
o€UwrM-12821

Engineering Physics and Mathematics Division

Correcting Sequencing Errors in DNA Coding
Regions Using a Dynamic P r o m Approach

Ying Xu, Richard J. Mural$, and Edward C. Uberbacher

tBiology Division

DATE PUBLISHED - December 1994

Research supported by the Office of Health and Environmental Research,
U.S. Department of Energy, and the

Laboratory Directed Research and Development Programs

Prepared by the
OAK RIDGE NATIONAL LABORATORY

Oak Ridge, Tennessee 37831
Managed by

MARTIN MARIETTA ENERGY SYSTEMS, INC.
for the

U.S. DEPARTMENT OF ENERGY

.

DISCLAIMER

This report was prepared as an account of work sponsored
by an agency of the United States Government. Neither
the United States Government nor any agency thereof, nor
any of their employees, make any warranty, express or
implied, or assumes any legal liability or responsibility for
the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or
represents that its use would not infringe privately owned
rights. Reference herein to any specific commercial
product, process, or service by trade name, trademark,
manufacturer, or otherwise does not necessarily constitute
or imply its endorsement, recommendation, or favoring by
the United States Government or any agency thereof. The
views and opinions of authors expressed herein do not
necessarily state or reflect those of the United States
Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible
in electronic image products. Images are
produced from the best available original
document.

1. Introduction

2. Systems and Methods

CONTENTS

3. Algorithm
3.1. Statement of the problem
3.2. Dynamic programming algorithm
3.3. Error detection and correction

4. Implementation

5. Results and Discussions

Acknowledgments

References

iii

Pape No.

V

1

3

3
4
7
9

9

11

15

16

4

ABSTRACT

This paper presents an algorithm for detecting and “correcting” sequencing errors that occur in
DNA coding regions. The types of sequencing error addressed include insertions and deletions (in-
deb) of DNA bases. The goal is to provide a capability which makes single-pass or low-redundancy
sequence data more informative, reducing the need for high-redundancy sequencing for gene iden-
tification and characterization purposes. This would permit improved sequencing efficiency and
reduce genome sequencing costs. The algorithm detects sequencing errors by discovering changes
in the statistically preferred reading frame within a putative coding region and then inserts a num-
ber of “neutral” bases at a perceived reading frame transition point to make the putative exon
candidate frame consistent. We have implemented the algorithm as a front-end subsystem of the
GRAIL DNA sequence analysis system (Uberbacher and Mural, 1991; Xu et al., 1994) to construct
a version which is very error tolerant and also intend to use this as a testbed for further develop-
ment of sequencing error-correction technology. Preliminary test results have shown the usefulness
of this algorithm and also exhibited some of its weakness, providing possible directions for further
improvement. On a test set consisting of 68 Human DNA sequences with 1% randomly generated
indels in coding regions, the algorithm detected and corrected 76% of the indels. The average
distance between the position of an indel and the predicted one was 9.4 bases. With this subsys-
tem in place, GRAIL correctly predicted 89% of the coding messages with 10% false message on
the “corrected” sequences, compared to 69% correctly predicted coding messages and 11% falsely
predicted messages on the ‘‘c~rrupted’~ sequences using standard GRAIL I1 method (version 1.2).
The method uses a dynamic programming algorithm, and runs in time and space linear to the size
of the input sequence.

V

1. Introduction
Locating and characterizing genes in DNA sequence is one of the major tasks of the Human

Genome Project. Unfortunately the sequencing strategies which are the most time and cost efficient,
such as single-pass sequencing, result in relatively low quality sequence data where errors make the
identification of biologically important features difficult using computational systems. The devel-
opment of methods which can provide accurate descriptions of gene features despite the presence
of significant error is a considerable challenge. Potentially such methods could greatly enhance
the usefulness of low redundancy DNA sequencing strategies and reduce the cost of sequencing
dramatically compared to standard strategies involving 6-10 fold redundancy.

We originally developed a DNA sequence analysis system, GRAIL (Gene Recognition and Anal-
ysis Internet Link) (Uberbacher and Mural, 1991; Mural et al., 1992), and have recently upgraded
this system to make its coding region prediction (here called exons) more accurate (Xu et al., 1994).
Unlike the original system, the new version, GRAIL I1 (version 1.2), predicts discrete coding regions
in a DNA sequence instead of a continuous coding probability function. It uses a variable-length
window tailored to each discrete exon candidate to evaluate the coding potential of the candidate.
A coding region (or exon) candidate is a translationally open region bounded by a putative acceptor
splice junction (or a translation start) and a putative donor splice junction (or a stop codon); hence
each candidate has a fixed inherent reading frame. The current scheme to evaluate discrete exon
candidates uses more genomic context information in the exon discrimination process, including
information about translation starts and splice junctions, and also the presence or absence of coding
character in regions adjacent to the candidate, than did the original system. This method signifi-
cantly improves upon the sensitivity and specificity of the original GRAIL system, particularly in
identifying short exons.

