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Abstract

Motivation: Adverse drug reaction (ADR) or drug side effect studies play a crucial role in drug discovery.
Recently, with the rapid increase of both clinical and non-clinical data, machine learning methods have
emerged as prominent tools to support analyzing and predicting adverse drug reactions. Nonetheless,
there are still remaining challenges in ADR studies.
Results: In this paper, we summarized ADR data sources and review ADR studies in three tasks: drug-ADR
benchmark data creation, drug-ADR prediction, and ADR mechanism analysis. We focused on machine
learning methods used in each task and then compare performances of the methods on the drug-ADR
prediction task. Finally, we discussed open problems for further ADR studies.
Availability: Data and code are available at https://github.com/anhnda/ADRPModels.
Supplementary: Supplementary materials are available at Briefings in Bioinformatics online.
Keywords: adverse drug reaction, ADR prediction, ADR mechanism, machine learning methods

Introduction

According to WHO, an adverse drug reaction (ADR) or drug side effect
is a response to a medicine which is noxious and unintended, and which
occurs at doses normally used in human [1]. In reports of 2011, ADRs
accounted for nearly 6% of total hospitalizations in the USA, which cost
billions of dollars and was responsible for significant patient morbidity
and mortality [2, 3]. Therefore, the studies of ADRs are important in drug
discovery.

The traditional methods for obtaining ADRs of drugs often use clinical
trials or post-marketing surveillance reports [4]. However, these methods
are costly and time-consuming. To deal with these disadvantages, machine
learning methods integrating various kinds of ADR data sources are used
to make inexpensive and fast predictions. These results provide potential
ADRs and their mechanism analysis for further clinical verification to
enhance ADR studies.

Data sources used in ADR studies consist of clinical and non-clinical
data. The clinical data contains observations of ADRs from clinical
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treatments of patients. These observations have not only adverse drug
reactions but also personal contexts, such as dosages of treatments,
ages, genders, and diseases of patients. Since different patients can have
different adverse drug reactions, such personal contexts can support to
build personalized ADR prediction models.

The non-clinical data contains information of biological systems such
as drug-protein interactions and biological processes. In fact, there are
various possible mechanisms in ADRs, for example, by interactions of
drugs with proteins, but the details of these mechanisms are still unknown
[5, 6]. By integrating clinical data with non-clinical data, it is expected
that the quality of ADR studies will be improved, and ADR mechanisms
can be revealed.

Since there are different machine learning methods using various
kinds of ADR data sources, an overview of current methods in ADRs
is necessary. Table 1 summaries the most recent survey papers related to
ADR studies. These studies often use either clinical data [7] or non-clinical
data [8]. There is only one survey which uses both kinds of data [9], but
there is no detailed analysis on methods, such as providing a taxonomy or
conducting experiments to compare performances of methods. Recently,
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Table 1. Recent surveys on ADR studies.

Paper
Task Data

Method
analysisClinical

data

extraction

Drug-

ADR

prediction

Clinical

data

Drug-ADR

&

non-clinical

data

Poloju et al., 2018 [7] X X

Chen et al., 2016 [8] X X X

Ho et al., 2016 [9] X X X X

there are new studies in ADRs with the emerging of using machine learning
methods, leading to a need for a more detailed classification for these
methods. Moreover, ADR studies are not only drug-ADR prediction [8]
but also analyzing ADR mechanisms by revealing biological components
associated with ADRs [10]. Motivated by this, we give a broader view of
ADR studies containing ADR data sources and how computational tasks
of ADRs use these kinds of data.

The contributions of our paper can be summarized as follows. 1) We
summarize the ADR data sources containing both clinical and non-clinical
data. 2) We summarize a wide range of drug descriptors used in ADR
studies. 3) We analyze methods used in ADR studies in three main tasks:
(i) drug-ADR benchmark data creation, (ii) drug-ADR prediction, and (iii)
ADR mechanism analysis (We focus on papers on the main journals with
the most numbers of papers on this topic such as Bioinformatics, BMC
Informatics, Briefing in Bioinformatics, and Nucleic acid research, then
we follow cited papers. Papers are collected up to Feb 2019.). In each task,
we analyze data and commonly used machine learning methods. 4) We
conduct an experiment to compare the drug-ADR prediction performances
of eight commonly used methods.

The organization of the paper is as follows: Section 2 presents the data
sources used in ADR studies. Section 3 details different kinds of drug
descriptors that encode drug information. ADR studies with tasks and
methods are detailed in Section 4. Finally, discussions on current ADR
studies and open problems are presented in Section 5.

Data sources in ADR studies
In this section, we summarize commonly used data sources in ADR studies.
Fig. 1 illustrates a hierarchical classification of data sources in ADR studies
containing two groups: clinical and non-clinical data.
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Fig. 1: Data source hierarchy in ADR studies.

Table 2. Commonly used clinical data sources.

Data sources
Personal
context

Drug-ADR benchmark
Monopharmacy Polypharmacy

FAERS [13] X

OMOP-CDM [15] X

SIDER [16] X

Liu’ dataset [17] X

AEOLUS [18] X

OFFSIDES [19] X

TWOSIDES [19] X

Table 3. Commonly used non-clinical databases.

