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Abstract

With the recent rising application of mathematical models in the field of computational systems biology, the interest in
sensitivity analysis methods had increased. The stochastic approach, based on chemical master equations, and the
deterministic approach, based on ordinary differential equations (ODEs), are the two main approaches for analyzing
mathematical models of biochemical systems. In this work, the performance of these approaches to compute sensitivity
coefficients is explored in situations where stochastic and deterministic simulation can potentially provide different results
(systems with unstable steady states, oscillators with population extinction and bistable systems). We consider two
methods in the deterministic approach, namely the direct differential method and the finite difference method, and five
methods in the stochastic approach, namely the Girsanov transformation, the independent random number method, the
common random number method, the coupled finite difference method and the rejection-based finite difference method.
The reviewed methods are compared in terms of sensitivity values and computational time to identify differences in
outcome that can highlight conditions in which one approach performs better than the other.

Key words: sensitivity analysis; deterministic simulation; stochastic simulation; mathematical modeling; computational
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Introduction
Computational systems biology is emerging as a fundamental
tool for life science research, which aims at developing ‘models’
representing biological phenomena and reliable ‘computational
techniques’ for their simulation and analysis [1–5]. ‘Sensitivity

analysis’ is the study of how the uncertainty in the output of a
mathematical model can be apportioned to different sources of
uncertainty in its inputs. When the mathematical model repre-
sents a biological system, the results of sensitivity analysis can
be used to (i) test the robustness of model results in presence of
experimental data uncertainty; (ii) increase our understanding
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of the relationships between input and output variables by iden-
tifying molecules playing a leading role in the development of
a modeled phenotype or disease (e.g. biomarkers, drug targets,
etc.); and (iii) simplify the model by fixing inputs that have
no effect on the output or by omitting reaction subnetworks
that are not sensitive to the data used to calibrate the model
(model reduction). The rising importance of sensitivity analysis
is also demonstrated by the increasing publication rate of papers
dealing with this topic. Starting from about 200 papers published
before 1990, the number of papers available in PubMed are
exponentially increasing: 1064 in the decade 1990–1999, 4071 in
the decade 2000–2009 and more than 10 000 papers published in
the period 2010–2018.

Since sensitivity analysis is often computed by repeated
model simulations, a well-known issue is the high com-
putational effort required to complete the analysis. The
computational overhead increases when an accurate stochastic
simulation strategy is considered with respect to classical
deterministic techniques. The increase of computational power
should be compensated by the increased result accuracy. How-
ever, it is often hard to understand in advance which is the
best approach to apply, since deterministic sensitivity analysis
can be adequate to assess the reliability of model results
and very often is much faster than any stochastic approach.
After about one decade from the publication in this journal of a
review comparing stochastic versus deterministic simulation
approaches [4], this contribution moves one step further by
comparing stochastic and deterministic algorithms for sensitiv-
ity analysis. Among the different methodologies for sensitivity
analysis, we herein consider local sensitivity analysis where
one-factor-at-a-time is perturbed. We do this because these
methodologies are the ones mostly used in the modeling litera-
ture since the computation of sensitivity coefficients due to the
simultaneous perturbation of many parameter rates requires,
especially in the stochastic approach, an exponential increase
of the computational effort. The reviewed methodologies are
tested by considering models described both as stochastic bio-
chemical reactions and as set of mass action ordinary differ-
ential equations (ODEs) to identify differences in outcome that
can highlight challenging conditions in which one approach
performs better than the other, including systems with unstable
steady states, oscillators with population extinction and bistable
systems. In the following, three ad hoc models have been chosen
as case studies for each of these conditions.

Mathematical framework

Hereafter we will consider well-stirred biochemical reaction
systems consisting of n chemical species S1, ..., Sn interacting
through m reactions R1, ..., Rm in a well-mixed environment,
where position and speed of molecular species are randomized
and therefore they do not affect reaction executions. A particular
reaction Rj has the general scheme

v−
j1S1 + ... + v−

jnSn
cj−→ v+

j1S1 + ... + v+
jnSn, (1)

where the species on the left of the arrow are called ‘reactants’,
while the ones on the right are ‘products’. The non-negative
integers v−

ji and v+
ji are the ‘stoichiometric coefficients’ indicating

how many molecules of reactant and product are involved. The
overall change in species population by Rj is represented by the
‘state change vector’ vj, where its ith component is equal to

v+
ji − v−

ji . The label cj on the arrow is the ‘stochastic reaction
constant’ as introduced by Gillespie [6]. The state of the system
at time t is represented by a vector X(t) = (X1(t), ..., Xn(t)), where
Xi(t) is the number of molecules of species Si in the system at
time t.