A drawback of this method (and all other similar methods as well) is that it is sensitive to
insertion and deletion (indel) DNA sequencing errors since these may change the open reading
frame and hence interrupt the reading frame of a coding region. For example, a true exon may not
be considered as an exon candidate in GRAIL I1 if the candidate’s reading frame changes due to
indels (however part of the exon may be considered as a candidate). On a test set of 68 Human
DNA sequences with 1% randomly implanted indels in the coding regions, although GRAIL I1
predicts 91.7% of the coding exons (predicted regions overlap actual exons to some extent) with
a 9% false positive rate, it predicts on average only 69% of the coding messages with 11% false
information (see Figure 1). Minimizing this significant corruption of the predicted gene message is
the main motivation of this work.

A number of algorithms have been proposed and implemented for detecting and correcting se-
quencing errors at the level of gel reading, for example using neural networks or maximum likelihood
methods (Drury et al., 1992). These algorithms deal with systematic errors of DNA sequencing de-
vices mainly using instrumental information about the sequencing devices. Here we are interested
in finding methods, using feature-related information, to detect and “correct” sequencing errors
which escape these processes and corrupt important sequence features. In this paper we address
the sequencing errors that change the structure of protein coding exons, and in particular,

1

1

I
I
1

I

I
n
I

2

sequencing errors that create changes in the reading frame within a coding region. Therefore our
focus here will be on insertions and deletions which destroy the original reading frame, and not on
on base substitutions which have virtually no effect on the coding region recognition process.

In GRAIL an exon is recognized along with its preferred translational reading frame, the reading
frame with the highest coding probability. The algorithm presented in this paper consists of two
main steps. It first finds all the transition points of the preferred reading frame along a given
DNA sequence, and then considers the subset of transition points in apparent coding regions. To
find all the transition points, the algorithm divides a DNA sequence into segments in such a way
that two adjacent segments have different preferred reading frames, and the sum of a pre-defined
objective function value over every segment is maximized. Each transition point of the preferred
reading frames represents a potential indel(s). Most of these will be in non-coding DNA where the
preferred reading frame function is not meaningful and transitions might be expected under normal
circumstances (without indels). The algorithm then uses coding information from both sides of a
transition point to determine if it may be within a coding region. If this seems likely, bases are
inserted to recover frame consistency. If the transition is determined to occur in non-coding region
no action is taken since a preferred reading frame transition is meaningless in this context. Once
frame corrections are made throughout the perceived coding areas of the sequence standard GRAIL
I1 analysis is performed on the “corrected” sequence.

Our test results have shown that the algorithm can detect 76% of indels that have been randomly
implanted in the coding regions and make “corrections” to make frame consistency. As a result of
the correction, GRAIL I1 can find 89.3% of the coding message on average with 10% false positive
rate, compared to the 69% correctly predicted coding messages with 11% false positive rate when
used directly on the corrupted sequences with 1% error rate. On average, the position of a predicted
indel is about 9 bases away from the position of the actual indel. The final prediction accuracy of
the new algorithm with 1% indel rate in coding regions is nearly as good as the standard GRAIL
I1 system (version 1.2) on perfect sequence data (93% of coding message with 10% false positive).

2. System and Methods

The error correction program is written in the C programming language and is implemented on
a Sparc I1 workstation under operating system SunOS 4.1.2. The program will soon be available
through the X-based graphical client/server system XGRAIL. An executable code of the XGRAIL
client is available to the public by anonymous ftp from arthur.epm.ornl.gov, and can be found in
the directory /pub/xgrail/sun.

3. Algorithm

This section presents the dynamic programming algorithm developed to detect and “correct”
sequencing errors in DNA coding regions. The types of sequencing errors addressed with this algo-
rithm include insertions and deletions of coding bases. The basis of our error detection algorithm
is the discovery of changes of the preferred reading frame within a coding region. Deletions or
insertions of multiple of 3 bases will not in general cause any preferred reading frame changes, so

3

http://arthur.epm.ornl.gov

our algorithm will not be able to detect such errors. This is, however, not a serious problem since
indels of this magnitude are highly improbable and presumably would not cause a coding region
to be missed (by GRAIL IT). The algorithm corrects apparent frame changes (whether caused by
insertions or deletions) by inserting additional base(s), e.g., it treats an insertion of one base as a
deletion of two bases. Correcting all frame changes by insertion avoids deletion (in some situations)
of experimentally called bases.