Database
Elements Having

InteractionsChemical

/ Drug

Protein

/ Gene Pathway

ADR

term Disease

DrugBank [20] X X X

PubChem [21] X

PDB [22] X

BindingDB [23] X X X

HPRD [24] X X

CTD [25] X X X X

KEGG [26] X X X X X

SuperTarget [27] X X X

ADReCS [28] X

DART [29] X X X X

TTD [30] X X X X X

Bio2RDF [31] X X X X X X

Clinical data

Clinical data contains observations of ADRs in clinical treatments, which
are often electronic health records (EHR) or records from adverse report
systems. Each record contains drugs and observed ADRs. In addition,
personal contexts such as demographic and dosage information are also
stored. There is evidence that ADRs are different from different patients
[11], therefore, these personal contexts are important to build personalized
ADR prediction models [12].

Table 2 provides the commonly used clinical data sources. For personal
contexts, it has FDA Adverse Event Reporting System (FAERS) [13] and
Medical Outcomes Partnership Common Data Model (OMOP CDM) [14].
There are four main tables in FAERS: demographics, drug, therapy, and
reaction. The demographics table describes patient information containing
patient identification, age, gender, weight, location, and other related
information. The amount and routes of drug administration with patient
identifications come from the drug table, and the time of drug treatments is
from the drug therapy table. The reaction table contains the drug adverse
reactions with patient identifications.

OMOP CDM is a data model provided by Observational Health Data
Sciences and Informatics [15], which is an international collaboration with
the aim to create and apply data analytic solutions to a large number
of observational health databases. There are four domains of OMOP
CDM v5.0: standardized clinical data, standardized health system data,
standardized health economics data, and standardized derived elements.
Standardized clinical data contains the core information with clinical
events and demographic information of patients. With OMOP CDM,
millions of health records from different resources are transformed into
pre-defined tables of the four domains, supporting further analysis [32].

FAERS was used to extract drug-ADR benchmark datasets, which
contain reliable drug-ADR associations [16, 19]. SIDER, a common ADR
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benchmark dataset for many ADR studies, was extracted from FAERS for
ADRs caused by single drugs (monopharmacy) [16]. Liu’ dataset [17] is
a benchmark dataset extracted from SIDER into the binary format with
additional drug information. AEOLUS is also a monopharmacy dataset
extracted from FAERS, and has more drug-ADR associations than SIDER.
Extracting from FAERS with a criteria of removing bias data, OFFSIDES
for ADRs caused by single drugs, and TWOSIDES for ADRs caused by
combinations of two drugs (polypharmacy) were created [19]. However,
SIDER, AEOLUS, OFFSIDES, and TWOSIDES only contain two kinds
of information: drugs and ADRs. As far as we know, there is no benchmark
ADR data for academic research that contains personal contexts such as
diseases, duration of drug treatments.

In recent years, data from social media such as Facebook, Twitter is
another kind of data to analyze ADR. This social media data contains
comments of patients during drug treatments. However, the tasks on this
kind of data are mainly ADR identification using techniques of natural
language processing [33–35], which are considered as data pre-processing
steps, therefore, we do not cover them in this survey.

Non-clinical data

The non-clinical data contains information of chemical, physical,
biological properties of drugs and biological systems, which can help
revealing mechanisms of drugs and ADRs. In fact, ADRs are results of
complex reactions of drugs with biological components. Some studies
have shown that drug side effects can be the results of reactions of drug
chemicals with proteins [5, 6, 36], which interrupts normal biological
processes leading to abnormal reactions of human bodies. By using this
kind of data, we can improve the performance of models and extract
possibly associated biological components with ADRs.

Table 3 summarize the commonly used non-clinical databases in ADR
studies in two aspects: elements in each database and interactions among
elements existed or not. For example, ADReCS [28] is a database for only
ADR term definitions, and KEGG [26] contains information of proteins,
drugs, biological pathways, diseases, and interactions among them such
as drugs with proteins targets. To link these databases, Bio2RDF [31]
provides interconnections among elements of different databases.

Fig. 2: A network for clinical and non-clinical data.

Finally, the connection between clinical and non-clinical data can be
illustrated by a network in Fig. 2. The clinical data provides information
of drug-ADR connections with personal contexts. The non-clinical
data contains connections of drug-drug, drug-protein, protein-protein,
and protein-biological pathway. This network is used to support some
computational tasks represented in Section 4.

Drug descriptors
One possible way of encoding drugs is to use descriptors, which are
physical, chemical, and biological characteristics of a drug. Since the
quality of these descriptors impacts ADR prediction performances, the
understanding of drug descriptors is a basic need. Fig. 3 presents a
classification for drug descriptors. In general, drug descriptors can be
categorized into two classes: physical or chemical descriptors (PC-
descriptors) and biological descriptors (BIO-descriptors).

Fig. 3: Different kinds of drug descriptors.

Physical or chemical (PC) descriptors

The PC-descriptors describe the structure of drug molecules and their
physical, chemical properties [37–39]. Based on their dimensionalities
and properties, this class of descriptors can be divided into 3 subgroups:
structural descriptors, spatial descriptors, and other miscellaneous
descriptors.

Table 4. Two groups of structural descriptors implemented in CDK [40].

