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Abstract

Summary: Feature selection can improve the accuracy of machine-learning models, but appropriate steps must be
taken to avoid overfitting. Nested cross-validation (nCV) is a common approach that chooses the classification
model and features to represent a given outer fold based on features that give the maximum inner-fold accuracy.
Differential privacy is a related technique to avoid overfitting that uses a privacy-preserving noise mechanism to
identify features that are stable between training and holdout sets.
We develop consensus nested cross-validation (cnCV) that combines the idea of feature stability from differential
privacy with nCV. Feature selection is applied in each inner fold and the consensus of top features across folds is
used as a measure of feature stability or reliability instead of classification accuracy, which is used in standard nCV.
We use simulated data with main effects, correlation and interactions to compare the classification accuracy and fea-
ture selection performance of the new cnCV with standard nCV, Elastic Net optimized by cross-validation, differential
privacy and private evaporative cooling (pEC). We also compare these methods using real RNA-seq data from a
study of major depressive disorder.
The cnCV method has similar training and validation accuracy to nCV, but cnCV has much shorter run times because
it does not construct classifiers in the inner folds. The cnCV method chooses a more parsimonious set of features
with fewer false positives than nCV. The cnCV method has similar accuracy to pEC and cnCV selects stable features
between folds without the need to specify a privacy threshold. We show that cnCV is an effective and efficient ap-
proach for combining feature selection with classification.

Availability and implementation: Code available at https://github.com/insilico/cncv.

Contact: brett.mckinney@utulsa.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Classification and feature selection are fundamental and comple-
mentary operations in data mining and machine learning. The qual-
ity of selected features affects the quality of the classification model
and its performance on validation data (data not used to train and
test the model). Specifically, incorporating too many irrelevant fea-
tures in the training model may lead to predictions that do not gen-
eralize well to validation data because the bias-variance tradeoff is
tilted toward high variance (overfitting). In contrast, excluding im-
portant features from the training model may lead to predictions
with low accuracy because the bias-variance tradeoff is tilted toward
high bias (underfitting).

There are multiple ways to use feature selection with classifica-
tion to address the bias-variance tradeoff. Wrapper methods train
prediction models on subsets of features using a search strategy to

find the best set of features and best model (Guyon and Elisseeff,
2003). Optimal wrapper search strategies can be computationally
intensive and so greedy methods, such as forward or backward se-
lection are often used. Embedded methods incorporate feature selec-
tion into the modeling algorithm. For example, least absolute
shrinkage and selection operator (Lasso) (Tibshirani, 1997) and the
more general Elastic Net (or glmnet as it is labeled in the R package)
(Zou and Hastie, 2005), optimize a regression model with penalty
terms that shrink regression coefficients as they find the best model.
The Elastic-Net hyperparameters are tuned by cross-validation
(CV).

CV is another fundamental operation in machine learning that
splits data into training and testing sets to estimate the generaliza-
tion accuracy of a classifier for a given dataset (Kohavi, 1995;
Molinaro et al., 2005). It has been extended in multiple ways to in-
corporate feature selection and parameter tuning. A few of the ways
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CV has been implemented include leave-one-out CV (Stone, 1974),
k-fold CV (Bengio et al., 2003), repeated double CV (Filzmoser
et al., 2009; Simon et al., 2003) and nested CV (nCV) (Parvandeh
and McKinney, 2019; Varma and Simon, 2006).

nCV is an effective way to incorporate feature selection and ma-
chine-learning parameter tuning to train an optimal prediction
model. In the standard nCV approach, data is split into k outer folds
and then inner folds are created in each outer training set to select
features, tune parameters and train models. Using an inner nest lim-
its the leaking of information between outer folds that feature selec-
tion can cause, and consequently the inner nest prevents biased
outer-fold CV error estimates for independent data. However,
standard nCV is computationally intense due to the number of clas-
sifiers that must be trained in the inner nests (Parvandeh et al.,
2019; Varoquaux et al., 2017; Wetherill et al., 2019). In addition,
we show that nCV may choose an excess of irrelevant features,
which could affect biological interpretation of models.