The probability that reaction Rj fires in the next infinitesimal
time t + dt, given the state X(t) at time t, is aj(X(t))dt, where the
‘propensity function’ aj can be computed as a function of the
reaction constant cj and the state X(t). In case of mass action
kinetics [6, 7], the propensity is defined as

aj(X(t)) = cjhj(X(t)), (2)

where hj(X(t)) counts the number of distinct combinations of
reactants through the following formula:

hj(X(t)) =
∏

i

(
Xi(t)
v−

ji

)
. (3)

An exact realization of X(t) can be obtained by applying the
stochastic simulation algorithm (SSA), which is based on an
event-driven simulation approach where reactions are randomly
selected to fire according to their propensity. Several implemen-
tations of SSA have been proposed, including the direct method
[6, 7], the next reaction method [8] and the rejection-based SSA
[9]. We refer to [4, 5] for a comprehensive review of SSAs.

When the number of molecules of each modeled species is
large enough for being safely approximated by concentrations
that vary continuously (continuum hypothesis [5]), then the
reaction system can be translated into a set of ODEs by relying
on the law of mass action. This allows moving from a stochastic
to a deterministic approach, where the intrinsic randomness
of the system is not anymore considered. In the deterministic
framework, the state of the system at time t is represented by the
vector of concentrations [X](t) = ([X1](t), ..., [Xn](t)), where [Xi](t)
is the concentration of species Si in the system at time t. The
molar concentration [Xi](t) of species Si is defined as

[Xi](t) = Xi(t)
NAV

, (4)

where V is the reaction volume and NA is the Avogadro’s number.
Consider Equation (1), the corresponding ODE representing the
evolution of species Si is

d[Xi](t)
dt

=
m∑

j=1

(djvji

n∏
l=1

[Xl]
v−

jl (t)) i = 1, ..., n, (5)

where dj is the ‘deterministic rate’ of reaction Rj, which can be
easily obtained by converting the stochastic rate cj [5]. A system
of ODEs can be represented in a compact matrix form as

d[X](t)
dt

= F([X], d, t), (6)

where F : R
n × R

m × R → R
n is the vector of n functions Fi

providing the time derivatives of the species concentrations.
The simulation of a system of ODEs is addressed by solving
the ‘initial value problem’, which corresponds to solve Equation
(6) given the initial concentration of modeled species. Since
the number and complexity of the ODEs is often too high to
allow an analytical solution, several numerical methods have
been introduced to approximate the behavior in time of the
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model. A comprehensive collection of numerical methods for
deterministic simulation is presented in [5, 10].

Computational methods for sensitivity
analysis
Sensitivity analysis is herein defined as the 1st order partial
derivatives of the system output with respect to the reaction
rates. In the context of stochastic chemical kinetics, let Xc(t) be
the state of the system at time t computed by considering the
vector c = (c1, ..., cm) of stochastic reaction rates. The quantity
Q(c) providing the dependence of the state on c is

Q(c) = E[Xc(t)], (7)

where E[−] denotes the expectation operator. We note that in
Equation (7), Q(c) measures the direct dependence of the state
on the rate vector c, but it is easy to generalize the sensitivity
measurement by applying a function f of interest on the state
such that Q(c) = E[ f(Xc(t))]. Let θ be the reaction index for which
we want to measure the sensitivity; the aim of stochastic sensi-
tivity analysis is to efficiently compute the sensitivity coefficient

Sθ(t) = ∂Q(c)

∂cθ

= ∂E[Xc(t)]
∂cθ

(8)

using stochastic simulation. The corresponding sensitivity coef-
ficient in the deterministic approach is defined as

Sθ(t) = ∂[X]d(t)
∂dθ

, (9)

where [X]d(t) is the state of the system at time t computed by
considering the vector d = (d1, ..., dm) of reaction deterministic
rates.

Stochastic sensitivity analysis

In this section, we present different methods to construct an
estimator for the sensitivity coefficient Sθ (t) defined in Equation
(8). These approaches are different in their bias and variance
and can be classified into two categories: ‘infinitesimal pertur-
bation estimators’ and ‘finite perturbation estimators’ [11]. An
infinitesimal perturbation estimator derives the sensitivity coef-
ficients by using information from the simulation of the system
with nominal rates c. Instead, a finite perturbation estimator
perturbs the nominal rates of the system by a small amount,
hence introducing bias into the estimation, depending on the
finite discretization scheme. In the following, we will consider
the ‘Girsanov transformation (GT) method’ [12], which provides
an efficient implementation of the infinitesimal perturbation
estimator, while for the finite perturbation methods we will
consider the ‘independent random number (IRN) method’, the
‘common random number (CRN) method’ [13], the ‘coupled finite
difference (CFD) method’ [14] and the ‘rejection-based finite dif-
ference (RFD) method’ [15]. For the sake of simplicity, we provide
here only a general explanation of the considered algorithms. A
more detailed explanation and the complete pseudocode imple-
mentations are provided in the Supplementary Material. Further
improvements of the considered strategies are also discussed in
[16–22].