Group Name Number of
descriptors

Variable-size Daylight family [41] -

Fixed-size

E-State fragments [42] 79
Klekota-Roth [43] 4860
MACCS keys [44] 166
PubChem descriptors [21] 881
CDK substructures [40] 307

The structural descriptors describe features of molecular structures
such as atom counters, atom pairs, rings, and other substructures. Table
4 presents two groups of structural descriptors (fingerprints) implemented
in Chemistry Development Kit (CDK) [40]: variable-size and fixed-size
groups. The former group generates substructures from a given set of
molecules, in which the number of substructures can be changed depending
on the provided molecule set [41]. In contrast, the latter group uses
pre-defined substructures, for example, MACCS keys and PubChem
descriptors. An illustration of PubChem descriptors is shown in Fig. 4.
The PubChem descriptors contain pre-defined 881 bits, which are divided
into seven sections with corresponding bits. For instance, bit 308, which
belongs to section 3 of simple atom pairs, indicates the existence of O-H
connection.

The spatial descriptors describe spatial properties of drug molecules.
In PubChem 3D database [45], 3D conformers descriptors of molecules
are used. These descriptors are calculated by OMEGA [46], a tool
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Fig. 4: Seven sections in PubChem descriptors.

published by OpenEye. Molecular interaction fields (MIFs) are another
kind of spatial descriptors for drugs. MIFs describe spatial variation of
the interaction energy between a molecular target and a chosen probe.
Probes are small molecules representing common interactions such as
hydrophobic, hydrogen bond donors and acceptors [47]. Some well known
MIFs are GRID [48], VolSurf [49], CoMFA [50], and MetaSite [51]. Fig. 5
illustrates the idea of GRID descriptors. A molecule is put into a cube with
grids. An empirical energy function will be used to calculate the interaction
field of each cell at position (x, y, z) of the cube. The energy function is
defined by:

Exyz =
∑

Elj +
∑

Eel +
∑

Ehb

where Elj , Eel, and Eeb are the Lennard-Jones function, the
electronic function, and the hydrogen bound function, respectively [48].

Fig. 5: A molecule with 3D GRID.

Other miscellaneous descriptors such as physicochemical properties
of drugs also affect the action of drugs. Lipophilicity [52, 53] impacts
solubility, absorption, distribution, membrane penetration and plasma
protein binding of drugs. Hydrogen bond [54] is another physical property
of electrostatic attraction, which takes two out of five Lipinski’s rules
[55]. Size/geometric features of drugs such as molecular weight and atom
counters can also reflect drug properties.

Biological (BIO) descriptors

The BIO-descriptors describe biological properties of drugs, which can be
classified into two subgroups: function-based descriptors and interaction-
profile descriptors. The function-based descriptors describe purposes of
drugs in therapy. ATC code [56], which is a classification system for drugs
based on therapeutic properties, is a typical example of function-based
descriptors.

The interaction-profile descriptors describe associated biological
components of drugs containing protein targets and associated biological
pathways of drugs [17, 57]. These interaction-profile descriptors are taken

from the databases having drug interaction information in Table 3, such as
DrugBank [20], BindingDB [23], and Bio2RDF [31].

ADR studies: tasks, data and methods
In this section, we summarize three main computational tasks in ADR
studies: (i) drug-ADR benchmark data creation, (ii) drug-ADR prediction,
and (iii) ADR mechanism analysis. Fig. 6 provides an overview of ADR
studies of these three tasks. In each task, we analyze objectives, data, and
commonly used methods. Main notations used in the following subsections
are described in Table 5.

Table 5. Main notations

Notation Description
i ∈ {1, . . . , d} a drug index in a set of given d drugs
j ∈ {1, . . . , s} an ADR index in a set of given s

ADRs
xi ∈ Re a descriptor vector of size e of drug

i

X = [x1 . . .xd]
T ∈ Rd×e a descriptor matrix of given d drugs,

T is the transpose operator.
yi,j ∈ R an association score of drug i and

ADR j
yi = [yi,1 . . . yi,s]

T ∈ Rs a vector for association scores of
drug i with s ADRs

Y = [y1 . . .yd]
T ∈ Rd×s a given drug-ADR association score

matrix
hi ∈ Rm a vector of size m representing

associated biological components of
drug i

H = [h1, . . . ,hd]
T ∈ Rd×m a given drug-biological component

matrix

Task 1: drug-ADR benchmark data creation

ADR clinical data contains millions of records with redundant information,
for example, some records contain similar information. Creating a drug-
ADR benchmark dataset is a necessary task in ADR studies. It helps other
studies in evaluating performances of new methods and comparing with
existing methods.

Table 6. Contingency table for Fisher’s exact test.

Number of records of drugs
drug i other drugs

ADR j
Yes n1 n3

No n2 n4

In ADR studies, benchmark data is extracted from clinical records to
retrieve reliable drug-ADR associations, which are pairs of drugs with
corresponding ADRs. However, drug-ADR pairs have different levels of
association significance in clinical records . Some pairs of drug-ADR rarely
appear in the clinical records, leading to their low association significance.
In addition, some records often contain a combination of more than one
drug, making the verification of drug-ADR associations difficult.

