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Abstract

A Monte Carlo computer simulation program is designed in
order to describe the spatial and time evolution of a popula-
tion of living individuals under preassigned environmental con-
ditions of energy. The simulation is inspired by previous
techniques developed in physics — in particular, in molecular
dynamics and simulations of liquids — and it already provides
some new insights regarding macroscopic deterministic models
in ecology and concerning eventual control of artificial biomass
production plants.

Introduction

The Monte Carlo method is today a well-known technique in
statistical mechanics. The simulation of the microscopic
behaviour of matter is available for a low population of
molecules (n < 1000) by means of random numbers. The aim
of this procedure is the derivation of macroscopic parameters
that match with observation. Some recent results in ecological
populations (Lurie et al., 1983, Lurie and Wagensberg, 1983)
suggested the application of such a simulation tool in order to
explore the macroscopic state of an ecological system from its
individual characteristics and interactions. In this context, our
purpose is to perform a direct simulation of whatever happens
to each individual organism in the ecosystem by taking into ac-
count all the physically relevant effects, i.e. motion, reproduc-
tion and life span. We shall represent the state of the ecosystem
by a population of individuals belonging to k different classes.
More precisely, two individuals occupy the same class if they
belong to the same — preassigned — biomass interval. One
should note that the definition of the class is inherent to the
rules of the individual behaviour and of the interactions bet-
ween different classes. These rules are suggested by some real
or ideal ecosystems.

In our case, the ecosystem is characterized by the time
evolution of the following individual properties: mass, age and
spatial location. Our purpose is therefore to perform a time
simulation for an ecosystem independently of the more or less
well-known sophisticated kinetic models for population
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dynamics. These models are in general systems of non-linear
differential equations whose solutions can be analysed through
a computer algorithm (Giro et al., 1985). Nevertheless our aim
is rather to obtain a substitute for the real processes, especially
in those situations where actual observations are inaccessible
because of the system's complexity. These data can then be useful
in testing theoretical models, or for the direct control of the
system.

Systems and methods

The IBM 3083/XE was used as a main-frame; the operating
system of which was VM/SP REL 3. The algorithm was
programmed in FORTRAN 77. The computer time and the
necessary storage required in order to process the simulation
vary according to the nature of the problem and the associated
constraints. For instance, if we consider an ecosystem of about
10 000 individuals (as described in the implementation
paragraph), we need 500 kbyte of memory and the computation
time amounts to about 3 s per time step.

When the run needs a large amount of c.p.u. time, it is divided
into different parts and a special storage algorithm for the partial
results is needed in this case. The input DATA include all the
control parameters. Our algorithm uses the random subroutine
of the series of the NAG FORTRAN Library, Mark 11 (cycle
length: 257).

Algorithm

The program - the Barcelonagram - is a simulator of an
ecosystem of several classes. We consider first the sets of nutrient
particles that we shall call 'nutritons' (Giro et al., 1985), the
nourishing substrates for individuals. We also consider the
following phenomena with the corresponding characterizations.

Motion: rm, the radius of the area in which an individual moves
at random.

Nutrition: sort of nutrition (other classes, common substrate,
etc); A/a, the time interval between two consecutive nutrition
consumptions; AA/j^^ and AAfmin, maximum and minimum
quantity of mass that individuals can ingest at one time; ra, the
radius of the area in which an individual searches nutritons.

Growth: a, the relation between the consumed mass and the
increasing individual biomass (metabolic efficiency); A/, aging
for each times step of the simulation.
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Reproduction: set of reproducing conditions (age, mass, etc.);
set of characteristics of new individuals (mass, spatial location,
etc.); set of characteristics of the ancestor after reproduction
(mass, etc.).

Death: tmax, age of death; set of factors affecting the age of
death (available nutritons, population density, etc.).

Two basic ideas for the simulation of liquids in physics are
considered in the Barcelonagram: (i) the periodic boundary
conditions and (ii) the cellular structure method. The former
enables the simulation of an infinite system by means of a finite
number of individuals. Space is supposed to be divided into
square cells. The principal cell - the cell under consideration
- is in contact with eight identical cells (true copies of the
central cell) through completely transparent walls. In other
words, when one individual leaves the central cell then the
corresponding image enters through the opposite wall. The
second idea, the cellular method, is one of the time-honoured
tools in molecular dynamics (Giro et al., 1980) for its efficiency
(time saving) makes the simulation actually viable. The cellular
method consists basically in considering the principal square
to be divided into subcells and it is particularly appropriate for
the representation of our ecosystem (Figure 1). The location of
one individual is indeed guaranteed by determining which
subcell is lodging this individual at any time. Figure 2 shows
the flow-chart of the simulation program. The modular structure
provides for versatility concerning very different situations. We
describe now the essential parts of the Barcelonagram.

