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ABSTRACT 

This paper presents an algorithm for detecting and “correcting” sequencing errors that occur in 
DNA coding regions. The types of sequencing error addressed include insertions and deletions (in- 
deb)  of DNA bases. The goal is to provide a capability which makes single-pass or low-redundancy 
sequence data more informative, reducing the need for high-redundancy sequencing for gene iden- 
tification and characterization purposes. This would permit improved sequencing efficiency and 
reduce genome sequencing costs. The algorithm detects sequencing errors by discovering changes 
in the statistically preferred reading frame within a putative coding region and then inserts a num- 
ber of “neutral” bases at a perceived reading frame transition point to make the putative exon 
candidate frame consistent. We have implemented the algorithm as a front-end subsystem of the 
GRAIL DNA sequence analysis system (Uberbacher and Mural, 1991; Xu et al., 1994) to construct 
a version which is very error tolerant and also intend to use this as a testbed for further develop- 
ment of sequencing error-correction technology. Preliminary test results have shown the usefulness 
of this algorithm and also exhibited some of its weakness, providing possible directions for further 
improvement. On a test set consisting of 68 Human DNA sequences with 1% randomly generated 
indels in coding regions, the algorithm detected and corrected 76% of the indels. The average 
distance between the position of an indel and the predicted one was 9.4 bases. With this subsys- 
tem in place, GRAIL correctly predicted 89% of the coding messages with 10% false message on 
the “corrected” sequences, compared to 69% correctly predicted coding messages and 11% falsely 
predicted messages on the ‘‘c~rrupted’~ sequences using standard GRAIL I1 method (version 1.2). 
The method uses a dynamic programming algorithm, and runs in time and space linear to the size 
of the input sequence. 
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1. Introduction 
Locating and characterizing genes in DNA sequence is one of the major tasks of the Human 

Genome Project. Unfortunately the sequencing strategies which are the most time and cost efficient, 
such as single-pass sequencing, result in relatively low quality sequence data where errors make the 
identification of biologically important features difficult using computational systems. The devel- 
opment of methods which can provide accurate descriptions of gene features despite the presence 
of significant error is a considerable challenge. Potentially such methods could greatly enhance 
the usefulness of low redundancy DNA sequencing strategies and reduce the cost of sequencing 
dramatically compared to standard strategies involving 6-10 fold redundancy. 

We originally developed a DNA sequence analysis system, GRAIL (Gene Recognition and Anal- 
ysis Internet Link) (Uberbacher and Mural, 1991; Mural et al., 1992), and have recently upgraded 
this system to make its coding region prediction (here called exons) more accurate (Xu et al., 1994). 
Unlike the original system, the new version, GRAIL I1 (version 1.2), predicts discrete coding regions 
in a DNA sequence instead of a continuous coding probability function. It uses a variable-length 
window tailored to each discrete exon candidate to evaluate the coding potential of the candidate. 
A coding region (or exon) candidate is a translationally open region bounded by a putative acceptor 
splice junction (or a translation start) and a putative donor splice junction (or a stop codon); hence 
each candidate has a fixed inherent reading frame. The current scheme to evaluate discrete exon 
candidates uses more genomic context information in the exon discrimination process, including 
information about translation starts and splice junctions, and also the presence or absence of coding 
character in regions adjacent to the candidate, than did the original system. This method signifi- 
cantly improves upon the sensitivity and specificity of the original GRAIL system, particularly in 
identifying short exons. 

A drawback of this method (and all other similar methods as well) is that it is sensitive to 
insertion and deletion (indel) DNA sequencing errors since these may change the open reading 
frame and hence interrupt the reading frame of a coding region. For example, a true exon may not 
be considered as an exon candidate in GRAIL I1 if the candidate’s reading frame changes due to 
indels (however part of the exon may be considered as a candidate). On a test set of 68 Human 
DNA sequences with 1% randomly implanted indels in the coding regions, although GRAIL I1 
predicts 91.7% of the coding exons (predicted regions overlap actual exons to some extent) with 
a 9% false positive rate, it predicts on average only 69% of the coding messages with 11% false 
information (see Figure 1). Minimizing this significant corruption of the predicted gene message is 
the main motivation of this work. 