The principle of the GT method is to rewrite the derivative of
the expectation in such a way that it can be directly computed

from the simulation. Specifically, the sensitivity coefficient Sθ in
Equation (8) can be rewritten by means of probability measure
transformation [23] as

Sθ (t) = E

[
Xc(t)wθ (Xc(t))

]
, (10)

where wθ (Xc(t)) is the weight function defined as

wθ (Xc(t)) =
L∑

l=1

wθ ,l(Xc(tl)). (11)

In the previous equation, L gives the number of reaction events
occurring at time 0 < t1 < · · · < tL = t, where the lth event is
denoted by a pair (μl, τl) such that μl is the reaction firing index,
and τl = tl+1 − tl is the waiting time to the firing. Each term of the
sum in Equation (11) is computed as

wθ ,l(Xc(tl)) = ∂ ln aθ (Xc(tl))

∂cθ

(
Iθ (μl) − aθ (Xc(tl))τl

)
(12)

with

Iθ (μl) =
⎧⎨
⎩

1, if μl = θ

0, otherwise.
(13)

Equation (10) gives the mathematical basis of the GT method
for computing an unbiased estimator of the sensitivity coeffi-
cient Sθ . It shows that Sθ can be realized by simulating the pro-
cess Xc(t) until time t and then weighting the output by wθ (Xc(t)).
Specifically, let K be the number of simulation runs, and let Xc

[k](t)
be a realization of the state Xc(t) in the kth simulation run with
k = 1, . . . , K. The sensitivity coefficient Sθ in Equation (10) can be
estimated as

Sθ (t) ≈ 1
K

K∑
k=1

Xc
[k](t)wθ (Xc

[k](t)). (14)

The finite difference (FD) approach constitutes an alternative
for computing the sensitivity coefficient Sθ . It directly estimates
Sθ by applying a small, but finite, perturbation amount to the
nominal rate values. Specifically, let eθ be a unit m-vector in
which the θth element is 1, while other elements are zeros. Let
ε be a small scalar value and εθ = εcθ . The sensitivity coefficient
Sθ with respect to a reaction rate cθ in Equation (8) can be
approximated by the ‘centered FD’

Sθ (t) = ∂Q(c)

∂cθ

≈ Q(c + εθ eθ ) − Q(c − εθ eθ )

2εθ

≈ E[Xc+εθ eθ (t)] − E[Xc−εθ eθ (t)]
2εθ

, (15)

where c are the nominal rates and c ± εθ eθ are the perturbed
ones. It can be shown by the Taylor series expansion that the
bias due to truncation error of the centered difference is O(ε2

θ ).
The sensitivity coefficient Sθ in Equation (15) can be constructed
as

Sθ (t) = 1
K

K∑
k=1

Xc+εθ eθ

[k] (t) − Xc−εθ eθ

[k] (t)

2εθ

, (16)

where K is the number of simulation runs, and Xc−εθ eθ

[k] and Xc+εθ eθ

[k]

are the realizations of states with perturbed rates in the kth run,
with k = 1, . . . K, respectively.
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The simplest method for implementing the FD estimator Sθ

in Equation (15) is the IRN where two independent simulation
runs are used to realize the states Xc−εθ eθ and Xc+εθ eθ . The estima-
tion by the IRN method, however, often has a large variance. The
CRN [13] tries to reduce the variance of the estimator by using the
same stream of random numbers for the realizations of these
states. The idea behind this strategy is to induce a (positive)
correlation between Xc−εθ eθ (t) and Xc+εθ eθ (t) so that the variance
of the sensitivity coefficient Sθ can be reduced by also increasing
its efficiency. Although CRN can reduce the variance of Sθ , the
induced correlation will be lost for long simulation time.

The CFD [14] and the RFD [15] have been recently intro-
duced for further reducing the variance of the FD estimator
Sθ in Equation (15). The foundation of these approaches is the
decomposition of the Poisson processes, which represent the
number of firings of reactions in the random time-change rep-
resentation, such that common Poisson processes are shared
during the simulations of Xc−εθ eθ and Xc+εθ eθ . To be more concrete,

let Poj,1

( ∫ t
0 aj(Xc−εθ eθ (s)) ds

)
and Poj,2

( ∫ t
0 aj(X

c+εθ eθ (s)) ds
)
, with j =

1, . . . , m, be the Poisson processes representing the number of
firings of reaction Rj in simulating Xc−εθ eθ (t) and Xc+εθ eθ (t), respec-
tively. CFD decomposes these processes as

Poj,1

( ∫ t

0
aj(Xc−εθ eθ (s)) ds

)
= Poj

( ∫ t

0
bj(s) ds

)

+ Poj,3

( ∫ t

0
(aj(Xc−εθ eθ (s)) − bj(s)) ds

)
(17)

and

Poj,2

( ∫ t

0
aj(Xc+εθ eθ (s)) ds

)
= Poj

( ∫ t

0
bj(s) ds

)

