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Abstract

While gene-environment (GxE) interactions contribute importantly to many different phenotypes,

detecting such interactions requires well-powered studies and has proven difficult. To address this,

we combine two approaches to improve GxE power: simultaneously evaluating multiple phenotypes

and using a two-step analysis approach. Previous work shows that the power to identify a main

genetic effect can be improved by simultaneously analyzing multiple related phenotypes. For a

univariate phenotype, two-step methods produce higher power for detecting a GxE interaction

compared to single step analysis. Therefore, we propose a two-step approach to test for an overall

GxE effect for multiple phenotypes. Using simulations we demonstrate that, when more than one

phenotype has GxE effect (i.e., GxE pleiotropy), our approach offers substantial gain in power

(18% − 43%) to detect an aggregate-level GxE effect for a multivariate phenotype compared to

an analogous two-step method to identify GxE effect for a univariate phenotype. We applied

the proposed approach to simultaneously analyze three lipids, LDL, HDL and Triglyceride with

the frequency of alcohol consumption as environmental factor in the UK Biobank. The method

identified two independent genome-wide significant signals of an overall GxE effect on the vector

of lipids.
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1 Introduction

Gene-environment (GxE) interactions contribute significantly to the genetic architecture underly-

ing complex phenotypes [1]. However, most GxE methods focus on testing a non-null effect of the

interaction between one phenotype and one environmental factor at a time across genome-wide ge-

netic variants [2,3], (e.g., approaches to jointly testing marginal and interaction effects [4], empirical

Bayes shrinkage methods [5], two-step approaches [6–8], etc.). While these approaches can increase

power to detect GxE interactions, adequate power remains a concern. One possible approach to

further increase the power of detecting GxE interactions is by modeling multiple related phenotypes

together. Previous work indicates that power to detect main genetic effects can be increased by

modeling multiple correlated phenotypes; thus, one would expect similar gains to be available for

assessing GxE interactions [9].

There exists substantial shared genetic basis among different phenotypes (i.e., pleiotropy).

Genome-wide association studies (GWAS) have shown overlap in the main genetic effects across var-

ious complex phenotypes. While extensive work has investigated approaches for assessing pleiotropy

in main genetic effects [10–16], little has been done with regard to assessing pleiotropy in GxE ef-

fects. For example, an interaction between physical activity and a genetic variant can influence the

levels of three lipids, LDL, HDL and Triglycerides, simultaneously [17]. As another example, the

pleiotropic genetic architecture of multiple smoking-related cancers (e.g., lung and head-neck) can

be different among smokers and non-smokers [18,19].

A recent study [20] proposed a mixed-model approach to quantify the heritability of a complex

phenotype explained due to GxE interaction across multiple environmental factors for a single

phenotype. Another study [21] proposed a subset-based multi-phenotype fixed-effects meta-analysis

considering both marginal genetic effect and GxE effect across multiple phenotypes in the same

model based on summary statistics of the corresponding effects. A simple strategy to test for

an overall GxE effect across phenotypes is to perform a multivariate multiple linear regression

considering both the multivariate main genetic effect and the interaction effect simultaneously in

the model.

For a univariate phenotype, two-step methods can produce higher power for detecting GxE

interactions compared to conventional approaches using a single analysis testing a GxE interaction.

Two-step approaches filter out less important genetic variants in the first step and test the more

promising variants for GxE interaction in the second step to reduce the multiple testing burden.

Among various strategies in the first step, a common approach is to test the SNPs for a marginal

genetic association with the phenotype under the assumption that a SNP having a GxE interaction

effect on the phenotype should also have a marginal genetic effect on the phenotype. Similarly,
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a two-step procedure for multivariate phenotypes should produce higher power for detecting an

aggregate-level GxE effect compared to a simple one-step multivariate regression of testing an

overall GxE effect across phenotypes.

In this article, we extend the two-step procedure to multivariate quantitative phenotypes, and

investigate its relative performance compared to the one-step multivariate regression for testing an

overall GxE effect. Our motivation is two-fold: in the 1st step, while filtering less important SNPs,

simultaneously testing multiple related phenotypes should offer higher power for detecting SNPs

having an overall marginal genetic effect (pleiotropy in main genetic effect); and in the 2nd step,

testing such selected promising SNPs for an aggregate-level GxE effect on the multiple phenotypes

should produce higher power due to pleiotropy in GxE effect across the phenotypes.