A number of algorithms have been proposed and implemented for detecting and correcting se- 
quencing errors at the level of gel reading, for example using neural networks or maximum likelihood 
methods (Drury et al., 1992). These algorithms deal with systematic errors of DNA sequencing de- 
vices mainly using instrumental information about the sequencing devices. Here we are interested 
in finding methods, using feature-related information, to detect and “correct” sequencing errors 
which escape these processes and corrupt important sequence features. In this paper we address 
the sequencing errors that change the structure of protein coding exons, and in particular, 
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sequencing errors that create changes in the reading frame within a coding region. Therefore our 
focus here will be on insertions and deletions which destroy the original reading frame, and not on 
on base substitutions which have virtually no effect on the coding region recognition process. 

In GRAIL an exon is recognized along with its preferred translational reading frame, the reading 
frame with the highest coding probability. The algorithm presented in this paper consists of two 
main steps. It first finds all the transition points of the preferred reading frame along a given 
DNA sequence, and then considers the subset of transition points in apparent coding regions. To 
find all the transition points, the algorithm divides a DNA sequence into segments in such a way 
that two adjacent segments have different preferred reading frames, and the sum of a pre-defined 
objective function value over every segment is maximized. Each transition point of the preferred 
reading frames represents a potential indel(s). Most of these will be in non-coding DNA where the 
preferred reading frame function is not meaningful and transitions might be expected under normal 
circumstances (without indels). The algorithm then uses coding information from both sides of a 
transition point to determine if it may be within a coding region. If this seems likely, bases are 
inserted to recover frame consistency. If the transition is determined to occur in non-coding region 
no action is taken since a preferred reading frame transition is meaningless in this context. Once 
frame corrections are made throughout the perceived coding areas of the sequence standard GRAIL 
I1 analysis is performed on the “corrected” sequence. 

Our test results have shown that the algorithm can detect 76% of indels that have been randomly 
implanted in the coding regions and make “corrections” to make frame consistency. As a result of 
the correction, GRAIL I1 can find 89.3% of the coding message on average with 10% false positive 
rate, compared to the 69% correctly predicted coding messages with 11% false positive rate when 
used directly on the corrupted sequences with 1% error rate. On average, the position of a predicted 
indel is about 9 bases away from the position of the actual indel. The final prediction accuracy of 
the new algorithm with 1% indel rate in coding regions is nearly as good as the standard GRAIL 
I1 system (version 1.2) on perfect sequence data (93% of coding message with 10% false positive). 

2. System and Methods 

The error correction program is written in the C programming language and is implemented on 
a Sparc I1 workstation under operating system SunOS 4.1.2. The program will soon be available 
through the X-based graphical client/server system XGRAIL. An executable code of the XGRAIL 
client is available to the public by anonymous ftp from arthur.epm.ornl.gov, and can be found in 
the directory /pub/xgrail/sun. 

3. Algorithm 

This section presents the dynamic programming algorithm developed to  detect and “correct” 
sequencing errors in DNA coding regions. The types of sequencing errors addressed with this algo- 
rithm include insertions and deletions of coding bases. The basis of our error detection algorithm 
is the discovery of changes of the preferred reading frame within a coding region. Deletions or 
insertions of multiple of 3 bases will not in general cause any preferred reading frame changes, so 
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our algorithm will not be able to  detect such errors. This is, however, not a serious problem since 
indels of this magnitude are highly improbable and presumably would not cause a coding region 
to be missed (by GRAIL IT). The algorithm corrects apparent frame changes (whether caused by 
insertions or deletions) by inserting additional base(s), e.g., it treats an insertion of one base as a 
deletion of two bases. Correcting all frame changes by insertion avoids deletion (in some situations) 
of experimentally called bases. 