+ Poj,4

( ∫ t

0
(aj(Xc+εθ eθ (s)) − bj(s)) ds

)
, (18)

where bj(s) = min(aj(Xc−εθ eθ (s)), aj(Xc+εθ eθ (s)) for all s ∈ [0, t].
Thus, by sharing the common Poisson processes Poj(

∫ t
0 bj(s) ds),

with j = 1, . . . , m during the simulation, the variance of CFD
estimator is reduced to be proportional to the variance of the
residual Poisson processes Poj,3(

∫ t
0 (aj(Xc+εθ eθ (s)) − bj(s)) ds) and

Poj,4(
∫ t

0 (aj(Xc+εθ eθ (s)) − bj(s)) ds).
RFD further reduces the variance of the estimator by decom-

posing the Poisson processes employing the idea of propensity
upper bounds. Let aj be an arbitrary propensity upper bound such
that aj ≥ aj(Xc−εθ eθ (s)) and aj(Xc+εθ eθ (s)) for all s ∈ [0, t]. We have

Poj,1

( ∫ t

0
aj(Xc−εθ eθ (s)) ds

)
= Poj

(
ajt

)

− Poj,3

(
ajt −

∫ t

0
aj(Xc−εθ eθ (s)) ds

)
(19)

and

Poj,2

( ∫ t

0
aj(Xc+εθ eθ (s)) ds

)
= Poj

(
ajt

)

− Poj,4

(
ajt −

∫ t

0
aj(Xc+εθ eθ (s)) ds

)
. (20)

Based on the decompositions in Equations (19) and (20), RFD
correlates the simulation of Xc−εθ eθ and Xc+εθ eθ by simulating
the common Poisson process Poj(ajt) and then filtering out the

selection by the corresponding exact propensities, exploiting the
rejection-based simulation framework [9]. The variance of the
estimator by RFD is reduced to be proportional to the variance of
the residual Poisson process with rates equal to the difference
between the upper bound and the exact propensity.

Deterministic sensitivity analysis

In this section, we present two popular methods to compute sen-
sitivity analysis in the deterministic framework. These methods,
namely the direct differential method and the FD method, are
different in the level of approximation introduced to compute
the sensitivity coefficient defined in Equation (9). An exhaustive
review of methods for deterministic sensitivity analysis of bio-
logical systems can be found in [24].

Direct differential method

One way to compute the sensitivity coefficients at different
time points is through the direct differential method [25]. This
method is a non-approximative technique in the sense that,
given that the finite precision arithmetic of the computer is not
taken into account, the values of the computed derivatives are
exact. Consider Equation (9), the corresponding set of n ODEs
for the sensitivity coefficients is defined, for each reaction index
θ = 1, ..., m, as

dSθ (t)
dt

= Fdθ
(t) + J(t) × Sθ (t), (21)

where J(t) is the Jacobian matrix of the original ODE system given
by Equation (6), and Fdθ

(t) gives the vector of derivatives of each
function Fi(t) with respect to parameter dθ . We recall that the
Jacobian matrix is an n × n matrix in which the (i, j) element
is given by ∂Fi/∂[Xj]. A complete mathematical description on
how to derive Equation (21) can be found in the Supplementary
Material. The sensitivity set of ODEs in Equation (21) must be
solved simultaneously with the original ODE system in Equation
(6) by means of a suitable numerical method. The initial condi-
tion for the first n×m variables of the complete model is 0, unless
dθ = [Xi](0). In the latter case the initial condition is 1.

The main disadvantage of the direct differential method is
that it relies on the definition of the Jacobian matrix, which may
require human intervention and it is time-consuming especially
for large-scale or non-linear problems. To overcome the problem,
the temporal evolution of the sensitivity coefficients can be
numerically estimated by the FD approximation.

FD approximation

The principle of the FD approximation is that it approximates
the differential operator by replacing the derivatives with the
differential quotients. The approximation error between the
numerical solution and the exact solution is determined by the
error that is committed by moving from a differential operator
to a difference operator. According to the error order, an FD
method can be divided in 1st or 2nd order. A commonly used 2nd
order FD method is the central difference approximation, which
computes the sensitivity coefficient as

Sθ (t) = ∂[X](t)
∂dθ

∼= [X]d+εθ eθ (t) − [X]d−εθ eθ (t)
2εθ

, (22)
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where εθ indicates the multiplication between the considered
perturbation factor ε and the deterministic rate dθ , and eθ is the
unit m-vector as defined for the stochastic case. This method is
easy to implement because it requires no extra code beyond the
original model solver. The approximation error of the central FD
approximation in Equation (22) is O(ε2).