To adjust for multiple testing in the one-step and two-step approaches, we considered three

different procedures: Bonferroni correction, subset testing, and weighted hypothesis testing. We

demonstrate by simulations that the multivariate two-step approach has a substantial power gain

over the competing approaches. For real data application, we implement our approach to identify

overall GxE effect of genome-wide SNPs and frequency of alcohol consumption on three lipids (LDL,

HDL, Triglycerides) in the UK Biobank.

2 Methods

Let Y = (Y1, . . . , Yk)
′

be multiple continuous phenotypes in a cohort, G denote genotypes at a

SNP, and E an environmental factor. We consider multivariate linear regression (MLR) to model

the main genetic effect of the SNP on Y .

E(Y ) = α+GβG (1)

Here, βG = (β
(1)
G , . . . , β

(k)
G )

′
and α = (α(1), . . . , α(k))

′
, and the error component is assumed to

follow a multivariate normal distribution with zero mean vector and covariance matrix Σ1. In the

first step of the two-step procedure, we implement MLR to assess the overall main genetic effect

of the SNP. In particular, we test H0 : β
(1)
G = . . . = β

(k)
G = 0 versus H1 : β

(j)
G 6= 0, for at least one

j = 1, . . . , k. We note that the power of identifying a SNP having a marginal genetic effect should

improve by modeling multiple related phenotypes instead of a single phenotype. In the second step,

we consider multivariate multiple linear regression (MMLR) to incorporate the multivariate main

effects of the SNP (G) and the environmental factor (E), and the multivariate interaction effect

due to GxE.

E(Y ) = α+GβG + EβE +GEβGE (2)
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Here, βE = (β
(1)
E , . . . , β

(k)
E )

′
and βGE = (β

(1)
GE , . . . , β

(k)
GE)

′
, and the error component is assumed

to follow multivariate normal with zero mean vector and a covariance matrix Σ2. We implement

the type II MANOVA to test H0 : β
(1)
GE = . . . = β

(k)
GE = 0 versus H0 : β

(j)
GE 6= 0, for at least one j.

In the type II MANOVA test, the following two models are compared: the unrestricted full model,

E(Y ) = α+GβG +EβE +GEβGE , versus the restricted model, E(Y ) = α+GβG +EβE . Here,

the unrestricted model reduces to the restricted model under H0, when βGE = 0. Thus, in the

second step, we only test the null hypothesis that the vector of interaction effects βGE = 0, leaving

the vectors of main effects, βG and βE , unrestricted. The power of detecting a GxE interaction

effect should be increased if the interaction is shared across Y1, . . . , Yk. We use the R package

‘car’ [22] to perform type II MANOVA.

In the two-step procedure, we combine the p-values obtained from 1st and 2nd steps to identify

the SNPs that have a non-null overall GxE effect. We note that the linear model in equation (1)

is nested under the linear model in equation (2). Hence, due to the general result in [6], the test

statistic in the screening step to test βG = 0 (equation 1) and the test statistic testing βGE = 0

in the second step (equation 2) are independently distributed. This property is crucial to maintain

the overall false positive rate of the combined two-step procedure at a desired level of significance.

Below, we outline the subset testing (sst) approach and the weighted hypothesis testing (wht)

approach to combine the two steps while adjusting for multiple testing to maintain the overall false

positive rate.

2.1 Adjustment for multiple testing

Suppose we are considering m SNPs, and that we have two sets of p-values. One set is obtained

from the first step testing for an overall main genetic effect across phenotypes (equation 1), PG =

(P
(1)
G , P

(2)
G , . . . , P

(m)
G ); and the other set from the second step for the multivariate interaction effect

(equation 2), PGE = (P
(1)
GE , P

(2)
GE , . . . , P

(m)
GE ). For the one-step multivariate GxE test, Bonferroni

correction is applied to PGE . For the two-step approach, we consider the following two well-known

procedures to combine the two steps [7, 23].

2.1.1 Subset testing

For PG, we consider a p-value threshold α1 and filter out all SNPs for which P
(i)
G > α1, i = 1, . . . ,m.

In the second step, we only consider the SNPs selected in the first step (PG < α1), and apply a

Bonferroni correction while testing for an overall GxE effect for these SNPs. Suppose, we consider

a p-value threshold α2 in the second step. If m1 SNPs pass the first step, we compare PGE to
α2
m1

for each of the selected m1 SNPs to identify the SNPs having an overall GxE effect. A larger
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choice of α1 will increase the possibility of sending the SNPs with a true GxE effect to the second

step, but at the expense of a higher multiple testing burden in the second step [7]. We considered

a standard choice of the p-value thresholds: α1 = 0.05 and α2 = 0.05.