To check the significance of drug-ADR associations, association rule
mining or statistical significance tests can be applied [58]. We will briefly
explain a typical significance test, Fisher’s exact test [59]. Consider drug
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Fig. 6: Computational tasks of ADR studies: Data and commonly used methods.

i and ADR j in a clinical database, the association information of drug i
and ADR j is stored into a contingency table as in Table 6. In this table,
n1 denotes the number of records containing ADR j of drug i, while n2

is that of the other drugs. The number of records that do not contain ADR
j of drug i is n3, and that of the other drugs is n4. The Fisher’s exact
test evaluates the significance of the association of drug i and ADR j by a
p-value:

p =
(n1 + n2)!(n3 + n4)!(n1 + n3)!(n2 + n4)!

n1!n2!n3!n4!(n1 + n2 + n3 + n4)!

This technique was used on FAERS to extract SIDER, a
monopharmacy ADR benchmark dataset used in a large number of ADR
studies [16, 60]. The technique was also used to extract OFFSIDES for
monopharmacy ADR, which are ADRs of drugs that do not appear in
the drug’s package insert, and TWOSIDES for polypharmacy ADRs of
drug-drug interactions [19].

Task 2: drug-ADR prediction

Predicting ADRs of drugs, or drug-ADR association scores, is a main
objective of ADR studies. Depending on the personal context information
is used or not, studies in drug-ADR prediction can be divided into
two classes: personalized drug-ADR prediction and general drug-ADR
prediction. In the following subsections, we analyze machine learning
methods according to each class.

Personalized drug-ADR prediction
The personalized drug-ADR prediction uses personal contexts taken from
clinical data with information such as dosages of treatments, gender and
age of each patient. Therefore, the prediction result will be different among
patients even with the same drugs. For this prediction, we focus on methods

using Poisson models, which are commonly used models for personalized
drug-ADR prediction.

i. Poisson models
The aim of using Poisson models is to predict the probabilities of the
numbers of occurrences of ADRs during drug treatments. It is assumed that
these numbers follow Poisson distributions with expectations depending
on the taken drugs [12, 32]. For simplicity, considering a patient p in a
drug treatment, the probabilities of numbers of occurrences of s ADRs
Φ(ỹ|x̃) ∈ Rs are calculated by:

Φ(ỹ|x̃) = [P(ỹ1|φ1(x̃)) . . .P(ỹj |φj(x̃)) . . .P(ỹs|φs(x̃))]T

where x̃ = [x̃p,1 . . . x̃p,i . . . x̃p,d]
T is a vector indicating drugs taken

by patient p during the treatment, ỹ = [ỹ1 . . . ỹj . . . ỹs]
T is a vector

denoting the numbers of occurrences of s ADRs, and P(ỹj |φj(x̃))) =

φj(x̃)
ỹj e−φj(x̃)/ỹj ! is the Poisson distribution for the number of

occurrences of ADR j with expectation φj(x̃). A commonly used
formulation of φj is:

φj(x̃) = exp (θp,j +
d∑
i=1

x̃p,i.wi,j)

where θp,j is a parameter depending on the patient, leading to differences
in ADR occurrences of different patients, and wi,j is a parameter used as
a weight for the association of drug i and ADR j [32]. This formulation
shows a multiplicative contribution of each drug to the expectation of the
number of occurrences of each ADR.

However, the existing Poisson models have a limitation in terms of
integrating other information such as weights, genders of patients and also
non-clinical data.
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Fig. 7: An example of latent variables with thirteen psychoactive substances [63].

ii. Other methods
There are other methods that were used to combine drugs with personal
contexts into medical case vectors. A feature-based similarity method was
proposed to learn weights for these medical case vectors with the idea was
to distinguish cases having an ADR with cases not having the ADR [61].
These medical case vectors were also used as inputs for a classification
problem [62].

General drug-ADR prediction
In contrast to personalized drug-ADR prediction, general drug-ADR
prediction predicts drug-ADR association scores without using personal
contexts. A common approach for this class is to combine knowledge of
drugs from non-clinical data to enrich drug information and apply machine
learning methods to build drug-ADR prediction models. As presented in
Section , drug information is described by various types of drug descriptors.
The drug-ADR prediction models receive the drug descriptors as the inputs
and output all corresponding ADRs.

In this study, we consider general drug-ADR prediction as a multi-label
classification problem such that each ADR is a label and each drug can
have many labels [64, 65]. The prediction models calculate the association
scores, which are real numbers, of each drug with all labels. The final labels
of the drug are selected from these scores by a ranking method. In detail,
a drug-ADR prediction model is formulated as a function f : Re → Rs,
where e is the number of descriptors and s is the number of ADRs . Given
a drug with descriptor vector x ∈ Re, the model predicts drug-ADR
association scores with s ADRs: f(x) ∈ Rs.

We further classify the models into two classes: i. non-latent variable
models and ii. latent variable models. Latent variables are ones that are not
directly observed or measured, and needed to infer from observed data. Fig.
7 presents an example of latent variables from a study on finding patterns
of psychoactive substances used in adolescents [63]. There are thirteen
psychoactive substances from beer to hallucinogenics, which are observed
variables. In addition, there are some correlated pairs of substance usages,
for example, cocaine and amphetamines. The study suggested that these
substances can be grouped into three groups: alcohol, cannabis, and hard
drug. The patterns of substance usage will be taken from these three groups,
which are called latent variables.