Method comparison
In this section, the methods introduced in Computational
methods for sensitivity analysis will be compared to identify
potential differences in their output. Three theoretical models
have been considered to test the computational approaches in
specific conditions where stochastic and deterministic simu-
lation provide different results. Such conditions are systems
with unstable steady states (described in The Oregonator model
by considering the Oregonator model [26]), oscillators with
population extinction (described in The Oscillator model by
considering the Oscillator model [27]) and bistable systems
(described in The Schlögl model by considering the Schlögl
model [31]). Since these conditions rely on important properties
of dynamical systems, which are per se quite difficult to
understand, we intentionally considered simple theoretical
models, because our aim is to highlight result differences in
very controlled situations. We think that this strategy has
several benefits because it permits focusing on the investigated
dynamical properties without being confused by the complexity
of the model itself. On the other hand, the theoretical basis of
these models may prevent a clear understanding of reaction
stoichiometry from a chemical point of view. We refer to the
provided references for any further detail on this topic.

For all benchmarks, four levels of comparison have been
studied: (i) between the two deterministic methods, (ii) between
the five stochastic methods, (iii) between stochastic and deter-
ministic FD methods and (iv) between stochastic and determin-
istic ‘exact’ methods (namely the direct differential method and
the GT method). To provide a concise method comparison, all the
sensitivity results provided in the following are related to one
model parameter and one model variable. However, the results
for the other model parameters and variables can be found in
the Supplementary Material.

All calculations have been run in similar conditions on a
Windows Server 2008 R2 computer, with 2 quad core Intel Xeon
2.13GHz CPUs and 20 GB of RAM memory. Deterministic simu-
lations have been computed in MATLAB v.R2017b by means of
the ODE solver ode45, while stochastic simulations have been
computed by means of ad hoc implementations of the required
methodologies. For all the stochastic algorithms, 10 000 model
simulations have been computed to derive the sensitivity coef-
ficients. For FD methods, both in the deterministic and in the
stochastic framework, we set the perturbation multiplicative fac-
tor ε = 0.01. Finally, to allow a simple model translation between
the deterministic and the stochastic framework, we assumed in
all cases a theoretical reaction volume equal to the inverse of the
Avogadro’s number. This allows the simplification of Equation
(4) to have molar concentrations equal to abundances. For the
sake of simplicity, we also omitted all unit of measures for the
deterministic rates, which can be easily deduced as ad hoc ratios
of concentration versus time [5].

The Oregonator model

The first model is a simplified version of a theoretical oscillator
called ‘Oregonator’ [26]. It has three species (X, Y and Z) and five

reactions:

R1 : X + Y
c1−→ ∅ R2 : Y

c2−→ X

R3 : X
c3−→ 2X + Z R4 : 2X

c4−→ ∅
R5 : Z

c5−→ Y,

(23)

where the symbol ∅ is used for degradation. This set or reactions
corresponds to the following set of ODEs:

d[X]
dt = −d1[X][Y] + d2[Y] + d3[X] − 2d4[X]2

d[Y]
dt = −d1[X][Y] − d2[Y] + d5[Z]

d[Z]
dt = d3[X] − d5[Z].

(24)

For this model, a predefined set of rate parameters and
initial values can lead the system dynamics to a steady state
condition, which makes the computation of the three derivatives
all equal to zero (Figure 1A). This behavior never occurs when
stochastic simulation is employed, because when reactions are
fired one after the other in an asynchronous way, the system
immediately exits from the equilibrium and starts oscillating
(Figure 1B). To analyze the impact of this discrepancy between
the two approaches, we will compare the sensitivity results for
this model in two cases: (i) in a perturbed state, where the ODEs
are not equal to zero (Figure 1C and D) and (ii) in the steady-state
condition (Figure 1A and B).

In Figure 2, the sensitivity results of the model around the
perturbed state are presented. The figure shows that both the
deterministic and the stochastic approaches provide similar
results. As expected, we see a perfect overlap of the two deter-
ministic methods (Figure 2A). The same happens for the average
of the five stochastic methods (Figure 2B), which mainly differ
in terms of result variance. The average result of the stochas-
tic methods also overlaps with the one of the deterministic
simulation (Figure 2C and D). However, the computational time
required by the two approaches is very different ( Table 1). Each
stochastic method needs more than 1 day to compute the 10 000
simulations required to derive the sensitivity coefficient, while
only few seconds are needed in the deterministic case. Among
all the stochastic methods, RFD is the one providing the lowest
runtime and result variance. On the contrary, the GT algorithm
is the one providing the largest result variance.

The quite close overlap between the deterministic and the
stochastic framework does not hold when parameter sensitivity
is computed at the model steady state (Figure 3). In such a case
we observe that the sensitivity results are different between
the two approaches. The two deterministic methods exhibit
instability, which can be clearly appreciated for the direct dif-
ferential method (Figure 3A). For what concerns the FD method,
we observed that if we decrease the approximation error (by
decreasing ε), the amplitude of the oscillations of the sensitivity
coefficient increases correspondently, suggesting that also this
method is not stable. This is due to the fact that a very small
perturbation of model parameters is enough to exit from the
steady state, and this makes the deterministic approach unre-
liable independently from the employed integration method
or the adopted tolerance value. This, however, never happens
in the stochastic framework, where the random nature of the
approach prevents the system to be in the steady state. For
this reason, the computational time of deterministic methods
listed in Table 2 is not informative, while we can notice that the
stochastic algorithms require a similar computational effort as
given in Table 1. Although RFD is not the fastest method, it is still
the best compromise between computational time and variance.
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Figure 1. The dynamics of the Oregonator model. (A) and (B) Model dynamics at the steady state (c1 = d1 = 0.1, c2 = d2 = 2, c3 = d3 = 104, c4 = 0.016, d4 = 0.08, c5 =
d5 = 26 and #X0 = [X0] = 500, #Y0 = [Y0] = 1000, #Z0 = [Z0] = 2000) in the deterministic and stochastic case. (C) and (D) Model dynamics from a perturbed state