Differential privacy was originally developed to provide useful
statistical information from a database while preserving the privacy
of individuals in the database (Dwork and Roth, 2013). Artificial
noise is added to a query statistic high enough to prevent leaking of
an individual’s group membership but low enough noise to provide
useful group statistical information. This concept of differential
privacy has been extended to feature selection and classification
with the goal—similar to nCV—to extract useful information about
the outcome (class) variable while limiting information leaking be-
tween a training and holdout fold (Dwork et al., 2015). For such
machine-learning problems, noise is added to the holdout statistic
(accuracy or feature importance score) such that zero information
from the holdout set is revealed when the difference of the mean
statistic between training and holdout stays within a stochastic
threshold. This stochastic thresholding procedure that protects the
holdout set’s privacy with respect to the outcome variable is known
as ‘thresholdout’ (TO). For the smaller sample sizes, typical of bio-
informatics data, differential privacy does ‘preserve the privacy’ of
the holdout set, but there is a risk of overfitting regardless of the
choice of threshold (Le et al., 2017). The private evaporative cooling
(pEC) algorithm (Le et al., 2017), based on concepts of statistical
physics and differential privacy, was developed to address the bias-
variance balance.

A useful way to interpret the privacy-preserving mechanism in
the context of machine learning is that the mechanism creates con-
sistency of the feature importance scores and the accuracy between
the training and holdout sets. The proposed consensus nested CV
(cnCV) uses this idea of consistency between folds to select features
without the need to specify a privacy noise parameter (unlike differ-
ential privacy) and without the need to train classifiers in inner folds
(unlike standard nCV). Specifically, cnCV selects top features that
are in common across inner training folds. The use of the inner folds
prevents information leak between outer folds while using informa-
tion about the importance rank of features. Furthermore, cnCV
extends feature consistency/stability to more folds than simply the
two (train and holdout folds) used in differential privacy. The cnCV
method uses the nested splitting procedure and selects stable or con-
sensus features first across a given set of inner folds and then across
outer folds. The proposed cnCV selects features without training
classification models, making it more computationally efficient than
nCV. We also show that the consensus features selected are more
parsimonious than nCV (fewer irrelevant features).

This new method development study is organized as follows. We
describe the new cnCV method, how it differs from standard nCV,
and we describe the validation strategy. To validate the methods, we
first use simulations with main effects, correlation and network
interactions to compare the classification and feature selection per-
formance of cnCV, nCV, privacy methods TO (Dwork et al., 2015)
and pEC (Le et al., 2017) and the embedded method glmnet (Zou
and Hastie, 2005). Although any feature selection and classification
algorithm can be used in nCV, cnCV or pEC, we use Relief-based
feature selection (Kononenko, 1994; Le et al., 2017, 2019a, b;
Urbanowicz et al., 2018) because of its ability to detect interaction
effects as well as main effects. We use random forest as the classifier

in cnCV, nCV and pEC because of its known performance and ro-
bust hyperparameters. We compare the classification accuracy per-
formance of the methods on a real RNA-Seq study of major
depressive disorder (MDD). For the RNA-seq data, we compare
accuracies and enrichment of selected genes for known mental dis-
order associations.

2 Materials and methods

2.1 Standard nCV
nCV can be used for feature selection and parameter tuning to ob-
tain reliable classification accuracy and avoid overfitting (Cawley
and Talbot, 2010; Tsamardinos et al., 2014; Varma and Simon,
2006). In standard nCV, the dataset is split into k outer folds and
each fold is held out for testing while the remaining k� 1 folds are
merged and split into inner folds for training (Fig. 1). Each outer
training set is further split into inner folds for inner training and test-
ing. Typically, nCV chooses the outer-fold model that minimizes the
inner testing error, but we restrict overfitting by choosing the outer-
fold model and hyperparameters with the lowest difference between
training and testing accuracy across the inner folds (lowest overfit-
ting). The model and hyperparameters with lowest overfitting across
the inner folds is chosen as the training outer-loop model and tested
on the outer-loop test fold. The features with positive ReliefF scores
are used to train the inner-fold models. We note that our implemen-
tation is not limited to Relief feature selection. The final set of nCV
features (final feature selection) are the features used in the best
nCV model across the tested outer folds.