A latent variable model is a model that contains latent variables
obtained from observed ones. In application to drug-ADR prediction,
latent variables of drugs can be interpreted as groups of drug descriptors
that are highly correlated with each other. The representations of drugs in
the space created by latent variables are called latent vectors.

In the following contents, we first describe the formulation for function
f according to models of the two classes: non-latent variable models and
latent variable models, which are based on the criteria that latent vectors

of drugs are learned or not. Then we present an experiment to compare
prediction performances of these models.

i. Non-latent variable models
In non-latent variable models, drug descriptors are used to predict drug-
ADR associations without learning drug latent vectors. We present three
typical methods: a. k nearest neighbors, b. kernel methods and c. mining
networks of drug-ADR.

a. k nearest neighbors
The idea of using k nearest neighbors (k-NN) is that drugs having

similar descriptor vectors tend to have similar ADRs [17, 64, 66–68].
Suppose that there is a similarity measure sim : Re × Re → R, for
example, cosine similarity. To predict drug-ADR association scores f(x),
first the top k most similar drugs to x are identified resulting in a set
of indices of the similar drugs T (x, k). Then the drug-ADR association
scores are calculated by:

f(x) = [f1(x) . . . fj(x) . . . fs(x)]
T.

where fj is a weighted average function:

fj(x) =
∑

i∈T (x,k)

wi(x)yi,j , j ∈ {1 . . . s},

with weights wi are obtained from drug similarities, for example:

wi(x) =
sim(x,xi)∑

i′∈T (x,k) sim(x,xi′ )
(1)

Some extensions of KNN were also applied, for example the
linear neighborhood similarity method (LNSM) [69]. In LNSM, the
similarity weights are calculated such that a drug descriptor vector is
a linear combination of descriptor vectors of the neighbor drugs with
corresponding similarity weights.

b. Kernel methods
The idea of using kernel methods, for example, support vector

machines (SVMs), is to use classification functions calculated from
kernel functions in the form of inner products of drug descriptor vectors
[17, 57, 67, 70]. To predict drug-ADR association scores f(x) =

[f1(x) . . . fj(x) . . . fs(x)]
T, the kernel methods use the following form

for fj :

fj(x) = g(

d∑
i=1

wi,jyi,jK(x,xi)), j ∈ {1 . . . s}

where g is a function, for example, a sign function.K : Re×Re → R
is a kernel function, for example, a radial basis function (rbf):K(x,xi) =
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exp(− (x−xi)
T(x−xi)

2δ2
)with a hyperparameter δ, andwi,j is a parameter

used as a weight for the association of drug i and ADR j.
Different from k-NN, the kernel methods learn weights from a training

process, which depends on both drugs and ADRs, while weights in k-NN
are calculated only from drug similarities.

c. Mining networks of drug-ADR
Consider a drug-ADR network G = (V,E), where V is a set

of nodes of d drug and s ADRs: V = {v1, . . . , vi, . . . , vd} ∪
{ν1, . . . , νj , . . . , νs}, and E is a set of edges of drug nodes-ADR nodes
for known ADRs of drugs and drug nodes-drug nodes for drug similarities.
The idea of mining this network is that if a drug and an ADR in the network
are well-connected, they possibly have a high association score [71–73].
This approach can be formulated in two steps:

1. Calculate partial connection scores r(vi, νj) ∈ Rl of each pair
of drug node vi and ADR node νj using l different measures
on G. A commonly used measure is Jaccard index [71, 73]. Let
Ni = {v|(v, vi) ∈ E} be a set of neighbor nodes of drug node
vi, and Nj = {v|(v, νj) ∈ E} be that of ADR node νj , the partial
connection score calculated by Jaccard index is: |Ni∩Nj |/|Ni∪Nj |,
where | . | denotes the cardinality of a set. Some other measures such
as Dice index and Adamic/Adar index were also applied [73]. Random
walk [74] was also applied to calculate r [75].

2. Calculate drug-ADR association scores f(x) of a drug with descriptor
vector x. Let v(x) be the corresponding node in G of the drug. The
association scores are obtained by:

f(x) = [f(r(v(x), ν1)) . . . f(r(v(x), νj)) . . . f(r(v(x), νs))]
T

where f was often a binary function [72] or a logistic regression
function (LR) [71]. In addition, random forest (RF) was also applied
to f [73].

However, a problem with mining drug-ADR networks is sparsity that
there are too few edges between drugs and ADRs, for example, in SIDER
dataset, the edge density is 0.017. This makes the prediction less effective
since there is only a small number of ADRs predicted for each drug.

ii. Latent variable models
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Fig. 8: Learning latent variables and using latent variables.

In latent variable models, drug-ADR association scores are calculated
by using drug latent vectors learned from drug descriptors. Fig. 8 illustrates
two stages of using latent models: learning latent vectors of drugs and then
using these latent vectors for prediction. It is expected that latent vectors
can remove redundant information from drug descriptors, for example,
unnecessary descriptors. In addition, calculating with latent vectors of
small size can reduce complexity of high-dimensional data. In this paper,
we briefly describe three commonly used latent variable models (canonical

correlation analysis, matrix factorization and neural networks), and some
other miscellaneous models.

a. Canonical correlation analysis
The aim of using canonical correlation analysis (CCA) is to find

weight vectors a ∈ Re and b ∈ Rs such that the correlation of the
projections of drug descriptor matrix X and drug-ADR association matrix
Y is maximized [57]:

argmax
a,b

(Xa)T(Yb)√
(Xa)T(Xa)

√
(Yb)T(Yb)

.