,

3.1. Statement of the problem

We consider a DNA sequence containing a gene or part of a gene such that coding information
is on one strand of the DNA. The algorithm can easily be extended to multigenic regions with
coding on both strands, but we do not discuss this here.

Consider a DNA sequence D. Each segment of D has three possible translation frames, called
reading frames. We use the 6-mer in-frame preference model (Uberbacher and Mural, 1991; Uber-
bacher et al., 1993) to evaluate the preference values (defined below) of a segment in three possible
reading frames. The reading frame with the highest preference value is called the preferred reading
frame.

As the first step of solving the error detection problem we find the transition points between
preferred reading frames. We model this problem as the following optimization problem. We want
to partition D into segments in such a way that the sum of the preference values of the segments
is maximized.

The boundaries of the segments correspond to the transition points of the preferred reading
frames. As shown in Figure 2, most of these occur in non-coding regions, and are not relevant to
the current purpose. We are interested in transitions that occur in coding regions due to indels.

To prevent short range fluctuations, we also require that each segment should have at least K
bases. In our current implementation, K = 30. The following figure shows examples of “optimal”
partitions of the given DNA sequence when K = 6 and K = 30. Figure 3(a) shows many short
range fluctuations when K = 6 while Figure 3(b) is much more stable.

To make this more precise, we give the following formal description of the problem. Let Po(X),
P l (X) and P2(X) denote the preference values of a 6mer X appearing in a coding region in the
correct translation frame + 0, + 1, and + 2 versus appearing in non-coding regions, respectively.
Consider a DNA sequence D = aoal...a, . We define the preference vahe of the segment aj ... a k of
D, 0 _< j 5 k - 5 5 n, in reading frame r = 0,1,2 to be the following:

k-5

PT(aj..-ak) = p (~ + ; - ~) mod 3(aia;+l--ai+5).
i= j

We call r the preferred reading frame of aj ... ak if P,(aj ... ak) has the highest value among P’(aj ... ak),

We want to partition D into segments D1, D2, ..., D,, 1 5 m < n, such that the following

4 PI (Uj ... ak), P&j. ..Uk).

objective function is maximized

4

Figure 2. The solid bars represent the exon positions of HUMACTGA. The connected line represents preferred reading frame
changes along the sequence, in which each horizontal portion represents the perferred frame in that region and a vertical portion
represents a frame change.

IL - i

I
1

I 1

I
J

I

1

I
I

1
I
I

I
I

I
I I
I 1

6

m

under the constraint that each D; is at least K bases long and no two adjacent segments have the
same preferred reading frame, where ~ (i) denotes the preferred reading frame of segment Di. Note
that a single segment may contain in-frame stop codons.

3.2. Dynamic programming algorithm

This subsection presents a dynamic programming algorithm to solve the optimization problem
defined in the previous subsection. We first consider solving a simpler case of the problem by
ignoring the constraint that each segment has to be at least I< bases long.

The algorithm scans through a DNA sequence from left to right carrying with it partial solutions
for the best way (maximum objective function) to partition the sequence into segments of different
preferred reading frames. Since there are three reading frames possible throughout, three partial
solutions are retained by the algorithm, one for each reading frame at a given point (base). These
represent the best way to partition the sequence into preferred reading frame segments up to the
current point and ending in each of the three frames. A useful property of this problem is that
partial solutions at the current point can be constructed from partial solutions at the previous
points. Keeping three best partial solutions at each point guarantees that sufficient information is
present to construct best partial solutions at later points. At the next step we wish to extend the
partial solutions to incorporate the next base. There are three possible ways to construct each new
partial solution. For example, the new partial solution in reading frame 1 could be constructed by
extending the previous solution in frame 1, or by extending the partial solutions in frame 0 or 2
and invoking a change in reading frame. Of these three choices the one with the highest score will
be saved as the best partial solution for frame 1. The same process is used for frames 0 and 2.
This process is repeated until the end of the sequence is reached. At the end of the sequence, the
overall best solution of the three frames gives the final solution to the above defined optimization
problem.