2.2 Consensus nested cross-validation
The cnCV algorithm (Fig. 2) has a similar structure to nCV (Fig. 1),
but cnCV has the simplifying feature of not training classifiers in the
inner folds. The nCV method selects features and the corresponding
model for an outer fold based on the best inner-fold classification
model. In contrast, cnCV only performs feature selection (not classi-
fication) in the inner folds. Features with positive ReliefF scores are
assembled for each inner fold and optional parameter tuning is
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Fig. 1. Standard nCV. (A) Split the data into outer folds of training and testing data

pairs (four outer folds in this illustration). Then do the following for each outer

training fold fillustration starting with Outer Training Fold 1 [red box (A)]g. (B)

Split outer training fold into inner folds for feature selection and possible hyperpara-

meter tuning by grid search. (C) Use the best inner training model including features

and parameters (second inner model, green box, for illustration) based on minimum

overfitting (difference between training and test accuracies) in the inner folds to test

on the outer test fold (green arrow to blue box, Test Fold 1). (D) Save the best model

for this outer fold including the features and test accuracies. Repeat (B)–(D) for the

remaining outer folds. (E) Choose the best outer model with its features based on

minimum overfitting. Train on the full data to create the final model. (F) Validate

the final model on independent data. (Color version of this figure is available at

Bioinformatics online.)
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performed (Fig. 2B). Tuning is available in our implementation, but
we use standard random forest and ReliefF hyperparameters, where
the number neighbors in ReliefF adapts to the number of samples in
each fold (Le et al., 2019a, b). The common/consensus features
across all inner folds are used to represent the outer-fold set of fea-
tures (Fig. 2C). Consensus features are chosen again in the outer
fold (Fig. 2D) to select the final features for training the final model
(Fig. 2E), which is then validated (Fig. 2F).

For cnCV, nCV and pEC in this study, we use the nearest-
neighbor-based ReliefF feature selection algorithm because of its
ability to detect main effects and interactions. For cnCV, we use all
positive Relief scores (Fig. 2B) as a conservative threshold because
negative Relief scores are likely irrelevant to classification. Relief
scores are the difference of the variable’s values between nearest
neighbors from the opposite phenotype group and the same pheno-
type group, and a negative score means the variable discriminates
poorly between groups. Positive scores may include false positives
but the consensus procedure helps to eliminate these. If the user
chooses another feature selection algorithm, a similar conservative
threshold or top percentage of features can be used and then the con-
sensus mechanism will remove features that are unstable across
folds. The software implementation includes an option for tuning
the threshold.

Our implementation includes multiple Relief neighborhood
options, but for this study, we use a fixed number of nearest hit and
miss neighbors, kR ¼ 0:154ðm0 � 1Þ, that adapts to the number of
samples m0 in a fold. The 0.154 prefactor yields an approximation
to a fixed radius that contains neighbors within a half standard devi-
ation (SD) of a sample’s radius in the attribute space (Le et al.,
2019a, b). This value for the number of Relief neighbors has been
shown to provide a good balance for detecting main effects and
interaction effects (Le et al., 2019b). We use random forest for clas-
sification with 500 trees (ntree) and we used p/3 as the number of
random features chosen as candidates for splitting each node (mtry),
where p is the number of available features in a fold. The software

implementation allows for the tuning of the random forest and
Relief parameters, but we fix the values because of the number of
simulation analyses and to focus on the comparison of the consensus
feature selection. In the TO method in this study, we use a univariate
feature selection and Naı̈ve Bayes classifier, and we use a threshold
noise parameter of 4/

ffiffiffiffi

m
p

, where m is the number of samples.