(#X = 600, #Y = 1000, #Z = 2000, model parameters as in cases A and B) in the deterministic and stochastic case.

Figure 2. Results for the sensitivity analysis computed on the Oregonator model around the perturbed state for parameters d1 and c1 on variable X. (A) Sensitivity

results compared between the deterministic methods. (B) Sensitivity results compared between the stochastic methods. (C) Sensitivity results compared between the

FD methods. (D) Sensitivity results compared between the ‘exact’ methods.
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Table 1. Methods’ runtime for the Oregonator model around the perturbed state

Stochastic approach

Comp. time GT IRN CRN CFD RFD
Mean ± SD 0.33 ± 0.24 s 0.57 ± 0.39 s 0.57 ± 0.38 s 0.49 ± 0.34 s 0.27 ± 0.23 s
Total 36.91 h 63.78 h 63.61 h 54.43 h 30.27 h
(10 000 runs)

Deterministic approach

Comp. time FD method Direct differential method
2.52 s 0.34 s

Table 2. Methods’ runtime for the Oregonator model around the steady state

Stochastic approach

Comp. time GT IRN CRN CFD RFD
Mean ± SD 0.33 ± 0.25 s 0.57 ± 0.39 s 0.57 ± 0.39 s 0.53 ± 0.37 s 0.50 ± 0.58 s
Total 36.27 h 63.18 h 63 h 58.50 h 55.98 h
(10 000 runs)

Deterministic approach

Comp. time FD method Direct differential method
1.05 s 0.08 s

Figure 3. Results for the sensitivity analysis computed on the Oregonator model around the steady state for parameters d1 and c1 on variable X. (A) Sensitivity results

compared between the deterministic methods. (B) Sensitivity results compared between the stochastic methods. (C) Sensitivity results compared between the FD

methods. (D) Sensitivity results compared between the ‘exact’ methods.

The Oscillator model

The Oscillator [27] model is a noise-induced system with three
species (A, B and C) and three reactions

R1 : A + B
c1−→ 2B

R2 : B + C
c2−→ 2C

R3 : C + A
c3−→ 2A.

(25)

The corresponding set of ODEs is

d[A]
dt = −d1[A][B] + d3[A][C]

d[B]
dt = d1[A][B] − d2[B][C]

d[C]
dt = d2[B][C] − d3[A][C].

(26)

The model exhibits a symmetrical bell shape that, in the
deterministic framework, is preserved with a perpetual period-
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Figure 4. Species dynamics for the Oscillator model. (A) Model dynamics computed with the deterministic approach (d1 = 1, d2 = 1, d3 = 1 and [A0] = 900, [B0] =
500, [C0] = 200). (B) One possible model dynamics computed with the stochastic approach (c1 = 1, c2 = 1, c3 = 1 and #A0 = 900, #B0 = 500, #C0 = 200). In this case species

B and C died at time 0.15 m, and this event stops the oscillatory pattern of the model.

ical oscillating behavior along all simulation time (Figure 4A).
Conversely, in the stochastic framework the amplitude of the
oscillations changes over time, and this opens the possibility for
one or two out of three species to disappear (zero abundance).
When this happens, the oscillatory pattern of the system stops,
and no other reactions are fired (Figure 4B).

Figure 5 shows the sensitivity results obtained from the
different methods. Comparing the two deterministic methods
(Figure 5A), we see a perfect overlap of the two methods. This
means that the error introduced by the FD approximation can
be considered to be irrelevant. We can also notice how the
sensitivity function increases its oscillation amplitude over time.
This happens because perturbing a model parameter affects the
frequency of the oscillations. As a result, the nominal and the
perturbed state become increasingly out of sync over time. This
explains both the periodicity of the sensitivity function and
the increasing amplitude of its oscillations. We refer to [28–
30] as a first look to the vast literature dealing with sensitivity
analysis of oscillatory systems, which is more focused on
quantities of oscillations such as period and amplitude. Among
the stochastic methods, we see that the GT method has the
largest variance with respect to all the other methods (Figure 5B
and D). Moreover, all the stochastic methods have a large result
variance. This is because in the 10 000 simulations used to
derive the sensitivity a wide range of possibilities are explored,
with simulations that oscillate for all the simulation time, while
others stop at some time because some model variables go to
zero. Looking at Figure 5B and D, we observe how deterministic
and stochastic approaches provide different results. In fact, after
a certain amount of time, the mean of the stochastic approach
does not overlap anymore with the deterministic approach. This
can be better appreciated in Figure 6 where Figure 5B and D
are zoomed to provide the first 2 and 6 oscillation periods. At
the very beginning, the sensitivity values computed by the two
approaches overlap (Figure 6A and C), while they step by step
decouple as the simulation time progresses (Figure 6B and D).