Data input

The input data determine the general characteristics of the
ecosystem: number of classes; occupation of each class (number
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of individuals); characteristic parameters of each class (mass,
life time, area of influence, etc.); size of the principal cell and
NSA, the number of subcells to be considered.

Cellular structure (subroutine TRADUC)

The number of subcells NSA corresponding to the principal cell
(called A), and the radius of action NC (maximum radius of
motion or nutrition) determine the number of subcells NSB of
the extended cell (called B), that is to say, the original central
cell plus the subcells given by the periodic boundary conditions
(Figure 1).

The objective of such a subroutine (Table I) is first the
numeration of both cells A (FOR 1 to NSB) and B (FOR 1 to
NSB). This arrangement is performed using the spatial
coordinates (x,y) of the cells. The second objective is the creation
of the vector IAB which determines the anti-image LA (in A)
of each subcell LB (in B) [IAB(LB)=LA].

Interaction matrix (subroutine fTESUB)

This subroutine (Table U) assigns to each subcell of A all the
subcells of B interacting with A, independently of whether they
are images or not (Figure 1). It starts with itself and follows

Fig. 1. The cellular structure method assigns to each subcell (dark in the figure)
of the principal A all (listed) subcells of the extended cell B (namely, the cell
A plus the subcells given by the periodic boundary conditions) interacting with
the mentioned shaded subcell. In this case the radius of action NC (the maximum
radius of motion or nutrition) corresponds to three layers of subcells.
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Fig. 2. The flow-chart of the Barcelonagram.
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with the successive concentric layers of the surrounding subcells.
Once the list is created, the subcells of each interaction layer
are rearranged at random. This rearrangement avoids the
appearance of privileged directions. The 48 subcells that interact
with the first subcell of A are labelled in Figure 1; in this
particular case, the maximum radius of action corresponds to
three layers of subcells. It should be noted that the area of action
can be continuously modified (lor the characterization of
different classes) by means of a multiplicative fector representing
the contribution of each layer of subcells.

Initial configuration

This subroutine creates the initial configuration of the ecosystem.
We start with the random distribution of the individuals of each

Table I. Procedure TRADUC

C ISA Number of subcells per side of the principal square (ISA = 7,
Figure 1)

C ISB Number of subcells per side of the extended square (ISB = D,
Figure 1)

C Subcells numeration of both systems
C Numeration of the principal square, A

K = 0
FOR J - I UNTIL ISA DO

FOR I - 1 UNTIL ISA DO
K = K +1
NSA(IJ) = K

END DO
END DO

C Numeration of the extended square, B
K = 0
FOR J - I UNTIL ISB DO
FOR I - 1 UNTIL ISB DO

K = K + 1
NSB(IJ) = K

END DO
END DO

C Correspondence of the subcells of B into the subcells of A
FOR JJ - 1 UNTIL ISB DO

FOR II - 1 UNTIL ISB DO
W; look for the coordinates (IJ) of the subcell of A being the
image of any subcell of B with coordinates (IIJJ)
JX(1) = II
JX(2) = JJ
FOR L - 1 UNTIL 2 DO

KX = - NC
IF JX(L) £ NC THEN KX = -NC + ISA
IF JX(L) > NC+ISA THEN KX = -NC - ISA
JX(L) = JX(L) + KX

END DO
LA = NSA (JX(I), JX(2))
LB = NSB (IIJJ)
IAB(LB) = LA

END DO
END DO
RETURN
END

class in the A subcells. Wfe moreover fix at random the individual
values of mass and age, taking into account — if it is the case
- the part of the young population (without reproduction
capacity). The subroutine also establishes the nutritons'
distribution in A (Call INPUT NUTRITONS).

Iterative part of the program

Starting from the initial configuration and according to the
characteristics of each class, the program generates the time
evolution of the ecosystem. In each time step the following
processes are therefore considered:

(i) Input of nutritons.
(ii) Age increment of each individual (=r).
(iii) The identification of individuals whose turn it is to move

or to eat.
(iv) Once the motion is performed individuals start to eat

at random the available nutritons in the corresponding area of
action.

(v) Each individual is tested for the minimum reproduction
conditions (age, mass) and, if they are satisfied, the character-
istics of the new individual are fixed (age, mass and birth
subcell).