Formally, for each base a; of a DNA sequence D = aOa1 ... a,, i 2 5, we define B (i , r) to be
the optimal value of the objective function defined above on sequence ao...a; under the constraint
that the last segment of the corresponding partition of aO...ai is in reading frame T . By definition,
the highest value of B(n,O), B(n, 1) and B(n,2) corresponds to the optimal solution to the above
defined objective function.

By the above discussion, we have shown the following equations, based on which a simple
dynamic programming algorithm can be used to find the optimal solution.

I B(i - 1, T) + p (; + ~ - ~) mod 3(ai-5..*ai),
B(i - 6, (T -+ 1) mod 3) 4- p(i+l-r) mod 3(ai-5...ai), ,i 2 6
B(i - 6, (T + 2) mod 3) + p(i+l-,.) mod 3(ai-5..-ai)

7

and B(5 , r) = P(3-r) mod 3(a~ . . .u5) , where i 2 6 comes from the fact that we are using 6-mer
models.

Having these equations, we can use a simple dynamic programming algorithm to calculate
B(n, T) values. We calculate B(i , T) values for each i from left to right until i = n.

Now we consider the original problem. In the above solution, the preferred reading frame
may change every few bases and cause short range fluctuation. By putting a lower bound on the
shortest segment we can prevent this from happening. To add this constraint to the above method
we need to guarantee that reading frame changes can happen at least K bases apart. Let C(i, r,O)
denote the optimal value of the objective function on sequence a0 ... ai under the constraint that
all segments in the corresponding partition have at least Ii bases except possibly the current one
(the right-most one in the current partial solution), and the current segment is in reading frame
r ; and let C(i , T , 1) denote the optimal value of the objective function on sequence a0 ... a; under
the same condition plus the condition that the current segment is also at least K bases long. By
using similar argument as above we have the following equations, based on which a simple dynamic
programming algorithm given below is used to find the optimal solution.

I c(i - 17r70) + p(i+4-r) mod 3(ai-5---ai)7

C(i, f , O) = max c(i - 6, (f + 1) mod 3 , l) + p(i+4-rl mod 3 (~ i - 5 . . . ~ i) , ,
C(i - 6 , (r + 2) mod 3,1) + p(;+4-p) mod 3(ai-5...ai)

A

for 6 < i 5 n, and C(5,r,O) = P(3-r) mod Jao.. .a~) and C(5,r, 1) = -m. By definition,

gives the optimal solution of the objective function.

To find the optimal solution, we calculate C() values from left to right. During calculation, we
keep a table to record the C() values for the last K positions. Also to recover the transition points,
we need to keep a table to record all the pointers pointing to the corresponding previous table
entry. We use a four dimensional table T[K,3,2,2] to keep both the values and pointers, where
each integer represents the size of the corresponding dimension of the table. By tracing back where
the reading frame changes occur in the optimal solution, we can obtain all the transition points.

This algorithm can be implemented in O (K n) time using O (n) space. In our current imple-
mentation, K = 30.

An alternative but just as effective way to model the problem is not to require the minimum
size of each segment, but to introduce a penalty factor for each reading frame change (to prevent
short range fluctuations). Note that the choice of the penalty factor P indirectly determines the
typical minimum size of each segment. In our current implementation, we have chosen the penalty
factor P so that on average, the minimum segment size will be roughly about 30 bases. By doing

.

8

.

so the transition points corresponds to an optimal solution max{B(n, 0) , B(n, l), B(n, a) } defined
by the the following equation.

and B(5, T) = p(3-.) mod 3(a0...a5).

This problem can be solved in O(n) time, which is slightly better than the first algorithm, and

The performance of the two algorithms is similar. Based on the 68 test sequences, the first
O (n) space.

algorithm finds the indel positions a little more accurately (* few bases).

3.3. Error detection and correction

The basic assumption of the algorithm is that if two adjacent regions show strong coding signal in
two different reading frames then an indel(s) has occurred. Many preferred reading frame transition
points found by the above algorithm occur in a non-coding region, and these transition points are
simply the results of “randomness” of the non-coding DNA. We need to filter out these points from
further consideration.

We use a 30-base long window to measure the the coding potential of the two 30-base regions on
each side of a transition point. If both regions show strong coding signal in different reading frames
we consider the transition point an occurrence of an indel. In our current implementation, we have
used a 5th order non-homogeneous Markov chain model (Uberbacher et al., 1993; Borodovsky et
al., 1986) in evaluating coding potential of the adjacent regions of each transition point.