2.1.2 Weighted hypothesis testing

Instead of completely dropping a set of less important SNPs in the second step, it has been argued

that testing all SNPs in the second step while prioritizing them according to their relative ranking of

importance obtained in the first step produces higher power to detect a GxE effect for a univariate

phenotype [8,23,24]. Thus, we follow this approach and test all m SNPs using PGE in step 2 based

on a significance level weighted using the order of the p-values in step 1 (PG). The weighting scheme

uses an exponential weighting function, and allocates a larger fraction of the total significance level

α to the most significant SNPs obtained in step 1 [8,23]. In particular, while performing step 2, the

k1 most significant SNPs in the first bin in step 1 (lowest PG) are tested at a significance level 1
2k1
α,

the next k2 (= 2k1) most significant SNPs in the second bin in step 1 are tested at 1
22k2

α, the next

k3 (= 2k2) at 1
23k3

α, and so on [23]. For example, when k1 = 5 and α = 0.05, the top 5 SNPs from

step 1 are tested at a significance level 0.005 in step 2, the next 10 at 0.00125, etc. This weighting

scheme guarantees that the overall false positive rate for the entire procedure does not exceed α.

Under this weighting scheme, the top SNPs from step 1 are tested at a more liberal significance

threshold than the standard Bonferroni-corrected level required in a standard one-step exhaustive

scan of all m SNPs. However, for the SNPs not in the top bins in step 1, weighted testing can have

a more stringent threshold than Bonferroni correction. We used a standard choice of k1 = 5 and

α = 0.05 [8, 23].

2.2 GxE tests for univariate phenotype

To test for a GxE interaction for a univariate phenotype, we consider the following existing methods

[6–8]. Let Y denote a single continuous phenotype. In the one-step approach, we consider E(Y ) =

α + βG × G + βE × E + βGE × GE, and test for H0 : βGE = 0 versus H1 : βGE 6= 0. In

the two-step approach, we combine the step 1 model: E(Y ) = α + βG × G, with step 2 model:

E(Y ) = α+ βG ×G+ βE ×E + βGE ×GE. Here we consider the same multiple testing strategies

as considered above for a multivariate phenotype.
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3 Simulation study

3.1 Framework

We describe the simulation design for two phenotypes mainly for convenience in presenting mathe-

matical expressions. This can be extended for a larger number of phenotypes in a straightforward

manner. Let Y1 and Y2 denote two phenotypes, G denote the genotypes at a SNP, and E an

environmental factor. We consider the following bivariate multiple linear regression to model the

phenotypes. (
Y1

Y2

)
=

(
α1

α2

)
+

(
β
(1)
G

β
(2)
G

)
G+

(
β
(1)
E

β
(2)
E

)
E +

(
β
(1)
GE

β
(2)
GE

)
G× E +

(
ε1

ε2

)
(3)

We consider each of Y1, Y2, G and E to be mean-centered. We assume a bivariate normal

distribution for (ε1, ε2)
′
. Under a fixed effects model, V (Yj) = β

2(j)
G V (G) +β

2(j)
E V (E) +β

2(j)
GE V (G×

E) + σ2εj , j = 1, 2. Under the assumption that G and E are independent in the population, we

obtain that V (G × E) = V (G)V (E), since E(G) = E(E) = 0. Thus, V (Yj) = β
2(j)
G V (G) +

β
2(j)
E V (E) + β

2(j)
GE V (G)V (E) + σ2εj , for j = 1, 2.

Let us denote h
2(j)
G = β

2(j)
G V (G), h

2(j)
E = β

2(j)
E V (E), h

2(j)
GE = β

2(j)
GE V (G)V (E), and the total

variance of jth phenotype as σ2Yj = V (Yj). Hence, σ2Yj = h
2(j)
G + h

2(j)
E + h

2(j)
GE + σ2εj . Without loss of

generality, we assume that σ2Yj = 1; so, σ2εj = 1 − (h
2(j)
G + h

2(j)
E + h

2(j)
GE ); j = 1, 2. Next, we derive

the following: cov(Y1, Y2) = cor(Y1, Y2) = β
(1)
G β

(2)
G V (G) + β

(1)
E β

(2)
E V (E) + β

(1)
GEβ

(2)
GEV (G)V (E) +

cov(ε1, ε2), where cov(ε1, ε2) is the covariance between the noise terms in the two phenotypes. Thus,

we can fix the correlation between the phenotypes (cor(Y1, Y2)) and other simulation parameters

which in turn determine the value of cov(ε1, ε2) to be used in the simulations.