, 

3.1. Statement of the problem 

We consider a DNA sequence containing a gene or part of a gene such that coding information 
is on one strand of the DNA. The algorithm can easily be extended to multigenic regions with 
coding on both strands, but we do not discuss this here. 

Consider a DNA sequence D. Each segment of D has three possible translation frames, called 
reading frames. We use the 6-mer in-frame preference model (Uberbacher and Mural, 1991; Uber- 
bacher et al., 1993) to evaluate the preference values (defined below) of a segment in three possible 
reading frames. The reading frame with the highest preference value is called the preferred reading 
frame. 

As the first step of solving the error detection problem we find the transition points between 
preferred reading frames. We model this problem as the following optimization problem. We want 
to partition D into segments in such a way that the sum of the preference values of the segments 
is maximized. 

The boundaries of the segments correspond to  the transition points of the preferred reading 
frames. As shown in Figure 2, most of these occur in non-coding regions, and are not relevant to 
the current purpose. We are interested in transitions that occur in coding regions due to indels. 

To prevent short range fluctuations, we also require that each segment should have at least K 
bases. In our current implementation, K = 30. The following figure shows examples of “optimal” 
partitions of the given DNA sequence when K = 6 and K = 30. Figure 3(a) shows many short 
range fluctuations when K = 6 while Figure 3(b) is much more stable. 

To make this more precise, we give the following formal description of the problem. Let Po(X),  
P l ( X )  and P2(X)  denote the preference values of a 6mer X appearing in a coding region in the 
correct translation frame + 0, + 1, and + 2 versus appearing in non-coding regions, respectively. 
Consider a DNA sequence D = aoal...a, . We define the preference vahe of the segment aj ... a k  of 
D, 0 _< j 5 k - 5 5 n, in reading frame r = 0,1,2 to be the following: 

k-5 

PT(aj..-ak) = p ( ~ + ; - ~ )  mod 3(aia;+l--ai+5). 
i= j 

We call r the preferred reading frame of aj ... ak if P,(aj ... ak) has the highest value among P’(aj ... ak), 

We want to  partition D into segments D1, D2, ..., D,, 1 5 m < n, such that the following 

4 PI (Uj ... ak), P&j. ..Uk). 

objective function is maximized 
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Figure 2. The solid bars represent the exon positions of HUMACTGA. The connected line represents preferred reading frame 
changes along the sequence, in which each horizontal portion represents the perferred frame in that region and a vertical portion 
represents a frame change. 
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under the constraint that each D; is at least K bases long and no two adjacent segments have the 
same preferred reading frame, where ~ ( i )  denotes the preferred reading frame of segment Di. Note 
that a single segment may contain in-frame stop codons. 

3.2. Dynamic programming algorithm 

This subsection presents a dynamic programming algorithm to solve the optimization problem 
defined in the previous subsection. We first consider solving a simpler case of the problem by 
ignoring the constraint that each segment has to be at least I< bases long. 

The algorithm scans through a DNA sequence from left to right carrying with it partial solutions 
for the best way (maximum objective function) to partition the sequence into segments of different 
preferred reading frames. Since there are three reading frames possible throughout, three partial 
solutions are retained by the algorithm, one for each reading frame at a given point (base). These 
represent the best way to partition the sequence into preferred reading frame segments up to the 
current point and ending in each of the three frames. A useful property of this problem is that 
partial solutions at the current point can be constructed from partial solutions at the previous 
points. Keeping three best partial solutions at each point guarantees that sufficient information is 
present to  construct best partial solutions at later points. At the next step we wish to extend the 
partial solutions to incorporate the next base. There are three possible ways to construct each new 
partial solution. For example, the new partial solution in reading frame 1 could be constructed by 
extending the previous solution in frame 1, or by extending the partial solutions in frame 0 or 2 
and invoking a change in reading frame. Of these three choices the one with the highest score will 
be saved as the best partial solution for frame 1. The same process is used for frames 0 and 2. 
This process is repeated until the end of the sequence is reached. At the end of the sequence, the 
overall best solution of the three frames gives the final solution to the above defined optimization 
problem. 