2.3 Simulation approach
We use the pEC package (https://github.com/insilico/privateEC) to
create multiple types of simulated data with main effects and inter-
action network effects to assess the CV methods (Le et al., 2017).
For each replicate dataset, we generate a training set with m ¼ 200
samples and a validation set with 100 samples to test true generaliz-
ability. Each simulated dataset has balanced cases and controls. We
choose a sample size consistent with real gene expression data but
on the smaller end to demonstrate a more challenging scenario. We
apply each method to a training dataset and store the final set of fea-
tures and model with its holdout accuracy. The final holdout model
from the training set is tested on an independent set for true general-
ization accuracy.

Each dataset contains p ¼ 500 variables. We also include results
with 10 000 variables (see Supplementary Material). We create sim-
ulations with main effects and interaction effects, where 10% (50)
of the attributes are functional or true associations [see Le et al.
(2017, 2019b) and Lareau et al. (2015) for details of the simulation
method]. The simulations are replicated 100 times with noise to
compute average performance of methods.

We use three categories of effect size: easy to detect (40%
power), medium (30% power) and hard to detect (20% power) (Le
et al., 2017). For main effects, we model multiple independent ran-
dom normal effects. In addition, we vary the strength of correlation
between variables. The interaction effects are created from a simu-
lated differential co-expression network, and the effect size is a noise
parameter that controls the correlation. This correlation is related to
the interaction effect size because we disrupt the correlation of tar-
get genes in cases but maintain correlation within controls, thereby
creating a final differential correlation (interaction) network.

2.4 Software availability
All algorithms and analysis code for reproducibility are available as
an R package on github: https://github.com/insilico/cncv.

3 Results

3.1 Simulation comparison
For the nCV methods, we used 10 inner and outer CV folds. The
classification performance of the comparison methods (cnCV, nCV,
TO, pEC and glmnet) is similar for simulated data with main effects
(Fig. 3A–C) and for main effects with correlation (Fig. 3D–F), but
TO and glmnet overfit more than the other methods. For correlated
data, the average correlation is 0.8 for connected variables in the
gene network and 0.2 for unconnected variables. In simulated data
with interaction effects (Fig. 3G–I), glmnet and TO are not able to
classify the data because they assume additive effects. The cnCV,
nCV and pEC are able to classify the interaction data because they
use Relief feature selection. The comparison methods show the same
trends when we increase the number of attributes from p ¼ 500 to
10 000 (see Supplementary Material).

We also compare the feature selection performance of cnCV,
nCV, TO, pEC and glmnet (Fig. 4) using precision and recall to de-
tect the 50 functional simulated features out of 500. Standard nCV
has a tendency to include too many features in its models (253 aver-
aged across all simulations) compared to the true number of func-
tional features (50). This leads to nCV returning more false positives
and lower precision than the other methods. Despite the large num-
ber of false positives, nCV still has high classification accuracy
(Fig. 3), which is likely a reflection of the robustness of random for-
est to irrelevant features when a sufficient number of relevant fea-
tures are included in the model. For cnCV on the other hand, the
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Fig. 2. cnCV. (A) Split the data into outer folds (four outer folds in this illustration).

Then, do the following for each outer training fold fillustration starting with Outer

Training Fold 1 [red box (A)]g. (B) Split outer training fold into inner folds for fea-

ture selection and optional hyperparameter tuning by grid search. (C) Find consen-

sus features. For each fold, features with positive Relief scores are collected (e.g.

‘QWZREFGTYU’ for fold 1). Negative Relief scores have high probability of being

irrelevant to classification. The implementation allows for different feature import-

ance methods and tuning the number of input features. Consensus features (found

in all folds) are used as the best features in the corresponding outer fold. For ex-

ample, features ‘EFG’ are shared across the three inner folds. This procedure is used

in the inner and outer folds of cnCV. Classification is not needed to select consensus

features. (D) The best outer-fold features (green arrow to green box) are found for

each fold [i.e. repeat (B)–(D) for all outer folds]. (E) Choose the consensus features

across all the outer folds to train the final model on full data. Consensus features are

selected based on training data only. Classification is not performed until the outer

consensus features are selected (A)–(D). (F) Validate the final model on independent

