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A robust, high-sensitivity algorithm for
automated detection of proteins in two-
dimensional electrophoresis gels

Jerry E.Solomon and Michael G.Harrington

Abstract

The automated interpretation of two-dimensional gel electro-
phoresis images used in protein separation and analysis presents
a formidable problem in the detection and characterization of
ill-defined spatial objects. We describe in this paper a
hierarchical algorithm that provides a robust, high-sensitivity
solution to this problem, which can be easily adapted to a variety
of experimental situations. The software implementation of this
algorithm functions as part of a complete package designed for
general protein gel analysis applications.

Introduction

The primary motivation for the work described in this paper
has been development of automated methods for robust,
high-sensitivity analysis of two-dimensional gel electrophoresis
(2DGE) images of protein samples. The 2DGE protein
separation method provides a powerful technique for protein
research in molecular biology and medical diagnostics by
allowing separation of thousands of proteins and polypeptides
according to charge and molecular weight in an image format
(OTarrell, 1975; Garrels, 1989; Skolnik er a/., 1982). Two
examples of such gel imagery are shown in Figure 1, where
the vertical dimension is proportional to molecular weight and
the horizontal dimension is proportional to molecular charge.
In this image the pixel intensity value is inversely proportional
to gel optical density, i.e. black indicates high protein
concentration. Since ten to hundreds of such gel images must be
analyzed in a typical experiment or clinical study, it becomes
important to develop computer-automated methods for such
analyses.

Protein 2DGE images exhibit quite distinctive characteristics
according to sample type; Figure l(a) represents a typical
cellular protein pattern, while Figure l(b) illustrates the more
heterogeneous appearance exhibited by body fluid proteins.
Comparisons of similar samples are of primary interest in
biology and medicine, but there are two noteworthy aspects of
this technology: if the same source of protein is applied to two
consecutive gels, the resultant image has both general technical
consistency and subtle degrees of technical variation. The
predominant consistency of such an image has led to identifica-
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tion of unique diagnostic individual protein changes, even such
minor changes as those in Figure l(b) from cerebrospinal fluid
(CSF) of a patient with a specific transmissible dementing
disease; all such patients have the presence of the proteins
marked by arrows in the figure, whereas all patients with other
causes of dementia, such as Alzheimer's disease, do not have
these proteins present in their CSF (Harrington et al., 1986).
These small yet unique changes illustrate the > 100-fold increase
in ability to characterize biological/diagnostic data compared
to previous methods, but their accurate identification presents
an analysis challenge of some magnitude. In contrast with this
level of overall reproducibility, the more subtle technical
variations result from inconsistencies in the electrophoretic
separation and detection processes, and lead to occasional
distortion of relative positions, shape and intensities of spots.
Efforts to improve technical reproducibility are continuing, but
the problem will remain a challenge to image analysis
methodologies because of the interaction of the innumerable
components during the electrophoretic process.

A fundamental image analysis problem to be addressed is that
of identifying and characterizing those intensity distributions
in the image that represent actual protein distributions in the
original gel. As can be seen from the images in Figure 1, the
protein distributions may be described as intensity blobs having
highly variable shape characteristics, diffuse edges and a wide
range of peak intensities. In addition, these images typically
have regions in which whole families of proteins are tightly
grouped, resulting in overlapping intensity distributions that
image analysis operations must attempt to resolve. Since trace
proteins are quite often the ones of most interest, both in
biological experiments and in clinical studies, sensitivity and
false alarm performance of any detection method are serious
issues.

We should emphasize that the current work has concentrated
on developing a robust method that allows reliable spot detection
of 'faint spots' on lightly loaded gels. Routine use of this
algorithm in our laboratory for the past two years indicates that
it works equally well under relatively 'heavy' gel loading
conditions. It should also be pointed out that we have not
attempted an exhaustive comparison of our method with many
of the other spot finding techniques currently in use within the
general community since most, though not all, rely in one way
or another on prior information about spot shapes such as two-
dimensional Gaussian, etc.
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Fig. 1. Two examples of digitized silver-stained 2DGE images: (a) typical appearance of proteins denved from cellular material, (b) proteins derived from CSF.