As expected, the computational time required by the stochas-
tic methods is still higher than the one of deterministic methods
(Table 3).

The Schlögl model

The Schlögl model [31] is a reaction network that exhibits ‘bista-
bility’ and switching behavior [32–34]. The system has two stable

steady states separated by an unstable state. The model consists
of three species (A, B and X) and four reactions:

R1 : A + 2X
c1−→ 3X R2 : 3X

c2−→ A + 2X

R3 : B
c3−→ X R4 : X

c4−→ B.
(27)

The corresponding set of ODEs is

d[A]
dt = −d1[A][X]2 + d2[X]3

d[B]
dt = −d3[B] + d4[X]

d[X]
dt = d1[A][X]2 − d2[X]3 + d3[B] − d4[X].

(28)

In the deterministic framework, the system converges to
one of the two steady states depending on the initial state
(Figure 7A). Instead, in the stochastic framework, the system
may jump between the two stable states spontaneously, due
to its inherent randomness, creating a behavior that cannot be
observed in the deterministic framework (Figures 7B and 8). For
this model we only provide the results for the species X because
species A and B are large and are assumed to remain essentially
constant over the simulation time.

In Figure 9, we report the results of the sensitivity analy-
sis. Looking at Figure 9A, we notice that the sensitivity values
obtained by the two deterministic methods do not overlap. This
approximation can be overcome with a smaller choice of ε

(Figure 9A, dashed line). This means that for this model the
approximation introduced by the FD method is not negligible
with the choice of ε = 0.01. Also, the results show that the mean
of the sensitivity values computed with the stochastic methods
never overlaps the deterministic one (Figure 9C). In fact, only
with the stochastic approach the bistability nature of the model
can be appreciated. The occurrence of bistability also explains
why the variance of all the stochastic algorithms increases until
a certain time point (close to 10). From time 10 to time 15,
the 2nd stable state becomes a rare event and, as can be seen
in Figure 10, all the system states end up around the value of
90. However, the variance still remains high due to the small
value of the parameter c1, which produces a high sensitivity
value.

The computational time required by the two approaches is
lower than for all the other considered models. The means of the
stochastic methods are comparable with the deterministic direct
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Figure 5. Results for the sensitivity analysis computed on the Oscillator model for parameters d1 and c1 on variable A. (A) Sensitivity results compared between the

deterministic methods. (B) Sensitivity results compared between the stochastic methods. (C) Sensitivity results compared between the FD methods. (D) Sensitivity

results compared between the ‘exact’ methods.

Figure 6. Zoom for 2 and 6 periods for the sensitivity analysis computed on the Oscillator model for parameters d1 and c1 on variable A. (A) and (B) Results computed

with the FD methods. (C) and (D) Results computed with the ‘exact’ methods.
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Table 3. Methods’ runtime for the Oscillator model

Stochastic approach

Comp. time GT IRN CRN CFD RFD
Mean ± SD 0.14 ± 0.13 s 0.26 ± 0.22 s 0.26 ± 0.21 s 0.22 ± 0.19 s 0.21 ± 0.21 s
Total 34.36 h 66.96 h 66.20 h 54.72 h 53.29 h
(10 000 runs)

Deterministic approach

Comp. time FD method Direct differential method
1.78 s 0.39 s

Figure 7. Dynamics of species X of the Schlögl model. (A) Model dynamics computed with the deterministic approach (d1 = 1.5·10−7, d2 = 1.67·10−5, d3 = 1.0·10−4, d4 =
3.5 and [A0] = 100000, [B0] = 200000, [X0] = 250). (B) Two possible model dynamics computed with the stochastic approach (c1 = 3.0·10−7, c2 = 1.0·10−4, c3 = 1.0·10−3, c4 =
3.5 and #A0 = 100000, #B0 = 200000, #X0 = 250). The difference between the two dynamics shows the bistability of the model in the stochastic framework.

Figure 8. Histogram of species X at time 6 calculated by 10 000 stochastic simulation runs. The x-axis is the interval of population of species X. The y-axis is the

probability for species X to be in the corresponding interval. The figure shows the bistability of the model since at time 6 the population of species X fluctuates around

two peaks (close to 100 and 400) for all the three considered cases: nominal state (Xc1 ), perturbed positive state (Xc1+εc1 ) and perturbed negative state (Xc1−εc1 ).
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Figure 9. Results for the sensitivity analysis computed on the Schlögl model for parameters d1 and c1 on variable X. (A) Sensitivity results compared between the

deterministic methods. The dashed line provides the output of the FD method with ε = 0.001. (B) Sensitivity results compared between the stochastic methods. (C)

Sensitivity results compared between the FD methods. (D) Sensitivity results compared between the ‘exact’ methods.