Consider one such point. Let L and R be the two 30-base long segments on the left and
right sides of the point, and the preferred reading frames of the two segments be T(L) and r (R) ,
respectively. If T (L) = (T (R) - 1) mod 3, we consider a deletion has occurred at the transition point
and we insert a base “C”, which is considered to be a “neutral” base (cannot create a stop codon
in all 3 possible frames), there. If r (L) = (r (R) + l), we consider an insertion or two deletions have
occurred. Since our goal is to make one consistent preferred reading frame we treat one insertion
and two deletions the same. In this case we insert two “C””.

Figure 4 shows three examples of error findings by our error detection algorithm.

4. Implementation

The algorithm involves a number of parameters, the choices of which can affect performance.
These include the minimum size of a segment or the penalty factor which indirectly determines the
minimum size of a segment, the size of the window for evaluating coding potential around each
transition point, the threshold for determining if a region has strong enough coding character to
be called a coding region.

The choice of minimum segment size is a compromise between two considerations. Shorter
segment size would make the system more sensitive to closely spaced indels. However the size of

9

a

(4 1

2

0

(b) 1

2

0

(4 1

2

mm

ip
I l l I I t 1 1 I

I l l I I 1 I I

Figure 4. Examples of GRAIL predictions on the "corrected" sequences. The bars represent
actual exons, and the hollow rectangles are GRAIL'S exon prediction; Hash marks on the two
horizontal lines represent the positions of indels (upper line) and predicted indels (lower line),
respectively. (a) HUMAPOAQA. (b) KUMBAR. (c) HUMTRHYAL.

10

a segment should be at least as big as the size of the evaluation window (for coding evaluation)
since otherwise a evaluation window may cover more than one segment. To have a statistically
reliable coding evaluation in the regions adjacent to a potential indel, the size of a evaluation
window and hence the size of a segment cannot be too small. In our current implementation we
set the minimum segment size and the evaluation window size both to 30 bases. As a result this 30
base segment limitation, the vast majority of indels missed in the current system are less than 30
bases from an exon edge. Also when the error rates are very high (2% or more) and indels occur
very closely spaced, the current system sometimes corrects double indels with a single predicted
transition point.

In choosing the threshold for coding scores, our experience is that if we set the threshold too
low we will include some transition points from non-coding regions, and hence create possible false
coding regions or merge coding regions that are close to each other but in different preferred reading
frames. We have taken a conservative approach, setting the threshold fairly high so only very few
transition points in non-coding regions are included. By doing so, the algorithm may miss some
transition points in coding regions which show (based on our coding recognition algorithm - the
5th order non-homogeneous Markov chain model) weak coding signals or are very close to the edges
of exons.

To refine our estimates of the parameters we analyzed a set of 10 genes (independent of the test
set) while varying the minimum segment length, the coding evaluation window size, and the coding
threshold, for the case of 1% randomly implanted indels. The segment length and evaluation
window sizes were varied from 20 to 50 bases in steps of 5. At each combination of minimum
segment length and evaluation window size the coding threshold was evaluated in increments of
0.01 (out of 1.0). The performance was relatively insensitive to the changes in the segment length
and window size in the range of 30 to 45 bases, although as might be expected, the 30 base length
for both parameters gave better results on the test data with a higher (2%) error rate, where indels
tend to be closer together. The test results in the next section were obtained with the following
parameters: 30 bases as the minimum segment length and the coding evaluation window size, and
coding threshold of 0.9 (out of 1.0).

We have implemented both algorithms presented in the previous section. The test results shown
in the next section are based on the implementations of the first algorithm.

5. Results and Discussion

To evaluate the sensitivity and specificity of our algorithm and how they are related to different
sequencing error rates, we conducted three tests on the same 68 Human DNA sequences with
different (randomly generated) error rates. In the three tests, we randomly implant 0.5%, 1.0%
and 2.0% indels in the coding regions of the 68 sequences1, where 1.0% error rate means that on

hsckbg hsgdpdgen hsgstpig hsmpog humalatp humaccybb humactga humadag humagal humaldcg humalifa
humalpha humalppd humantl humantax humapexn humapoa4a humapoe4 humaprt humatpla2 humatpgg hum-
bar humbmyh7 humcapg humcavii5 humcel humcs3 humcspb humctlala humcycla humcyp2d6 humcypiie humdes
humdkerb humefla humerpa humfesfp humgamgloa humgapdhg humgck humghn humhsd3ba humhsp90b humibp3
humkerep humkertra humkrtlx humlyllb hummis humnmyca humodcla humorahbbe hump45cl humpaia humpci

11

average for every 100 coding bases, there is one indel.
The indels are implanted randomly according to a random number generator. The only con-

straint is that no indels will be placed in a coding exon of 50 bases or shorter.
Though on the “corrupted” DNA sequences, GRAIL I1 (version 1.2) can locate almost as many

exons as on the non-corrupted ones it finds less coding message in terms of coding bases. Figure
5 shows a typical GRAIL I1 prediction on a corrupted DNA sequence versus its prediction on the
“corrected” one.