System and methods

The protein spot detection and characterization algorithm was
developed in a Sun Workstation Unix environment (SunOS
version 4.1) as one part of a complete 2DGE analysis software
package. The algorithm is implemented in standard C language
source code and has been compiled and tested on Silicon
Graphics and Alliant multiprocessor machines, as well as on
a variety of Sun-3, Sun-4 and Sparcstation machines. As is the
case in all large-scale image analysis applications, ample
amounts of local memory (RAM) are required for efficient
operation. For large format image data a minimum of 16 Mbytes
is required; however, 24 — 32 Mbytes is recommended for
efficient operation. Both silver-stained gels and gel
autoradiograms are digitized with a laser scanning densitometer
with spatial sampling rate of 80 /im, and 12 bits of quantization
in optical density.

Algorithm description

A major problem that continues to plague developers of
automated digital image analysis systems is the robust detection
and characterization of objects delineated by diffuse boundaries;
generally referred to as fuzzy objects, or blobs. If the objects
of interest can be well characterized by regular convex
boundaries enclosing a single intensity maximum, then peak-

finding/boundary estimation methods, such as those developed
by O'Gorman and Sanderson (1984, 1986), may usually be
applied. In the case of 2DGE images, a common approach has
been to model the spots as two-dimensional Gaussian density
distributions and use fitting or template matching methods for
detection as discussed by Garrels (1989). However, there are
many cases in which protein spots are not well modeled as
Gaussian distributions, and this approach does not therefore
provide a general solution. In more complex cases one must
in general resort to an attack based on edge detection methods,
which immediately raises the issue of robust detection of diffuse
(or fuzzy) edges. Most edge detectors are designed using a
optimality criterion based on step-edge detection, rather than
diffuse edge properties (see Canny, 1986, for a review). Thus,
in the case of fuzzy objects, one generally seeks a preprocessing
operator that transforms diffuse edges into edges that more
closely resemble step-edges in order to utilize the optimal
properties of known edge detection algorithms. Once a robust
method for diffuse edge detection is found one must then have
a reliable method for selecting those edge-bounded objects of
interest, i.e. in this case density distributions that truly represent
proteins. We have developed a two-stage, hierarchical approach
to this problem which achieves very high sensitivity detection
in the first stage, while applying an efficient set pruning
heuristics at the second stage in order to reject false positive
detection events.
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Edge detection stage

The first step in detecting protein spots is to delineate the diffuse
edges which constitute potential spot boundaries. The method
described here is based on use of the so-called Laplacian-of-
Gaussian (LOG) V2G operator, the properties of which are
reviewed in Marr and Hildreth (1980), Torre and Poggio (1986)
and van Vliet et al. (1989). When considered as a convolution
operator, the LOG kernel has the form:

and

V2Ga(x,y) =
2ira4 2 - (1)

where a determines the spatial scale of the operator through
the relation w = 2V2cr; w being the extent of the positive central
region of the operator. As shown by Huertas and Medioni
(1986), this operator is separable, and computations may be
carried out as two successive one-dimensional convolutions
using the prescription:

with

O(*,>>) = hn(x,y)+h2l(x,y)

hn{x,y) = *,(*)•/i2(y)

h2\{x,y) = h2{x)-h,{y)

(2)
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Edge detection is traditionally carried out by using a heuristic
based zero-crossing search algorithm on the output of a V2Ga

filtered image. Early experiments with this approach on typical
gel images indicated that the standard LOG operator could not
handle the diffuse edge character of protein spots in a robust
manner.