data. (Color version of this figure is available at Bioinformatics online.)
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number of features selected (43 on average across all simulations) is
closer to the true number of functional (50), and cnCV has a higher
precision than nCV. Glmnet has good precision for the main effect
models (Fig. 4A–C) but cannot detect interaction effects (Fig. 4G–I)
as expected due to additive model assumptions. In the easy inter-
action effect simulations (Fig. 4G), TO and glmnet have very wide
bars for precision because they select very few variables and, as the
interaction is relatively easy, in about half of the simulations, they
select one functional variable and other times none. The cnCV
method has much shorter run times than standard nCV (Table 1) be-
cause cnCV does not construct classifiers in the inner folds.

3.2 Analysis of RNA-seq data
In addition to simulated data, we compare classification accuracy
using real RNA-seq data for MDD (Mostafavi et al., 2014), with
15 231 genes and 915 subjects with 463 MDD and 452 controls
(Fig. 5). We filtered 50% of genes using coefficient of variation,
which resulted in 7616 genes for analysis. We train random forest
classifiers by cnCV (399 genes selected), nCV (3592 genes selected)
and pEC (3415 genes selected) with adaptive-neighbor ReliefF fea-
ture selection. For glmnet, we optimize the hyperparameter k
(cv.glmnet) with a ¼ 1 (Lasso). The glmnet curve of CV error versus
k is very flat near the minimum, and we choose the value of k near
the CV minimum that selects the most features because glmnet tends
to remove many features (56 genes selected). We compare the per-
formance of the methods on real data by splitting the samples into a
training half (Fig. 5, left) and a validation half (Fig. 5, right) to com-
pare the utility and generalizability of the methods. pEC and glmnet
have the highest accuracy on the training data; however, cnCV has
the highest accuracy on the validation data. The validation accuracy
is a more realistic measure of the methods’ performance. In addition

to having a higher validation accuracy, the cnCV training accuracy
is much closer to its validation accuracy indicating less overfitting.
The glmnet classifier has similar overfitting regardless of k values

near the CV error minimum. The nCV model has similar low over-
fitting to cnCV but its accuracies are lower than cnCV.

We use DisGeNET to assess the disease relevance of genes that
were selected by each method out of the initial 7616 filtered genes.

DisGeNET is a curated repository of collections of genes and var-
iants associated with human diseases from genome-wide association
study catalogs, animal models and the scientific literature (Pi~nero

et al., 2017). We queried the repository for the category ‘Mental or
Behavioral Dysfunction’ with genes selected by cnCV (399), nCV

(3592), pEC (3415) and glmnet (56). See Supplementary Material
for list of overlapping genes. The overlap with the dysfunction cat-
egory is partly driven by the number of genes selected. The two

methods that included the most genes had the largest overlap with
the DisGeNET category: nCV (959 overlap out of 3592, P ¼ 7e-33)

and pEC (925 overlap out of 3415, P ¼ 2e-28). The methods that
selected fewer genes had lower overlap and lower enrichment sig-
nificance: cnCV (116 overlap out of 399, P ¼ 0.004) and glmnet (17

out of 56 overlap, P ¼ 0.19).

4 Discussion

nCV incorporates feature selection and parameter tuning into ma-
chine-learning model optimization to improve model accuracy while
limiting the effects of overfitting. nCV can be computationally in-

tense and it can select many extraneous features. We developed a
cnCV method that improves the speed of nCV and selects a more

parsimonious set of features. Speed is improved by choosing

Fig. 3. Simulated training/holdout and validation accuracy comparison. Accuracies for cnCV, standard nCV, pEC, differential privacy TO and glmnet for 100 replicate simu-

lated datasets with main effects (A–C), main effects with correlation (D–F) and interaction effects (G–I). Training/holdout data (red) have m¼200 samples, balanced cases and

controls, and validation data (teal) have m¼100 samples. Effect sizes range from easy to hard (left to right) with p¼500 variables, 10% functional effects. Red boxplots indi-

cate holdout accuracies (final holdout model from training) and teal boxplots indicate validation accuracies (final holdout model applied to independent data). Accuracies for

all methods (except glmnet) are computed from random forest out-of-bag. Glmnet accuracies are computed from the fitted model coefficients and optimal elastic-net lambda

and alpha parameters tuned by the CV. (Color version of this figure is available at Bioinformatics online.)
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consensus features across inner folds instead of using classification
accuracy to select features and models.