(vi) The individual age is checked; if it reaches the maxi-
mum value, the individual is removed from the ecosystem. This
maximum age can be advanced as a virtual aging due to a lack
of the available amount of nutritons.

Table III shows a detailed scheme of this iterative part of the
program.

Table II. Procedure ITESUB

C NG maximum number of layers
C NS number of subcells in A

FOR L - 1 UNTIL NS DO
Wfe search the coordinates (U) of the subcell L
IA = I - NG
IB = I + NG
JA = J - NG
JB = J + NG

FOR II - IA UNTIL IB DO
FOR JJ - JA UNTIL JB DO

We search the anti-image LA of the subcell
LB= NSB (IIJJ) (Call TRADUC)
We look for the interaction layer NN
containing LB (I s NN s NG)
Vtfe notice that subcell LA belongs to the layer
NN, and its interaction with L

END DO
END DO

Disarrrangement at random of subcell belonging to the
same layer NN (Call RANDOM)

END DO
RETURN
END
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Table III. Iterative part of the program

C NJ Number of individuals of the class J (J = 1.2 n)
C n Number of classes

FOR J - 1 UNTIL n DO
FOR I - 1 UNTIL NJ DO
Aging Age = Age +

If Nutrition THEN list
WHILE list * 0 DO

Random selection of one individual (from
the list) that starts nutrition (Call
RANDOM)
Starting of nutrition by random motion into
its spatial area of influence (Call
RANDOM)
Identification of the destination cell (Call
CELLULAR STRUCTURE)
Random searching of nutritons into the
spatial area of influence (Call
INTERACTION MATRIX)
Increasing of mass accordingly to
metabolism
IF it reaches the value of the reproduction
biomass THEN

Birth of a new individual:
Modification of the ancestor's value of
mass
Determination of the parameters of the
new individual (location, mass, age,
etc.)

ELSE — IF it reaches the maximum age
or further conditions "THEN Death (it is
written off)

END-IF
END-WHILE

END-IF
END

END

"If the individual doesn't obtain a sufficient amount of nutritons during a
prefixed number of time-steps. See Figure 4.

Implementation

We next discuss the preliminary results of the Barcelonagram
in some simple situations. Our first purpose is the time evolution
of the biomass production in ecosystems exhibiting the following
properties:

(i) All individuals pertain to a single class,
(ii) There is one single class of common substrate (nutritons)
(i") rm=ra .
(iv) The area of action corresponds tome very central subcell

and to the first layer of surrounding subcells.
(v) A/m=A/a.
(vi) Reproduction occurs at a certain individual mass value,

(vii) The ancestor individual changes its mass according to:
x — Mj where Mx is the mass of the new individual,

(viii) No direct interactions are considered between individ-
uals.

AfN =

This strongly restrictive condition nevertheless respresents a
high number of real natural or artificial situations, i.e populations
of fishes [groups of a high number of individuals (~ 104) having
plankton — or some special prepared food — as a unique
nourishing source], bacterial cultures, etc. Some different
environmental constraints can be easily imposed on such
systems, namely, a constant total biomass (individuals plus
nutritons), an isolated boundary enclosing a certain initial
quantity of nutritons, a constant input of nutritons, etc. The
preliminary results match satisfactorily with global deterministic
models and provide some specific insight concerning the domain
of reliability of such theoretical models.

In an earlier paper (Gir6 et al., 1985), we reported an
investigation of dynamic laws of population versus the data of
computer simulation. The former were represented by the

16000
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Fig. 3. Time evolution of individuals belonging to the same class and starting with different initial populations The continuous lines represent the Monte Carlo
computer simulation. The dashed lines are the fitted analytical solutions of the differential equations (1).
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(1)

differential equations
n = — kxn + kjS

s = - k3n + kt

where n is the number of individuals, s the number of nutritons
and kuk2, k3 and kA positive constants. The population adapts
itself to the external constraints, i.e. n(oo) = kAlkz following
the typical transitory evolution of a damped oscillator subjected
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Fig. 4. The shifting (from A to E) of the growth curve from the former case
(Figure 3) towards the sigma-like logistic curve for increasing limitating nutrition
conditions, namely, the maximum time interval (NA) that an individual may
keep itself alive without nourishing The curves correspond to the following
values: NA(A)=oo; NA(B)= 16; NA(C)= 8; NA(D)= 4; NA(E)= 2.