The approach we have taken in solving this deficiency is to
add a preprocessing stage to the standard LOG/zero-crossing
edge detector, which we will denote by LOG-ZCED. This
preprocessing stage consists of a non-linear operation added to
the output of a LOG filter. The overall operation may thus be
described by:

- ZCED

where f (•) represents a particular non-linear operation to be
performed on the output of the first LOG filter, and * denotes
the mathematical operation of convolution. We have examined
the use of two specific non-linear operations, namely

(3a)

f[-| a (3b)

In practice, the second form gives slightly better overall
performance and that is the form we use in our implementa-
tion. The addition of this non-linear operation achieves the
desired behaviour of transforming diffuse edge boundaries into
boundaries more closely resembling step-edges, which may then
be extracted with a standard LOG operation. This transforming
property is illustrated in Figure 2, (a) is a portion of an original
gel image, and (b) is the result of applying the NLOG operator
to the original image. The sequence of operations applied to
the original image I,(x,y) to produce an output 'image' I(x,y)
is given by

(4)

(5)IE = ZCED [I(x,y)\

where /E is a binary-valued edge pixel map of the original
image. The zero-crossing detection algorithm flags edge pixels
in I(x,y) by applying a set of heuristics to the four nearest-
neighbor pixels of a candidate edge pixel. These heuristics check
for both a true zero at the candidate edge pixel location, and
for sign transitions at that location which also indicate the
presence of an edge pixel. Since we do not use edge linking
at this step, the zero-crossing algorithm is a much simplified
version of the one described by Huertas and Medioni (1986).

Spot detection and false alarm rejection

The multi-stage edge detection algorithm described above
generally satisfies the high sensitivity requirements for protein
spot detection in digitized gel images. However, at this high
sensitivity the false alarm rate would clearly be unacceptable.
The final stage detection algorithm described in this section is
designed to utilize known characteristics of 'true' protein gel
spots in order to provide robust false alarm rejection. Since
a number of quantitative parameters describing each detected
spot must be extracted and stored in a gel database, production
of a high sensitivity edge map must be followed by a spot
parameter extraction operation. Before describing the procedure
we have developed to carry out this step, it is useful to discuss
some of ways in which a given protein spot may be para-
meterized. We limit ourselves here to discussion of quantitation
of the direct observable, i.e. measured optical density (OD) of
the protein gel, in order to avoid the numerous complications
introduced by attempts to quantitate in terms of absolute protein
concentration. Clearly the total spot density (integrated OD)
is of primary concern in gel-to-gel comparisons; in addition,
we also wish to provide the ancillary parameters of area-
normalized OD, and a 'total-normalized' OD, which is defined
as the spot integrated OD divided by the total integrated OD
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Fig. 2. Illustration of the behaviour of the NLOG operator applied to a portion of a 2DGE image of CSF proteins: (a) original digitized image; (b) image resulting
from application of the NLOG operator.

of all detected spots. Both of these normalizations are useful
in accommodating sample loading variabilities in the face of
uncertainties regarding absolute calibration. A final intensity
parameter, a smoothed estimate of the peak value within the
boundary, is included to achieve a three-way background
rejection criterion. Of course one must know where the spot
is located within its gel, and be able to compute relative distances
between spots, so the horizontal and vertical coordinates of the
spot centroid become additional parameters.

In addition to parameterization in terms of optical density,
one observes that protein gel spots may also be parameterized
(or classified) according to shape descriptors. For example, the
vertically elongated, relatively fuzzy, spot distributions
frequently observed in protein gels of samples derived from
body fluids of vertebrates (CSF, blood plasma, etc.), are
generally associated with complex glycoproteins. Another
established association is that very similar shape/intensities of
either fuzzy or more distinctly bounded proteins in close
proximity to each other are often clinically, biologically or
genetically related to each other. A further phenomenon is that
unresolved, i.e. overlapping, proteins frequently have
indentations in their boundaries that can be used to flag the fact
that a single detected blob is actually a multicomponent spot.
Thus shape descriptors prove to be extremely useful for both
intra- and inter-gel classification studies. Currently we
incorporate two shape descriptors into our parameterization,