0.0%
0.5%
1.0%
2.0%

Tables I, I1 and I11 summarize the performance of the error-detection algorithm combined with
GRAIL I1 on the three data sets. Table I shows how well the algorithm alone can detect the indels
on sequences with 0.5%, 1% and 2% indels, respectively. The vast majority of incorrectly found
errors are “eliminated” during the subsequent GRAIL I1 step; even with frame changes these are
not considered to be within viable exon candidates.

TP(exons) TP(bases)
487 (96%) 87578 (95%)
476 (94%) 72838 (79%)
464 (91%) 63616 (69%)
443 (87%) 54097 (59%)

Table I: Performance of error-detection algorithm prior to GRAIL I1
I Error rate I Total errors I Found errors I Incorrectly found errors I Ave.Disf l
I 0.5% I 372 I 292 (78%) I 122 (29%) I 9.7 bases I

1.0% 774 587 (76%) 126 (18%) 9.4 bases
2.0% 1339 856 (64%) 110 (11%) 13.4 bases

As we can see from this table, the performance of the error-detection algorithm is similar for
error rates of 0.5% and 1%, but it drops significantly when the error rate goes up to 2%. The reason
for this, we believe, is that when a number of indels occur in a region very close to each other (say
20 bases apart) our coding recognition algorithm is not sensitive enough to recognize each of the
small coding regions resulting from the indels. Hence, the error-detection algorithm fails to detect
the errors or only detects a portion of the errors close together.

Tables I1 and I11 summarize the performances of GRAIL I1 (version 1.2) on the “corrupted”
sequences versus on the “corrected” sequences. The 68 test DNA sequences have a total of 508
exons consisting of 92437 coding bases.

Table 11: Performance of GRAIL I1 on corrupted data
Error rate I Corrupted Sequences

FP(exons)
46 (8.6%)
46 (8.8%)
47 (9.2%)
47 (9.6%)

FP(bases)
7710 (8.0%)

8251 (11.5%)
8512 (13.6%)

7955 (10.0%)

Table 111: Performance of GRAIL II on “corrected data”

humpgammg humpimla humplpsp humpnmta humpomc humprca humpsap humrash humtbb5 humthb hunitkra
humtrhyal humvpnp

12

I 1 1 1 I I I

I I I t I I I

I I I 1 I I I

1 1 I I I I I

Figure 5. GRAIL predictions on the original IIUMACTGA, its artificially “corrupted” version and the “corrected” version.
The hash rnarks on the two horizontal lines represent the positions of indels (upper line) and predicted indels (lower line),
respectively. (a) Prediction on the original HUMACTGA. (b) Prediction on the “corrupted” HUMACTGA. (c) Prediction on
the “corrected” 11 U M ACTGA.

I I

Error rate

0.0%
r 0.5%-- I 480 (94.5%) I 85166 (92%) I 49 (9.2%) I 10087 (10.6%) I

Corrected Sequences
TP(exons) TP(bases) FP(exons) FP(bases)
487 (96%) 87198 (94%) 49 (9.1%) 10268(10.5%)

~ 1.0%--
2.0% .

TP: The number of true positives;
FP: The number of false positives.

476 (94%) 82526 (89%) 49 (9.3%) 9983 (10.8%)
458 (90%) 73754 (80%) 49 (9.6%) 9968 (11.9%)

From Tables I1 and 111, we can see that the correction algorithm, as a front-end subsystem, has
improved the performance of GRAIL I1 significantly on corrupted DNA sequences. We can also
see that the technique can, as expected, generate some false information if not used carefully. A
few non-coding regions have been converted into coding regions and predicted as exons by GRAIL
I1 as a result of insertions of new bases. By combining the outputs of GRAIL I1 on the original
(possibly corrupted) sequence and the outputs on the “corrected” sequence it may be possible to
further distinguish the originally missed exons due to sequence corruption from the false exons.