20000 -

to an external force. The solutions recall, if n(0) < n(oo), the
logistic sigma-like curve to the final state n(oo) and the
overdamped situation shows, in particular, the same qualitative
behaviour predicted by the Lotka—Volterra equations for the
parasite-host population cycles in which a cross-term kns is
included (Svirezhev and Logofet, 1983).

In ecology, as in other sciences, it is important to distinguish
between equations or 'laws', whose justification is that they
describe the observed or simulated relations between two or
more variables, and those which have in addition some 'micro-
scopic' justification in terms of the known or postulated
behaviour of the components of the system. This is the aim of
both the alternative equations (1) and the computer simulation.
The matching between the detailed and the overall treatments
is successfully explored by the program minimizing a goodness-
of-fit criterion. The preliminary results are indeed encouraging.
First, the Barcelonagram provides, as predicted by the
mathematical theory, an approach to the imposed stationary state,
independently of the initial state of the system (Figure 3). This
behaviour may be an aperiodic damping (a typical sigma-like
curve) or a damped oscillator, according to the specific
properties of the different classes. A consistency check is easily
performed by observing the effect of the shifting of one
behaviour to the other in both descriptions if one changes
accordingly the internal laws in the Barcelonagram or the
appropriate constants in the deterministic equations (Gir6 et al,
1985). Moreover, the well-known shapes of the experimental
growth curves can be obtained by the simulator introducing the
realistic effect of the limitating nutrition resources. Figure 4
exhibits the tendency to such a sigma-like curve by increasing
the 'penalization' due to the lack of available nutritions (see
footnote of Table III).

200

50 75 100
TIME-STEPS

Fig. 5. Time evolution of heat dissipation (solid line) and biomass (dashed line) in arbitrary units obtained with the Barcelonagram. The behaviour is strongly
close to that observed by microcalonmetry in similar environmental conditions for the Serratia marinorubra strain IP75 (Bermudez and Wbgensberg, 1985).
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(xlO3) TIME-STEPS

Fig. 6k Time evolution of the population in a two-class ecosystem obtained with the Barcelonagram. The system has been proved to be stable until 2 x K)3 time-steps.

Discussion

Our simulation provides a useful connection in order to identify
the constants appearing in the deterministic models in terms of
detailed random behaviour. This is, we believe, of great interest
for the management of biomass production plants where the time
simulation of the type presented here is a substitute for
inaccessible observations. This technique is therefore more
justified for systems of increasing complexity. On the other hand,
it provides a tool to determine the limits where the theoretical
approaches break down, i.e. the domain of reliability of
analytically idealized equations (Giro et al., 1985). We have
indeed discovered some circumstances, usually ignored in such
models, becoming relevant (time delays, random events, non-
linearities, memory effects, statistical meaning of macrovariables,
etc.).

The Monte Carlo simulation is also a tool to be considered
for further generalization and it is in these more complex systems
where the method would readily find a relevant application. The
stability of ecosystems can be sought, for example, in many
interacting species systems for a wide range of energetic
conditions such as space-time dependent surrounding constraints.
In particular, Figure 5 shows the starting point of a promising
perspective: the simulation of the bacterial growth together with
the corresponding heat dissipation curve. Our preliminary
(qualitative) results in this case suggest the possibility of an
important bridge between microcalorimetry (Bermiidez and
Wagensberg, 1985) and the investigation of microbiological
metabolism. Further quantitative results for the particular strain
Serratia marinorubra IP75 growing in complex media are to be
reported soon. Up to now we have realized with the
Barcelonagram the critical nature of the value range of
parameters which allows the stabilization of the two classes
competing for a constant input of nutritons, as can be seen in
Figure 6. Another relevant point concerns the biomass
distribution of individuals at the stationary state predicted by
some informatic— thermodynamic models (Luri6 and
Wagensberg, 1983, 1985).

To sum up, the Monte Carlo simulation plays the role of the
experimental observations with perhaps the same handicap as
in molecular dynamics, that is to say, less credibility concerning
what is actually happening in nature; but it has nevertheless the
same relevant list of advantages. Simulations do advantageously
replace experiments in real complex systems, for, in the latter,
the control of the external constraints can be very difficult, the
direct observations themselves are almost impossible to record
reliably, and the necessary experimental tests in man-made
ecosystems are not, in principle, economic or comfortable. The
simulation is, moreover, specially interesting to apply in the
neighbourhood of critical situations in order to test the sensibility
of a many-species ecosystem in the face of internal or
environmental fluctuations, a central problem regarding the
concepts of biological adaptation versus internal or external
noises.
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