both of which relate to spot elongation characteristics. The first
is insensitive to the direction of elongation, and is the standard
ratio of area to perimeter squared shape parameter (Duda and
Hart, 1973). The second is direction sensitive, and is based on
the observation that spot elongation in protein gels is generally
either in the vertical or horizontal direction; the parameter used
is thus simply the ratio of the vertical to horizontal dimensions
of the spot, denoted as VtH ratio. This parameter is also
extremely useful in providing rejection of some of the most
common artefacts observed in gel images.

We have chosen the eight-direction chain code technique of
Freeman (1974) for spot extraction since all the necessary spot
parameters can be computed directly from the chain code
representation; it is also a compact code for storage in a protein
gel database. The chain coding operation is applied to the edge
map produced by the operations described in the preceding
section; in order to produce a valid code sequence, we demand
that the boundary be closed, and that it must not have gaps larger
than one pixel. This step provides a significant amount of noise
rejection while still preserving likely protein spot candidates.
As a matter of implementation, the chain codes are represented
as linked lists using C language structures; the entire code set
for a given gel image is held in an array of pointers to structures.
It should be noted that this is an intermediate data structure,
the final data structure being a doubly linked list of spot
parameters including the spots' unique chain codes. In
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Fig. 3. Example of spot detection algorithm results when applied to a 2DGE image of proteins derived from sea urchin embryonic tissue: (a) original digitized
image (b) —(d) spot detection results with flit/edge parameters set to: (5,7), (7,9) and (9,11) respectively. The most intense spots within detection edge boundaries
in (b)—(d) have been filled in to aid orientation

summary, the following physical parameters are currently used
to characterize detected objects which are candidate protein
spots:

area norm od—area normalized spot OD;
centroid—spot centroid x- and ^-coordinates;
concave—number of concavities in spot boundary;
gelnorm od—total density normalized spot OD;
integrated od—integrated spot OD;
max od—peak spot OD;
ratio ap2—spot area-to-perimeter squared ratio;
vh ratio—spot vertical-to-horizontal dimension ratio;

The final step in spot detection and extraction for insertion in
the gel database consists of scanning the chain code structure
array to compute the relevant spot parameters from the chain
code representation and the original image data. Densitometry
calibration coefficients are applied at this time to obtain the

actual OD values from the recorded 12-bit image data; this is
also the step at which our final false alarm rejection heuristics
are applied. For inclusion in the final spot list, a candidate spot
must satisfy threshold criteria on integrated od, area__norm,
majc od, ratio ap2 and concave. As illustrated below, this
multiparameter set provides robust rejection of noise- and
clutter-class objects, while preserving a high probability of
detection of true spots.

Implementation

The spot detection and characterization algorithm has been
implemented in standard C language source code for use in the
Unix operating system, and is invoked from the shell command
line with two keywords, filt and edge, and an input image
filename specification. The filt parameter specifies the spatial
support (in pixels) of the non-linear LOG operator, while the
edge parameter specifies the spatial support of the linear LOG
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Fig. 4. Example of spot detection algorithm results when applied to a 2DGE image of proteins derived from CSF: (a) original digitized image; (b) detection
results with flit/edge parameters set to (9,11). Arrows indicate two proteins that are diagnostic for Creutzfeld-Jacob disease.

