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Abstract 
Summary: ​Emerging single-cell RNA-seq technologies has made it possible to capture and assess                         
the gene expression of individual cells. Based on the similarity of gene expression profiles, many                             
tools have been developed to generate an in silico ordering of cells in the form of pseudo-time                                 
trajectories. However, these tools do not provide a means to find the ordering of critical gene                               
expression changes over pseudo-time. We present GeneSwitches, a tool that takes any single-cell                         
pseudo-time trajectory and determines the precise order of gene-expression and functional-event                     
changes over time. GeneSwitches uses a statistical framework based on logistic regression to                         
identify the order in which genes are either switched on or off along pseudo-time. With this                               
information, users can identify the order in which surface markers appear, investigate how functional                           
ontologies are gained or lost over time, and compare the ordering of switching genes from two                               
related pseudo-temporal processes. 
Availability:​ ​GeneSwitches is available at https://geneswitches.ddnetbio.com 
Contact:​ ​owen.rackham@duke-nus.edu.sg 
Supplementary Information ​is available at http://www.ddnetbio.com/files/GeneSwitches_SI.pdf 

 

1 Introduction  

Since the advent of next-generation sequencing, one major application         
has been the study of molecular changes that take place during cellular            
transitions, such as those that follow an external stimulus or during a cell             
conversion. Typically bulk RNA sequencing data (RNA-seq) would be         
produced at various time points after stimulation in order to capture gene            
expression changes that underpin the transition. However, in order to          
accurately capture the time-dependent gene expression changes, it is         
necessary to sample RNA-seq at a high resolution relative to the           
time-scale of the transition. This can be both expensive and difficult to            
implement. Furthermore, because RNA-seq samples gene expression       
from a population of cells, the accuracy of this technique often relies            
greatly on the progression of the transition being relatively stable across           
the population, particularly where no surface markers for intermediate         
states are known which can be used to FACs purify the populations prior             
to sequencing. As a result, these experiments tend to not capture the true             
time resolution of the process and can be confounded by bifurcating or            
mixed populations of cells. 

In recent years the introduction of single-cell RNA-seq (scRNA-seq)         
has provided a means to circumvent these issues. With the ability to            
capture and assess the level of gene expression in individual cells comes            
the ability to order cells over pseudo-time. Pseudo-time provides an ​in           
silico ordering of cells (or trajectory) based on a comparison of their            
gene expression profiles. Many tools have been developed for this, for           
instance, Monocle and Slingshot (reviewed in Tian et al., 2019).          
However, extracting the underlying order of gene expression changes         
from these trajectories can be difficult. However, being able to interpret           
these gene expression changes in terms of the order that they occur            

would allow for a fuller understanding of the underlying biological          
processes. To address this, here we developed GeneSwitches, a statistical          
framework that processes scRNA-seq data together with a pseudo-time         
trajectory to find the set of genes that switch during the transition.            
Furthermore, for each gene, we calculate a switching time and associated           
confidence level. With this information, it is possible to (1) investigate           
how gene-regulatory networks or gene ontologies are gained or lost over           
time, (2) stratify selected gene sets (e.g. surface markers) by the order in             
which they appear and (3) identify key differences in the          
gene-expression changes in cell transitions that bifurcate over time.  

To demonstrate this we apply GeneSwitches to scRNA-seq data from          
the differentiation of human embryonic stem cells (hESC) to         
cardiomyocytes (CM) (Friedman ​et al. ​, 2018), highlighting both        
ontological and phenotypical ordering of events (Fig. 1). 

 
2 GeneSwitches functions and examples 

The main workflow of GeneSwitches and the biological insights that          
can be derived are summarised as follows: 

 
2.1 Data preprocessing 

GeneSwitches requires two inputs, namely the gene expression matrix         
and the pseudo-time ordering of each single cell. First, GeneSwitches          
binarizes the gene expression into either an “on” or “off” state to enable             
the identification of switching events. To do this we plot the expression            
distribution of all the genes in all cells and look for a separation between              
the zero and expressed distributions to identify a global threshold          
separating the “on” and “off” gene expression states (Fig. 1a,i). Once           
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identified this threshold is applied to the gene expression matrix to           
generate a binary gene expression matrix.  