Figure 10. Histogram of species X at time 15 calculated by 10 000 simulation runs. The x-axis is the interval of population of species X. The y-axis is the probability

for species X to be in the corresponding interval. The figure shows that at time 15 the 2nd state (the one close to 400) becomes a rare event for all the three considered

cases: nominal state (Xc1 ), perturbed positive state (Xc1+εc1 ) and perturbed negative state (Xc1−εc1 ).
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Table 4. Methods’ runtime for the Schlögl model

Stochastic approach

Comp. time GT IRN CRN CFD RFD
Mean ± SD 0.03 ± 0.04 s 0.06 ± 0.05 s 0.05 ± 0.06 s 0.04 ± 0.05 s 0.03 ± 0.04s
Total 24.93 h 44.59 h 44.69 h 39.88 h 27.95 h
(10 000 runs)

Deterministic approach

Comp. time FD method Direct differential method
0.15 s 0.04 s

Figure 11. Graphical comparison of the reviewed methods for computing sensitivity analysis. For each computational approach the most important pros and cons

are indicated. The FD and the RFD methods are highlighted in gray to indicate that these are the methods providing the best performances, on average, in all the

case studies presented in the review. (A) The methods are firstly divided in exact and approximate strategies. (B) The methods are firstly divided in deterministic and

stochastic methods.

differential method (Table 4), and RFD is still the best option in
terms of low computational time and small variance.

Conclusions
This paper compares the stochastic and the deterministic sen-
sitivity analysis for biochemical reaction systems. Three theo-
retical models have been considered to test the computational
approaches in specific conditions where stochastic and deter-
ministic simulation yield different results (the Oregonator model
for systems with unstable steady states, the Oscillator model for
oscillators with population extinction and the Schlögl model for
bistable systems). Our comparison shows that both approaches
have some pros and cons as summarized in Figure 11.

The results for the Oregonator model underline how the
deterministic approach is not able to deal with the steady-state
condition that, for this model, is so different with respect to the
one of the perturbed state. This instability could be an important
limitation of the method because the steady-state condition is
often used in the deterministic approach for parameter calibra-
tions. Moreover, the deterministic approach is unable to show
the specific model behavior that is expressed only when the
randomness nature of the system is considered. In fact, the
deterministic and stochastic approaches show the same results
for the Oregonator model around the perturbed state as the
system has the same behavior. Instead, for the Oscillator and
the Schlögl model, the results are different because the two
systems have different behavior in the two conditions. This point

is very important because, given the high computational cost
of sensitivity analysis, a relatively small number of modeling
works rely on the stochastic approach to compute the sensitivity
analysis. Moreover, in some of these works the impact of such a
choice might have been underestimated. To this regard, on the
top of the three conditions considered in the review, only the
risk of population extinction could be potentially predicted when
deterministic simulation is employed. Indeed, this is a direct
consequence of low-numbered species that can be observed also
by deterministic simulation. Conversely, the other two condi-
tions can be identified only if the modeler tries to also simu-
late the system by stochastic simulation. In our experience, it
would be good to run some stochastic simulations of the model
to check that the stochastic behavior of the system does not
deviate too much from the deterministic one. When this hap-
pens, deterministic simulation should not be used. This prelim-
inary checking, however, could be computationally demanding
in case of large models or in case of a large set of repeated
analyses.

The limitations of the stochastic framework are the large
variance of their estimates and the computational time. In all
of our test cases, the GT method has the largest variance and
most of the time the shortest runtime. For the four FD methods
considered, IRN has the largest variance and, very often, the
longest computational time. CRN showed a computational time
that is comparable with IRN, but CRN showed smaller variance.
CFD and RFD outperformed IRN and CRN in terms of variance,
while RFD very often outperformed all the other methods in
terms of computational time.
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Key Points
• Sensitivity analysis is emerging as an important tool

for investigating mathematical models of biological
dynamics.

• The deterministic and the stochastic approaches for
computing sensitivity analysis can provide very dif-
ferent results in conditions where deterministic sim-
ulation is unable to capture the exact evolution in
time of the biological system (systems with unstable
steady states, oscillators with population extinction
and bistable systems).

• Despite the fact that steady state analysis is very
popular in deterministic modeling, the deterministic
approach exhibited numerical instability in specific
conditions when the sensitivity has been computed at
the model steady state.

• Stochastic methods take into account system stochas-
ticity, but they are often affected by the large variance
of the results and a long computational time.

• RFD resulted to be the best compromise among the
stochastic algorithms in terms of variance and compu-
tational cost.

Supplementary Data

Supplementary data are available online at https://academic.
oup.com/bib.
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