Formally, for each base a; of a DNA sequence D = aOa1 ... a,, i 2 5, we define B ( i , r )  to be 
the optimal value of the objective function defined above on sequence ao...a; under the constraint 
that the last segment of the corresponding partition of aO...ai is in reading frame T .  By definition, 
the highest value of B(n,O), B(n, 1) and B(n,2)  corresponds to the optimal solution to the above 
defined objective function. 

By the above discussion, we have shown the following equations, based on which a simple 
dynamic programming algorithm can be used to find the optimal solution. 

I B(i - 1, T )  + p ( ; + ~ - ~ )  mod 3(ai-5..*ai), 
B(i - 6, ( T  -+ 1) mod 3) 4- p(i+l-r) mod 3(ai-5...ai), ,i 2 6 
B(i - 6, ( T  + 2) mod 3) + p(i+l-,.) mod 3(ai-5..-ai) 
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and B(5 , r )  = P(3-r) mod 3(a~ . . .u5 ) ,  where i 2 6 comes from the fact that we are using 6-mer 
models. 

Having these equations, we can use a simple dynamic programming algorithm to calculate 
B(n, T )  values. We calculate B(i ,  T )  values for each i from left to right until i = n. 

Now we consider the original problem. In the above solution, the preferred reading frame 
may change every few bases and cause short range fluctuation. By putting a lower bound on the 
shortest segment we can prevent this from happening. To add this constraint to the above method 
we need to guarantee that reading frame changes can happen at least K bases apart. Let C(i, r,O) 
denote the optimal value of the objective function on sequence a0 ... ai under the constraint that 
all segments in the corresponding partition have at least Ii bases except possibly the current one 
(the right-most one in the current partial solution), and the current segment is in reading frame 
r ;  and let C(i ,  T ,  1) denote the optimal value of the objective function on sequence a0 ... a; under 
the same condition plus the condition that the current segment is also at least K bases long. By 
using similar argument as above we have the following equations, based on which a simple dynamic 
programming algorithm given below is used to find the optimal solution. 

I c(i - 17r70) + p(i+4-r) mod 3(ai-5---ai)7 

C(i,  f , O )  = max c(i - 6, ( f  + 1) mod 3 , l )  + p(i+4-rl mod 3 ( ~ i - 5 . . . ~ i ) ,  , 
C(i - 6 ,  ( r  + 2) mod 3,1) + p(;+4-p) mod 3(ai-5...ai) 

A 

for 6 < i 5 n, and C(5,r,O) = P(3-r) mod Jao.. .a~) and C(5,r, 1) = -m. By definition, 

gives the optimal solution of the objective function. 

To find the optimal solution, we calculate C() values from left to right. During calculation, we 
keep a table to record the C() values for the last K positions. Also to recover the transition points, 
we need to keep a table to record all the pointers pointing to the corresponding previous table 
entry. We use a four dimensional table T[K,3,2,2] to keep both the values and pointers, where 
each integer represents the size of the corresponding dimension of the table. By tracing back where 
the reading frame changes occur in the optimal solution, we can obtain all the transition points. 

This algorithm can be implemented in O ( K n )  time using O ( n )  space. In our current imple- 
mentation, K = 30. 

An alternative but just as effective way to model the problem is not to require the minimum 
size of each segment, but to introduce a penalty factor for each reading frame change (to prevent 
short range fluctuations). Note that the choice of the penalty factor P indirectly determines the 
typical minimum size of each segment. In our current implementation, we have chosen the penalty 
factor P so that on average, the minimum segment size will be roughly about 30 bases. By doing 
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so the transition points corresponds to an optimal solution max{B(n, 0 ) ,  B(n,  l), B(n,  a) }  defined 
by the the following equation. 

and B(5, T )  = p(3-.) mod 3(a0...a5). 