 
Fig. 1. GeneSwitches overview and example analysis. ​a​) Key steps of          
GeneSwitches ​i​) Histogram of expression of all the genes in all cells and the              
global threshold for the on/off state (blue line). ​ii​) Logistic regression is            
being fitted to the binarized data for each gene and the switching time is              
defined where the probability is 0.5. The quality of fit is defined by             
McFadden's Pseudo R ​2​. ​iii​) Visualisation of switching genes along the          
pseudo-time. ​b​) Linear trajectory inferred by Monocle2 for the differentiation          
of hESC to CM. ​c​) Visualisation of the order of the top switching genes from               
various sets of known proteins. ​d​) Expression of example genes from (c). ​e​)             
Density plots of switching genes for significantly over-represented functional         
ontologies. ​f​) The inferred trajectory shows a bifurcation of cell fates. ​g​)            
Visualisation of distinct switching genes from the two paths filtered by the            
McFadden's Pseudo R​2​. ​h​) Expression of example genes from (g). 

2.2 Ordering and visualisation of switching genes 

Next, the binarized gene expression is used as a dependent variable in            
logistic regression with the pseudo-time value of each cell providing the           
independent variable. In doing so the probability of expression         
throughout pseudo-time is calculated and the quality of fit is determined           
by McFadden's Pseudo R​2​. Following this, a set of switching genes is            
extracted (see supplementary methods) and for each the pseudo-time         
where the probability is 0.5 is defined as their switching time (Fig. 1a,ii).             
These switching genes are then visualised in order to describe the           
pseudo-time process in terms of the gene-expression events (Fig.1a,iii). 
 

2.3 Ordering and visualisation of gene classes and        
functional groups 

Switching genes can be used to investigate the functional nature of the            
pseudo-time trajectory. For instance, it might be desirable to know for a            
set of known surface proteins at what point they are activated or            
deactivated during a transition in order to facilitate the identification of           
suitable markers on which to sort cells that are transitioning.          
GeneSwitches can also identify the order in which functional ontologies          
are acquired or lost during a transition. To visualise these changes we            
provide the functionality to plot the density of switching genes from each            
ontological class with respect to pseudo-time in order to study when and            
how different functional classes are important. 

As an example, we calculated the pseudo-time trajectory for the          
differentiation of hESC to cardiomyocytes (CM) using Monocle2        
(Trapnell et al., 2014; Qiu et al., 2017) (Fig. 1b). Following this,            
GeneSwitches identified that TIMP1 and VIM were early surface         
proteins to be activated, indicating that they might represent good          
candidate markers to identify cells progressing along the differentiation         
process more rapidly (Fig. 1c). Furthermore, we also observe that          
POU5F1 is deactivated early, whilst MYH7 is activated late (Fig. 1d).           
Functional ontology analysis showed that the cell-cycle related        
ontologies were down-regulated at an early time and cells acquired          
cardiac-related functions later in the pseudo-time (Fig.1e). 

 
2.4 Comparing the ordering from two related pseudo-time        
processes 

If GeneSwitches has been used to analyse two related pseudo-time           
trajectories it is possible to compare the switching genes and their           
switching times. For instance, it is often the case in differentiation           
processes that certain populations of cells bifurcate, with each group          
being committed to a different cell state. GeneSwitches can be used to            
compare these trajectories, looking for similarities and differences in the          
switching genes, as well as their switching times. Once identified these           
similarities and differences can be used to better understand the          
molecular events that predispose each population to their fate choice. For           
instance, cells undergoing differentiation from hESCs toward a        
cardiomyocyte (CM) fate bifurcate, giving rise to one path progressing          
towards definitive CM state and a second path towards a non-contractile           
cardiac derivative state (Fig. 1f). GeneSwitches identified distinct        
switching events for the two paths (Fig. 1g), with the definitive CM path             
gaining cardiac markers, namely CSRP3 and NKX2-5, while the         
non-contractile path gaining DCN and COL1A2 (Fig. 1h).  

In summary, GeneSwitches can help identify the timing of gene          
expression events within a pseudo-time trajectory, which in turn allows          
for a fuller understanding of the order of regulatory and functional events            
that occur during a cellular transition.  
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