The first pair of (Xa,Yb) is called the first pair of canonical variables
(latent variables). The remaining pairs of canonical variables have an
additional constraint that they are uncorrelated with existing pairs of
canonical variables. c pairs of weight vectors a and b form two weight
matrices: A ∈ Re×c and B ∈ Rs×c, respectively.

The latent vector of a drug with descriptor vector x is calculated
by: z(x) = ATx. Drug-ADR association scores f(x) are obtained by
minimizing the distance of latent vectors:

f(x) = argmin
y∈Rs

∥∥∥z(x)−BTy
∥∥∥ .

where ‖ . ‖ is a norm, for example, Euclidean norm.
Sparse canonical correlation analysis (SCCA), a variant of CCA, was

also applied to predict drug-ADR association scores [67]. In SCCA, L1

regularization is applied to columns of A and B, leading to their sparsity.
b. Matrix factorization
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Fig. 9: An illustration of matrix factorization.

The idea of using matrix factorization (MF) is illustrated in Fig.9 [76].
It is assumed that drugs and ADRs share c unknown latent variables. Then
the drug-ADR association matrix Y is decomposed into two matrices of
latent vectors of drugs and ADRs in the space of latent variables: U ∈
Rd×c and V ∈ Rs×c, such that Y ≈ UVT. Supposing there is a drug
similarity matrix Sd ∈ Rd×d calculated from drug descriptors matrix
X, and an ADR similarity matrix Ss ∈ Rs×s calculated from ADR
definitions, the objective function is:

argmin
U,V

∥∥∥Y −UVT
∥∥∥+R(U,V,Sd,Ss),

where the first part is the error from matrix factorization, and the second
one is the regularization for U and V given Sd and Ss, for example,
Laplacian regularization.
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Fig. 10: An illustration of a neural network.

To calculate drug-ADR association scores f(x), first k-NN is applied
to calculate a new latent vector z(x) from the existing drug latent vectors:

z(x) =
∑

i∈T (x,k)

wi(x)ui

where ui ∈ Rc is the latent vector of drug i such that uT
i corresponds to

the ith row of U, T (x, k) is the set of indices of the top k most similar
drugs to x, and wi(x) are similarity weights defined in Equation 1.

Then, the drug-ADR association scores are obtained by:

f(x) = Vz(x)

Different from CCA, MF only focuses on Y to learn latent vectors
and uses X as additional information which can be omitted from the
regularization part. Meanwhile, CCA requires both X and Y to obtain
latent vectors.

c. Neural networks
Neural networks, which are machine learning models featured by the

ability to learn non-linear relationships, were applied to predict drug-ADR
association [77–79]. Fig. 10 illustrates this technique in detail. The basic
components of neural networks are neurons. Each neuron receives an input
vector x′ = [x′1 x

′
2 . . . x

′
n]

T and outputs a value y′ by a function: y′ =
f(wTx′ + b), where b is a bias, w = [w1 w2 . . . wn]T is a weight
vector, and f is an activation function, for example, a sigmoid function,
making non-linear combinations. A neural network module is composed
of multiple layers of neurons that the output of each neuron of a layer
is used as an input for neurons of other layers. The outputs of a neural
module, for example, named Encoder, given an input vector x is denoted
by Encoder(x).

To predict drug-ADR association scores f(x), there are two steps to
process:

1. Obtain the latent vector: z(x) = Encoder(x), where Encoder is a
neural module receiving drug descriptor vector x as the input vector.

2. Predict drug-ADR association scores: f(x) = Decoder(z(x)),
where Decoder is a neural module receiving drug latent vector z(x)

as the input vector.

An advantage of using neural networks is the ability to approximate
any continuous function. If there is no hidden layer, neural networks
become logistic regression functions. The architecture of neural networks
can be more complex when changing connections of neurons and number
of layers, for example, a multi-layer feedforward neural network (MLN)

[78], or a deep convolutional neural network (DCN) [79]. These complex
neural networks aim to approximate mapping functions from inputs to
outputs better. However, the number of parameters in a neural network
is often much larger than that of other models. This problem leads to
increasing computational complexity and the potential for overfitting of
neural networks.

d. Other methods
There are some miscellaneous methods to obtain latent vectors of drugs

to predict drug-ADR associations, for example, mapping drugs into an
ADR space [80, 81] and mapping drugs into a metabolic reaction space
[82]. In mapping drugs into an ADR space, groups of highly correlated
ADRs were extracted, then each drug was represented by a vector over
these groups. In mapping drugs into a metabolic reaction space, flux
variability analysis (FVA) was applied to represent drug-protein/gene
interaction profiles by a vector over metabolic reactions [83], then these
vectors were used to predict ADRs.