Most of the newly generated false coding bases are from overly extended predicted “coding”
regions. Two possible situations can cause the error detection algorithm to make this type of
mistake. The first one is when two exons, in two different reading frames, are fairly close to each
other. In this type of situation, the two exons may be merged due to the insertion of new bases
and creation of a new open reading frame that contains both exons. The second one is when one
of the edges of an exon falls very close to the boundary of its open reading frame and the region
on the other side of the boundary shows some coding potential. In this type of situation, the edge
of the exon may become extended by GRAIL II’s prediction.

We also tested the error correction algorithm on a number of pseudogenes to evaluate whether
detection of pseudogenes was enhanced and whether frame-shifts would be detected. Generally few
additional pseudogene “coding” regions were detected compared to standard GRAIL versions. In
the vast majority of cases, the algorithm described the extent of pseudogene “coding” regions more
accurately than standard GRAIL, and successfully corrected frame-shifts to provide good recovery
of what had been the coding message.

c

In conclusion, a new algorithm for detecting and “correcting” sequencing errors has been pro-
posed and implemented. The test results indicate that the algorithm can restore to a significant
extent the value of a corrupted sequence for coding region and coding message prediction. This first
step demonstrates the potential of this approach in the quest for more cost-effective and efficient
genome sequencing and analysis methods.

c

14

6. Acknowledgments

This research was supported by the Office of Health and Environmental Research, United States
Department of Energy, under contract DE-AC05-840R21400 with Martin Marietta Energy Sys-
tems, Inc.

15

References
Borodovsky, M., Yu. Sprizhitskii, E. Golovanov and A. Aleksandov (1986) “Statistical Patterns in b
the Primary Structures of Functional Regions in E. Coli.”, Molekulyainaya Biologiya, 20, pp. 1390
- 1398.

Drury, H. A., D. G. Polittle, J. M. Ollinger, P. Green and L. J. Thomas Jr. (1992) “Maximum-
likelihood Estimation of Restriction-fragment Mobilities from l-D Electrophoretic Agaroes Gels”,
SPIE Proceedings, Vol. 1660, pp. 564 - 575.

Mural, R. J., J. R. Einstein, X. Guan, R. C. Mann and E. C. Uberbacher (1992), “An Artificial
Intelligence Approach to DNA Sequence Feature Recognition” Trend in Biotechnology, 10, pp. 66
- 69.

Uberbacher, E. C., J. R. Einstein, X. Guan, and R. J. Mural (1993) “Gene recognition and assembly
in the GRAIL system: progress and challenges”, Proceedings of The Pd International Conference
on Bioinformatics, Supercomputing and Complex Genome Analysis, H. A. Lim, J. W. Fickett, C.
R. Cantor and R. J . Robbins, Eds, World Scientific. pp. 465 - 476.

Uberbacher, E. C. and R. J. Mural (1991) “Locating protein-coding regions in human DNA se-
quences by a multiple sensors-neural network approach”, Proc. Natl. Acad. Sci. USA, Vol. 88,
pp. 11261 - 11265.

Xu, Y., R. J. Mural, M. Shah, and E. C. Uberbacher (1994) Recognizing exons in genomic sequence
using GRAIL 11, Genetic Engineering: Principles and Methods, Jane Setlow, Ed., Plenum Press,
Vol. 16, pp. 241- 253, June 1994.

.

16

INTERNALDISTRIBUTION

1.
2.
3.
4.
5.
6.
7.

8-12.
13.

14-18.
19.
20.
21.

41.

42.

43.

44.

43.

44.

45.

46.

47.

48.

49.

50.

51.

M. Beckerman
J. R. Ehstein
C. W. Glover
W. C. Grimmell
X Guan
J. P. Jones
H. E. Knee
R. C. Mann
S. Matis
R. J. Mural
E. M. Oblaw
C. E. Oliver
S. Petrov

22.
23.
24.
25.
26-

27-31.
32.
33.
34.

35-36.
37.
38.
39.
40.