The consensus selection approach is motivated by the objective
of finding consistent or stable features across folds, which is related

to the TO mechanism of the differential privacy-based framework.
The TO mechanism prevents leaking of information between 2-folds
(training and holdout) by adding noise to holdout-fold scores.
Unlike TO differential privacy, cnCV is effective for lower sample
sizes and can use any number of CV folds. The cnCV approach also
does not require a privacy-noise threshold, although it does use a
fixed number or threshold of top input features.

In the consensus method, we included all ReliefF features with
non-negative scores because negative Relief scores are unlikely to be
useful for classification. We hypothesize that the features selected by
cnCV are similar to using a multiple-testing correction of P-values
from a statistical inference Relief (Le et al., 2019b) or a projected
distance regression (Le et al., 2019a). For other feature selection
methods, one may wish to use a threshold number of top features or
a significance threshold in cnCV. Choosing a threshold that allows
too many features may increase overfitting because of the increased

Fig. 4. Precision (red) and recall (teal) for selecting functional features (50 functional out of p¼500 and m¼200 samples) for cnCV, standard nCV, pEC, differential privacy

TO and glmnet for 100 replicate simulated datasets with main effects (A–C), main effects with correlation (D–F) and interaction effects (G–I). Effect sizes range from easy to

hard (left to right). The number below each method (on horizonal axes) is the average number of features selected by the method. Precision and recall computed from the train-

ing/holdout data. (Color version of this figure is available at Bioinformatics online.)

Fig. 5. RNA-seq accuracy comparisons. RNA-seq dataset from a MDD study

(Mostafavi et al., 2014) is split into a Training Half and a Validation Half. The final

training model for each method is tested on the independent validation half to assess

the degree of overfitting. Standard nCV (triangle) uses 3592 genes in its model,

cnCV (circle) uses 399 genes in its model and pEC (plus) uses 3415 genes in its

model. These methods use ReliefF feature selection and random forest classification.

Glmnet (square) selects 56 genes by penalized logistic regression feature selection.

The cnCV validation accuracy is highest and has the lowest overfitting

Table 1. Runtimes averaged over 100 simulated datasets with

m¼200 samples and p¼500 attributes (second and third columns)

and m¼200 samples and p¼10 000 attributes (right two columns)

using a 3.1 GHz Intel Core i7 CPU with 16 GB of RAM

500 attributes 10 000 attributes

200 samples 200 samples

Methods Mean (s) Standard deviation Mean (s) Standard deviation

cnCV 16.55 0.91 1756.54 66.11

nCV 188.92 127.84 40 607.38 7380.84

pEC 28.09 0.77 21 866.94 6969.38

TO 0.04 0.02 6.13 0.05

glmnet 0.48 0.12 6.08 0.72

Consensus nested cross-validation 3097



risk of finding features that overlap by chance. However, if false fea-
tures are selected, the outer test fold should reflect this and give a
correct (lower) generalization accuracy. On the other hand, choos-
ing a threshold that allows too few features may reduce the accuracy
of the classifier. The number of input features may be addressed by
tuning the threshold in the inner folds, which is implemented in the
software.

Our main goal was to compare standard nCV with the new
cnCV. Thus, for both we used the same feature selection (ReliefF)
and classification method (random forest). We used ReliefF as the
feature selection algorithm because of its ability to detect main
effects and interactions. The cnCV implementation can also be used
with NPDR to adjust for covariates, such as sex (Le et al., 2019a).
Although it uses a different feature selection and classification ap-
proach, we also compared with glmnet because of its wide represen-
tation as a method that uses CV for model optimization. Our cnCV
implementation is not limited to Relief feature selection or random
forests for classification and it applies to regression problems (con-
tinuous outcomes) and includes parameter tuning.
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