Performance comparison in general drug-ADR prediction
We conducted experiments to compare the general drug-ADR prediction
performances on monopharmacy cases of eight machine learning models.
There were four non-latent variable models: LNSM [65, 69], SVMs [17,
70], RF [17, 73] and LR[17, 71], and four latent variable models: CCA
[57, 67], MF [76], MLN [78], DCN [79] (The convolutional network
proposed in [77] addressed polypharmacy ADRs, so we do not compare.).

i.Experimental setups
We ran experiments with AEOLUS dataset [18], a monopharmacy dataset
for drug-ADR prediction, which was also used in [65] (AEOLUS is
the largest one among AEOLUS, SIDER, and Liu’s datasets.). We only
selected drugs appearing in DrugBank and ADRs occurring in more than
50 drugs. The final statistical information of the dataset is provided in Table
7, containing the number of drugs, the numbers of ADRs, the numbers of
drug-ADR associations, the average, minimum, and maximum numbers
of ADRs per each drug.

Table 7. Statistics of the used dataset.

Num
drugs

Num
ADRs

Num drug-
ADRs

ADRs/drug
Avg. Min Max

1,385 2,707 605,121 445 1 2,703

Table 8. Statistics of the used drug descriptors.

Name Source Size
PCBio Pubchem+Bio2RDF 7, 593

2DChem PubChem [N_ATOMS_OF_DRUG , 53]

In the experiments, we used PCBio and Chem2D as two kinds of
drug descriptors with information presented in Table 8. PCBio descriptors
are the combinations of PubChem descriptors taken from PubChem and
chemical, physical, and biological descriptors taken from Bio2RDF. We
extracted descriptors with information from DrugBank in Bio2RDF as
in [68], and selected descriptors occurring in at least 3 drugs. 2DChem
descriptors are drug chemical descriptors represented in the form of a
matrix such that each row of the matrix corresponds to chemical features
of an atom in a drug. To represent 2DChem descriptors, we extracted 53
chemical properties of each atom in the drug’s molecule, hence each drug
is represented in the form of a matrix that the number of rows equals to
the number of atoms of the drug and the number of columns is 53 (see
supplement materials). In our experiments, 2DChem descriptors are only
used for DCN model [79], other models use PCBio descriptors.

Two commonly used metrics were selected to evaluate prediction
performance: area under the ROC curve (AUC) and area under the
precision-recall curve (AUPR) [57, 64, 67, 80].
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We used ten-fold cross-validation for the experiment. The
hyperparameters of each model were selected by grid searches to obtain
the highest prediction performances. In detail, the number of neighbors
for LNSM was 60, SVMs were run with a rbf kernel and the soft-margin
hyperparameter was 1. RF was run with 80 estimators. CCA had 60 pairs
of canonical variables, MF had 60 latent factors, MLF had two hidden
layers with the sizes of 1000 and 800. DCN had the same architecture
described in [79] with 4 convolutional and pooling layers. The detail of
selecting hyperparamters is provided in the supplemental material.

We calculated the average computational time of each fold. The
computational time was evaluated on a computer with Intel Core i7-6700
CPU and 16 GB RAM.

ii.Experimental results

Table 9. Performance comparison of drug-ADR prediction models on Aeolus
dataset and PCBio descriptors. Results for AUC and AUPR contain mean and
standard error values in the format value × 10−2.

Models
Non-latent models Latent models

LNSM SVMs RF LR CCA MF MLN

AUC

(×10−2)

86.07

±0.56

89.26

±0.47

86.82

±0.41

89.00

±0.40

64.51

±1.05

87.13

±0.03

89.55

±0.39

AUPR

(×10−2)

59.04

±1.58

67.57

±1.63

61.92

±1.11

66.75

±1.08

34.17

±2.07

61.03

±1.13

68.70

±1.23

Time (s) 73 22642 181 3658 317 25 186

The results of prediction performances and computational time are
presented in Table 9. In addition, DCN with 2DChem descriptors achieved
73.80±0.46 in AUC,39.10±0.63 in AUPR, and 4862(s) of computational
time.

The results show that MLN is the model having the highest prediction
performances in both AUC and AUPR (89.55×10−2 and 68.70×10−2).
SVMs are the second highest model with 89.26×10−2 and 67.57×10−2
for AUC and AUPR. In terms of computational time, MF is the fastest
model, and SVMs are the slowest one. CCA and DCN are the two models
having the lowest prediction performances.

We summarize the properties of the models in terms of linearity and
dimensional reduction, and rank the performances of the models in AUC
and computational time as in Table 10. This table shows that in balancing
between prediction accuracy and computational time, two latent variable
models, MLN and MF, are the two most promising ones. In addition, latent
variable models learn latent representation vectors of small size for drugs,
which are much smaller than the original size of the drug descriptor vectors.
This dimensional reduction can help to remove redundant information from
drug descriptors. We also can see that three out of the four highest AUC

Table 10. Summary of the models in terms of performance, non-linearity, and
dimensional reduction.

Models AUC
ranking

Time
ranking

Non-
linearity

Dimensional
reduction

Non-
latent

LNSM 6 2
SVMs 2 8 X

RF 5 3 X
LR 3 6 X

Latent

CCA 7 4 X
MF 4 1 X

MLN 1 4 X X
DCN 8 7 X X

models are non-linear, suggesting that there are non-linear relationships
between drug descriptors and ADRs.