N. S. V. Rao
D. E Reichle
D. B. Reister
M. B. Shah
R E Sinmvec
E. C. Uberbacher
R C. Ward

EPMD Reports Office
Laboratory Records Department
Laboratory Records, ORNLRC
Document Reference Library
Central Research Library
ORNL Patent Office

x Ying

JXTERNALDISTRIBUTION

Office of Assistant Manager for Energy Research and Development, Oak Ridge
Operations, U.S. Department of Energy, P.O. Box 2008, Oak Ridge, TN 37831
Jim Decker, Director, Office of Energy Research, Dept. of Energy, Washington,
DC 20585
David Smith, Health Effects & Life Sciences Research Division, Office of Health
& Environmental Research, Dept. of Energy, Washington, DC 20585
B. J. Barnhart, Health Effects and Life Sciences Research Division, Office of
Health and Environmental Research, Dept. of Energy, Washington, DC 20585
John Wooley, Health Effects and Life Sciences Research Division, Office of
Health and Environmental Research, Dept. of Energy, Washington, DC 20585
Marvin Stodolsky, U.S. Department of Energy, Office of Health & Environmental
Res., ER-72 GTN, Washington, DC 94720
Jay Snoddy, U.S. Department of Energy, Office of Health & Environmental Res.,
ER-72 GTN, Washington, DC 94720
Michelle Broido, U.S. Department of Energy, Office of Health & Environmental
Res., ER-72 GTN, Washington, DC 94720
Robert Robbins, U.S. Department of Energy, Office of Health & Environmental
Res., ER-72 GTN, Washington, DC 94720
Mark S. Boguski, National Institutes of Health NCBVNLM, 8600 Rockville Pike,
Bethesda, MD 20894
M. D. Zorn, Lawrence Berkeley Laboratory, MS SOB-3216, 1 Cyclotron Road,
Berkeley, CA 94720
J. Fickett, Los Alamos National Laboratory, P.O. Box 1663, LQS Alamos, NM
87545
Christian Burks, LQS Alamos National Laboratory, Theorectical Biol. & Biophysics
Grp., T-10, MS K710, Los Alamos, NM 87545

17

~~

52.

53.

54.

55.

56.

57-58.
59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.
70.

71.

ORNwrM-12821

k Jamie Cuticchia, John Hopkins Hosp./Welch Med. Library, 1830 East
Monument Street, Baltimore, MD 21205-2100
E. Branscomb, Human Genome Center, Biomedical Sciences Division, Lawrence
Livermore National Laboratory, Livermore, CA 94550
A. Lapedes, Center for Human Genome Studies, h Alamos National Laboratory,
P.O. Box 1663, Los Alamos, NM 87545
Radoje Drmanac, Argonne National Laboratory, 9700 S. Cass Avenue, Argonne,
IL 60439
Chris Fields, The Institute For Genomic Research, 932 Clopper Road,
Gaithersburg, MD 20878
Office of Scientific and Technical Information, P.O. Box 62, Oak Ridge, TN 37831
Raymond E Gesteland, University of Utah, Howard Hughes Medical Institute,
6160 Eccles Genetics Building, Salt Lake City, UT 84112
Steven Henikoff, Fred Hutchison Cancer Research Ctr., HHMI-FHCRC, 1124
Columbia Street, Seattle, WA 98104
Tim Hunkapiller, University of Washington School of Medicine, Department of
Molecular Biotechnology, FJ-20, Seattle, WA 98195
Leroy Hood, University of Washington School of Medicine, Department of
Molecular Biotechnology, FJ-20, Seattle, WA 98195
Thomas G. Marr, Cold Spring Harbor Laboratory, P.O. Box 100, Cold Spring
Harbor, NY 11724
Sylvia J. Spengler, Lawrence Berkeley Laboratory, Human Genome Center, MS
1-213, 1 Cyclotron Road, Berkeley, CA 94720
Jude Shavlik, Computer Science, University of Wisconsin, 1210 W. Dayton Street,
Madison, WI 53706
Lawrence Hunter, Lister Hill Center, National Library of Medicine, Bethesda, MD
20892.
Prof. Roger W. Brockett, Harvard University, Pierce Hall, 29 oxford Street,
Cambridge, MA 02138
Prof. Donald J. Dudziak, Dept. of Nuclear Engineering, llOB Burlington
Engineering Labs, North Carolina State University, Raleigh, NC 27695-7909
Dr. James E. Lek, Rt. 2, Box 142C, Broadway, VA 22815
Prof. Neville Moray, Dept. of Mechanical and Industrial Eng., University of
Illinois, 1206 West Green Street, Urbana, IL 61801
Prof. Mary E Wheeler, Department of Mathematics, Rice University, P.O. Box
1892, Houston, TX 77251

i

i

18

	1 Introduction
	2 Systems and Methods
	3 Algorithm
	3.1 Statement of the problem
	3.2 Dynamic programming algorithm
	3.3 Error detection and correction

	4 Implementation
	5 Results and Discussions
	Acknowledgments
	References