This problem can be solved in O(n)  time, which is slightly better than the first algorithm, and 

The performance of the two algorithms is similar. Based on the 68 test sequences, the first 
O ( n )  space. 

algorithm finds the indel positions a little more accurately (* few bases). 

3.3. Error detection and correction 

The basic assumption of the algorithm is that if two adjacent regions show strong coding signal in 
two different reading frames then an indel(s) has occurred. Many preferred reading frame transition 
points found by the above algorithm occur in a non-coding region, and these transition points are 
simply the results of “randomness” of the non-coding DNA. We need to filter out these points from 
further consideration. 

We use a 30-base long window to measure the the coding potential of the two 30-base regions on 
each side of a transition point. If both regions show strong coding signal in different reading frames 
we consider the transition point an occurrence of an indel. In our current implementation, we have 
used a 5th order non-homogeneous Markov chain model (Uberbacher et al., 1993; Borodovsky et 
al., 1986) in evaluating coding potential of the adjacent regions of each transition point. 

Consider one such point. Let L and R be the two 30-base long segments on the left and 
right sides of the point, and the preferred reading frames of the two segments be T(L)  and r (R) ,  
respectively. If T (  L )  = ( T ( R )  - 1) mod 3, we consider a deletion has occurred at the transition point 
and we insert a base “C”, which is considered to be a “neutral” base (cannot create a stop codon 
in all 3 possible frames), there. If r ( L )  = ( r ( R )  + l), we consider an insertion or two deletions have 
occurred. Since our goal is to make one consistent preferred reading frame we treat one insertion 
and two deletions the same. In this case we insert two “C””. 

Figure 4 shows three examples of error findings by our error detection algorithm. 

4. Implementation 

The algorithm involves a number of parameters, the choices of which can affect performance. 
These include the minimum size of a segment or the penalty factor which indirectly determines the 
minimum size of a segment, the size of the window for evaluating coding potential around each 
transition point, the threshold for determining if a region has strong enough coding character to 
be called a coding region. 

The choice of minimum segment size is a compromise between two considerations. Shorter 
segment size would make the system more sensitive to closely spaced indels. However the size of 
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Figure 4. Examples of GRAIL predictions on the "corrected" sequences. The bars represent 
actual exons, and the hollow rectangles are GRAIL'S exon prediction; Hash marks on the two 
horizontal lines represent the positions of indels (upper line) and predicted indels (lower line), 
respectively. (a) HUMAPOAQA. (b) KUMBAR. (c) HUMTRHYAL. 
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a segment should be at least as big as the size of the evaluation window (for coding evaluation) 
since otherwise a evaluation window may cover more than one segment. To have a statistically 
reliable coding evaluation in the regions adjacent to a potential indel, the size of a evaluation 
window and hence the size of a segment cannot be too small. In our current implementation we 
set the minimum segment size and the evaluation window size both to 30 bases. As a result this 30 
base segment limitation, the vast majority of indels missed in the current system are less than 30 
bases from an exon edge. Also when the error rates are very high (2% or more) and indels occur 
very closely spaced, the current system sometimes corrects double indels with a single predicted 
transition point. 

In choosing the threshold for coding scores, our experience is that if we set the threshold too 
low we will include some transition points from non-coding regions, and hence create possible false 
coding regions or merge coding regions that are close to each other but in different preferred reading 
frames. We have taken a conservative approach, setting the threshold fairly high so only very few 
transition points in non-coding regions are included. By doing so, the algorithm may miss some 
transition points in coding regions which show (based on our coding recognition algorithm - the 
5th order non-homogeneous Markov chain model) weak coding signals or are very close to the edges 
of exons. 