Task 3: ADR mechanism analysis

The objective of this task is to reveal associated biological components such
as proteins or pathways of ADRs. In this task, non-clinical data of drug-
protein interactions, protein-pathways, chemical-pathways is combined
with clinical data, usually drug-ADR benchmark data. There are two
commonly used approaches for this task: i. using sparse learning and
ii. using network mining.

i. Using sparse learning
In the sparse learning approach, the idea is to consider associated

biological components of each drug as a feature vector, and then find
associated features corresponding to ADRs. To do this, weight vectors
over biological components and ADR are used with sparse constraints
by applying L1 regularization. Remaining subsets with high weights of
biological components and ADRs are associated with each other. We
describe two studies using this approach with logistic regression and
canonical correlation analysis.

Logistic regression with regularization was proposed to obtain
associated biological pathways with each ADR [84]. To obtain pathways
associated with ADR j, let wj ∈ Rm be weights over m pathways
obtaining from:

argmin
wj

1

d

d∑
i=1

(
− yi,j log

1

1 + exp(−hi ·wj)

− (1− yi,j) log(1−
1

1 + exp(−hi ·wj)
)
)
+ λw ‖wj‖1 .

where λw is a regularization parameter.
L1 regularization ‖wj‖1 forces wj to be a sparse vector. The

corresponding pathways with high weights are associated with ADR j.
SCCA was applied to obtains subsets of correlation of ADRs and

pathways [85]. By applying SCCA into two matrices Y and H of drug-
ADR and drug-biological component, respectively, two sparse weight
matrices A ∈ Rs×c and B ∈ Rm×c are obtained. The corresponding
subsets of ADRs and pathways of each pair of (al,bl) with l = 1 . . . c

are correlated.

ii. Using network mining
The idea of using networks of ADR-biological components is similar

to mining drug-ADR networks for drug-ADR prediction. If a biological
component and an ADR are well-connected in a network of biological
component-ADR, they are highly associated with each other. The
technique was used in [10, 86, 87] to build a protein-ADR network and
discover associated proteins with each ADR. Dijkstra algorithm, a well
known method to calculate the shortest paths in a graph, was used on the
network of biological components-ADR to obtain associated biological
pathways of ADRs [88].

Discussion
This survey addresses ADR-related studies in three aspects: data, drug
descriptors, and tasks with corresponding methods. We divide data
sources into clinical and non-clinical data. Clinical data contains important
personal context information such as ADRs, diseases, dosages of
treatments, and demographic information. Non-clinical data contains
more detailed information of drugs and biological systems with chemical,
physical properties of drugs, drug-protein interactions, and biological
pathways.
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We summarize the commonly used drug descriptors in ADR studies.
In addition to traditional physical and chemical descriptors, many studies
integrate biological descriptors of drugs to have better drug information.

There are three main tasks in ADR studies: creating drug-ADR
benchmark data, drug-ADR prediction, and ADR mechanism analysis.
Association rule mining is the commonly used method for creating drug-
ADR benchmark data. The drug-ADR prediction task is classified into
two classes: personalized drug-ADR prediction and general drug-ADR
prediction. In the former class, Poisson models are widely used. In
the latter class, the commonly used machine learning models can be
categorized into non-latent variable models and latent variable models.
The non-latent variable models predict drug-ADR without learning latent
variables, while the latent variable models learn latent vectors of small size
to represent drugs such that these latent vectors can help the prediction
efficiently. The experimental results show that MLN is the model having
the highest prediction performances, and the latent variable models have
the potential for further development. In ADR mechanism analysis, using
sparse learning and network mining are two commonly used approaches.

From this survey, we have three remarks on problems in current ADR
studies as follows in current ADR studies as follows:

1) Most of drug-ADR prediction studies address monopharmacy cases
in SIDER benchmark data. There are few studies proposed models
for polypharmacy prediction, for example, predicting with TWOSIDES
benchmark data [77], in spite of the fact that most of significant ADRs
come from drug combinations [19, 77].

2) ADR data sources are not effectively used. Recent ADR studies
only use either clinical data without non-clinical data information or use
ADR benchmark data and non-clinical data without personal context
information. There are no studies that combine full clinical data with
non-clinical data. In addition, current ADR benchmark data such as
SIDER, OFFSIDES and TWOSIDES only contains drugs and ADRs, other
personal context information still remains in original clinical records.

3) Machine learning models are mostly used as black boxes for drug-
ADR prediction, since they only output association scores of drugs and
ADRs. In ADR discovery, explaining ADR mechanisms is a big challenge.
It is not only a problem of predicting corresponding ADRs of drugs but also
how ADRs occur. However, predicting and revealing ADR mechanisms
are now considered as two separate parts. Designing drug-ADR prediction
models which reveal related information of ADR mechanisms seems to be
an important topic.

In conclusion, the use of machine learning models in ADR studies is
likely to develop in the future. Effectively using available data with suitable
models still remains a big challenge. It is not only drug-ADR prediction
is an important task, but also revealing ADR mechanisms is another task
to concentrate on.

Key points

• Machine learning methods are prominent tools for ADR
studies.

• There are three main tasks in ADR studies: creating ADR
benchmark data, drug-ADR prediction, and ADR mechanism
analysis.

• For drug-ADR prediction, latent variables models have the
potential for further development.

• Remaining issues of ADR studies: 1) There are very few drug-
ADR prediction models addressing polypharmacy ADR, 2)
ADR data sources are not effectively used, and 3) Drug-ADR
prediction models lack the ability to explain ADR mechanisms.
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