[7] Broad Institute. Cromwell, execution engine for WDL - Documentation via
Forum. https://gatkforums.broadinstitute.org/gatk/discussion/7349/

the-art-of-the-pipeline-introducing-cromwell-wdl, 2016. [Online; accessed 21-
Nov-2017].

[8] Broad Institute. WDL (Workflow Definition Language) specification and documentation.
https://software.broadinstitute.org/wdl/documentation/spec, 2016. [Online; ac-
cessed 21-Nov-2017].

[9] Bernard R Brooks, Robert E Bruccoleri, Barry D Olafson, David J States, S a Swaminathan,
and Martin Karplus. Charmm: a program for macromolecular energy, minimization, and
dynamics calculations. Journal of computational chemistry, 4(2):187–217, 1983.

[10] Kevin Bryson, Domenico Cozzetto, and David T Jones. Computer-assisted protein do-
main boundary prediction using the dom-pred server. Current Protein and Peptide Science,
8(2):181–188, 2007.

[11] Daniel WA Buchan, Federico Minneci, Tim CO Nugent, Kevin Bryson, and David T Jones.
Scalable web services for the psipred protein analysis workbench. Nucleic acids research,
41(W1):W349–W357, 2013.

[12] Brent N Chun and David E Culler. User-centric performance analysis of market-based cluster
batch schedulers. In Cluster Computing and the Grid, 2002. 2nd IEEE/ACM International
Symposium on, pp. 30–30. IEEE, 2002.

[13] Cloudera. About Cloudera. https://www.cloudera.com/more/about.html, 2016. [Online;
accessed 01-February-2018].

[14] Kirill Degtyarenko, Paula De Matos, Marcus Ennis, Janna Hastings, Martin Zbinden, Alan
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