To refine our estimates of the parameters we analyzed a set of 10 genes (independent of the test 
set) while varying the minimum segment length, the coding evaluation window size, and the coding 
threshold, for the case of 1% randomly implanted indels. The segment length and evaluation 
window sizes were varied from 20 to 50 bases in steps of 5. At each combination of minimum 
segment length and evaluation window size the coding threshold was evaluated in increments of 
0.01 (out of 1.0). The performance was relatively insensitive to the changes in the segment length 
and window size in the range of 30 to 45 bases, although as might be expected, the 30 base length 
for both parameters gave better results on the test data with a higher (2%) error rate, where indels 
tend to be closer together. The test results in the next section were obtained with the following 
parameters: 30 bases as the minimum segment length and the coding evaluation window size, and 
coding threshold of 0.9 (out of 1.0). 

We have implemented both algorithms presented in the previous section. The test results shown 
in the next section are based on the implementations of the first algorithm. 

5.  Results and Discussion 

To evaluate the sensitivity and specificity of our algorithm and how they are related to different 
sequencing error rates, we conducted three tests on the same 68 Human DNA sequences with 
different (randomly generated) error rates. In the three tests, we randomly implant 0.5%, 1.0% 
and 2.0% indels in the coding regions of the 68 sequences1, where 1.0% error rate means that on 

hsckbg hsgdpdgen hsgstpig hsmpog humalatp humaccybb humactga humadag humagal humaldcg humalifa 
humalpha humalppd humantl humantax humapexn humapoa4a humapoe4 humaprt humatpla2 humatpgg hum- 
bar humbmyh7 humcapg humcavii5 humcel humcs3 humcspb humctlala humcycla humcyp2d6 humcypiie humdes 
humdkerb humefla humerpa humfesfp humgamgloa humgapdhg humgck humghn humhsd3ba humhsp90b humibp3 
humkerep humkertra humkrtlx humlyllb hummis humnmyca humodcla humorahbbe hump45cl humpaia humpci 
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average for every 100 coding bases, there is one indel. 
The indels are implanted randomly according to a random number generator. The only con- 

straint is that no indels will be placed in a coding exon of 50 bases or shorter. 
Though on the “corrupted” DNA sequences, GRAIL I1 (version 1.2) can locate almost as many 

exons as on the non-corrupted ones it finds less coding message in terms of coding bases. Figure 
5 shows a typical GRAIL I1 prediction on a corrupted DNA sequence versus its prediction on the 
“corrected” one. 

0.0% 
0.5% 
1.0% 
2.0% 

Tables I, I1 and I11 summarize the performance of the error-detection algorithm combined with 
GRAIL I1 on the three data sets. Table I shows how well the algorithm alone can detect the indels 
on sequences with 0.5%, 1% and 2% indels, respectively. The vast majority of incorrectly found 
errors are “eliminated” during the subsequent GRAIL I1 step; even with frame changes these are 
not considered to be within viable exon candidates. 

TP(exons) TP(bases) 
487 (96%) 87578 (95%) 
476 (94%) 72838 (79%) 
464 (91%) 63616 (69%) 
443 (87%) 54097 (59%) 

Table I: Performance of error-detection algorithm prior to GRAIL I1 
I Error rate I Total errors I Found errors I Incorrectly found errors I Ave.Disf l  
I 0.5% I 372 I 292 (78%) I 122 (29%) I 9.7 bases I 

1.0% 774 587 (76%) 126 (18%) 9.4 bases 
2.0% 1339 856 (64%) 110 (11%) 13.4 bases 

As we can see from this table, the performance of the error-detection algorithm is similar for 
error rates of 0.5% and 1%, but it drops significantly when the error rate goes up to 2%. The reason 
for this, we believe, is that when a number of indels occur in a region very close to  each other (say 
20 bases apart) our coding recognition algorithm is not sensitive enough to recognize each of the 
small coding regions resulting from the indels. Hence, the error-detection algorithm fails to detect 
the errors or only detects a portion of the errors close together. 