operator. Default values of these parameters are set at filt = 9,
and edge = 1 1 . The input image file is assumed to be in raster
format and of data type short int, with a dynamic range of
0—4095. Image files in our local image-processing software
have separate ASCII 'header' files which describe the content
of a specific image data file; thus there is always a header file
associated with a binary image data file, e.g. imagel.hdr,
imagel.img. The user is not required to specify an output
filename, since the program automatically assigns it the name
innamespt.spots. All of the relevant parameters for detected
protein spots, including the boundary chain code, are written
to the output file as a doubly-linked list in a C-structure. Typical
run-times (wall clock) for 512 x 512 pixel gel images are
~ 190 s for filt = 7, edge = 9 and -230 s for filt = 9,
edge = 11, on a Sun Microsystems, Sparcstation 1 + ; and
~ 120 and ~ 145 s respectively on a Silicon Graphics SGI240
(running one processor only). Note that runtime (for a given
specification of filt and edge parameters) depends almost
exclusively on image size, not on the number of detected spots,
since by far the most computationally intensive part of the
algorithm is in applying the edge detection operators.

Discussion

Two specific examples of applying this detection/characteriza-
tion algorithm to actual 2DGE image data are shown in Figures
3 and 4, in which the data were digitized from silver-stained
gels of samples derived from sea urchin embryonic tissue and

from human CSF respectively. Figure 3(a) shows a 512 X 512
pixel area of the original gel data, while Figure 3(b) —(d) shows
the results of applying the spot detection algorithm with filt and
edge parameters set at 5 and 7, 7 and 9, and 9 and 11
respectively. For standard 16 x 20 cm gels, with 80 /im spatial
sampling, spatial scale parameters of (7,9) or (9,11) are
generally close to optimal both with respect to reliable detection
and with respect to separability. The purpose of this figure is
to give the reader some feel for the effect of selecting different
filt and edge parameters; for clarity, the most intense spots
within detected edges have been filled in. Figure 4(a) shows
a 512 x 512 pixel area of an original silver-stained gel of human
CSF from a patient with Creutzfeld-Jacob disease; two protein
spots that are diagnostic for this disease state (Harrington et al.,
1986) are indicated by arrows. Figure 4(b) shows the results
of running the detection algorithm on this data; again, the
diagnostic protein spots are indicated by arrows. At the total
protein loading used for this gel, the peak optical density of
the darkest diagnostic spot is only 0.045 OD; for comparison,
the optical density of the dark spot to the upper left of these
two spots is ~0.08 OD, while the peak of the darkest detected
spot in the image represents an optical density of ~2.1 OD.
In fact, it has been our experience that faint spots which are
not confidently visible by eye on the original gel are detected
by the spot finder, and subsequently confirmed as being 'real
spots' by their appearance in 5-fold total integrated intensity
when a gel with 5-fold more protein sample is run.
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Several other points regarding the efficacy of this algorithm
are worth noting. First, its operation does not require any
preprocessing either to remove or 'smooth' gel background;
and so-called 'streak artefacts' do not affect its performance.
Although it has been designed as a general protein spot finding
tool, the use of a two-level approach, i.e. edge-finding followed
by a spot validation operation, allow it to be 'tuned' for finding
protein spots having very specific characteristics.

We have described a general multi-stage detection and
characterization procedure for fuzzy objects, with a specific
application to the analysis of protein gel images. The procedure
utilizes a non-linear edge detector, based on the LOG operator,
followed by a boundary following chain-coder and object
classifier that performs false alarm rejection. Our experience
with this approach has shown that it performs robust protein
spot detection down to the level of sensitivity afforded by the
2DGE technology for protein separation, with very good false
alarm rate properties. Subjectively, its performance appears to
be about as good (in some cases better than) as that of visual
inspection of a protein gel by a person experienced in
interpreting such data. This algorithm has been implemented
as a standalone program that may be run directly from the Unix
command line. It has also been incorporated into our complete
two-dimensional gel analysis package (GALTOOL), which we
have developed and used in our laboratory over the past two
years.

In addition, we have used this same algorithm with success
in peak-finding and characterization in automated interpreta-
tion of two-dimensional NMR spectra of proteins in solution.
The source code implementation of this algorithm may be
obtained by contacting the authors via electronic mail at
jerry @maxj r. hood. caltech. edu.
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