Tables I1 and I11 summarize the performances of GRAIL I1 (version 1.2) on the “corrupted” 
sequences versus on the “corrected” sequences. The 68 test DNA sequences have a total of 508 
exons consisting of 92437 coding bases. 

Table 11: Performance of GRAIL I1 on corrupted data 
Error rate I Corrupted Sequences 

FP(exons) 
46 (8.6%) 
46 (8.8%) 
47 (9.2%) 
47 (9.6%) 

FP( bases) 
7710 (8.0%) 

8251 (11.5%) 
8512 (13.6%) 

7955 (10.0%) 

Table 111: Performance of GRAIL II on “corrected data” 

humpgammg humpimla humplpsp humpnmta humpomc humprca humpsap humrash humtbb5 humthb hunitkra 
humtrhyal humvpnp 
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Figure 5. GRAIL predictions on the original IIUMACTGA, its artificially “corrupted” version and the “corrected” version. 
The hash rnarks on the two horizontal lines represent the positions of indels (upper line) and predicted indels (lower line), 
respectively. (a) Prediction on the original HUMACTGA. (b) Prediction on the “corrupted” HUMACTGA. (c) Prediction on 
the “corrected” 11 U M ACTGA. 
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Error rate 

0.0% 
r 0.5%-- I 480 (94.5%) I 85166 (92%) I 49 (9.2%) I 10087 (10.6%) I 

Corrected Sequences 
TP(exons) TP(bases) FP(exons) FP(bases) 
487 (96%) 87198 (94%) 49 (9.1%) 10268(10.5%) 

~ 1.0%-- 
2.0% . 

TP: The number of true positives; 
FP: The number of false positives. 

476 (94%) 82526 (89%) 49 (9.3%) 9983 (10.8%) 
458 (90%) 73754 (80%) 49 (9.6%) 9968 (11.9%) 

From Tables I1 and 111, we can see that the correction algorithm, as a front-end subsystem, has 
improved the performance of GRAIL I1 significantly on corrupted DNA sequences. We can also 
see that the technique can, as expected, generate some false information if not used carefully. A 
few non-coding regions have been converted into coding regions and predicted as exons by GRAIL 
I1 as a result of insertions of new bases. By combining the outputs of GRAIL I1 on the original 
(possibly corrupted) sequence and the outputs on the “corrected” sequence it may be possible to 
further distinguish the originally missed exons due to sequence corruption from the false exons. 

Most of the newly generated false coding bases are from overly extended predicted “coding” 
regions. Two possible situations can cause the error detection algorithm to make this type of 
mistake. The first one is when two exons, in two different reading frames, are fairly close to each 
other. In this type of situation, the two exons may be merged due to the insertion of new bases 
and creation of a new open reading frame that contains both exons. The second one is when one 
of the edges of an exon falls very close to the boundary of its open reading frame and the region 
on the other side of the boundary shows some coding potential. In this type of situation, the edge 
of the exon may become extended by GRAIL II’s prediction. 

We also tested the error correction algorithm on a number of pseudogenes to evaluate whether 
detection of pseudogenes was enhanced and whether frame-shifts would be detected. Generally few 
additional pseudogene “coding” regions were detected compared to standard GRAIL versions. In 
the vast majority of cases, the algorithm described the extent of pseudogene “coding” regions more 
accurately than standard GRAIL, and successfully corrected frame-shifts to provide good recovery 
of what had been the coding message. 

c 

In conclusion, a new algorithm for detecting and “correcting” sequencing errors has been pro- 
posed and implemented. The test results indicate that the algorithm can restore to a significant 
extent the value of a corrupted sequence for coding region and coding message prediction. This first 
step demonstrates the potential of this approach in the quest for more cost-effective and efficient 
genome sequencing and analysis methods. 

c 
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