3.2 Choice of parameters

In our simulation study, we consider three phenotypes for 20,000 individuals, and choose the pair-

wise phenotypic correlations randomly in the range 20% − 30%. We consider 100, 000 null SNPs

which have no marginal genetic association with any phenotype, and no GxE interaction on any

phenotype. We simulate the minor allele frequency at a SNP from Uniform(0.05, 0.45), and simulate

the genotypes under Hardy-Weinberg equilibrium (HWE). We consider a separate set of 100 non-

null SNPs (denoted by mG) each of which has a marginal genetic effect on at least one phenotype

(equation 1). Among these mG non-null SNPs, mGE SNPs have a GxE effect on at least one

phenotype (equation 2), and we vary mGE = 10, 20, 30, 40. So, a subset of the risk SNPs having

a marginal genetic effect are assumed to have a GxE effect (mGE out of mG = 100). We further

assume that, if a SNP has a GxE effect on a phenotype, the same phenotype also has a marginal
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genetic effect due to the SNP. We consider three different scenarios. In the 1st scenario, each non-

null SNP has a marginal genetic effect on the first phenotype but not the other two phenotypes;

and if the SNP (one of mGE SNPs) has a GxE effect, it has the interaction effect only on the first

phenotype. Similarly in the 2nd scenario, the first two phenotypes (but not the last phenotype)

have a marginal genetic effect due to each non-null SNP, and each of mGE SNPs has a GxE effect

on the first two phenotypes but not the last one. And in the 3rd scenario, all the three phenotypes

have a marginal genetic effect from each non-null SNP, and each of mGE SNPs has a GxE effect

on every phenotype.

Under each scenario, we compare the performance of various tests of GxE interaction for each

univariate phenotype and the multivariate phenotype. We apply three different procedures for

multiple testing adjustment to control the family-wise error rate (FWER) as outlined above: Bon-

ferroni correction for the one-step methods (abbreviated as bonf), subset testing (sst), and weighted

hypotheses testing (wht). For each method, we estimate the type I error rate and power based on

200 simulated datasets. Under a given simulation scenario, for each simulated dataset comprising

105 null SNPs and 100 risk SNPs, we compute the proportion of null SNPs at which the method

of choice to test GxE (null hypothesis of no overall/univariate GxE effect) wrongly identified a

genome-wide significant signal of interaction. We estimate the type I error rate as the mean of this

proportion across 200 simulated datasets. We estimate the power using a similar procedure based

on the risk SNPs only. For ease of presentation, when plotting the power obtained by the tests

of GxE interaction for univariate phenotypes, we plot the maximum power obtained across three

univariate phenotypes for each multiple testing adjustment procedure. This allows us to explore

whether we obtain higher power by testing GxE interaction for a multivariate phenotype compared

to each univariate phenotype.

3.3 Results

We present the estimated overall type I error rate obtained from GxE tests for a multivariate

phenotype in Table 1. While the type I error rate appears to be controlled overall at the desired

level of significance 0.05 with per-SNP level 5 × 10−7 (for 105 null SNPs), we observe marginal

inflation in some cases; this is mainly due to using 200 iterations of simulation (for computational

feasibility) to estimate the FWER under a given simulation scenario. We note that the weighted

hypothesis testing (our preferred choice of multiple testing strategy for a 2-step procedure) well

controls the type I error rate for the majority of the simulation choices (Table 1). We present the

estimated type I error rate of GxE tests for univariate phenotypes in Table 2, and find that the false

positive rate is controlled overall with marginal inflation in some cases. Here, the 2-step procedure

based on weighted hypothesis testing appears to better control the overall type I error rate (Table
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2).

We present the estimated power of GxE tests for multivariate and univariate phenotypes in

Figure 1, 2 and 3. First, we focus on the multivariate phenotype, and compare the power of 1-step

and 2-step approaches to detect an overall effect of GxE interaction on multiple phenotypes. We

find that both of the 2-step procedures (subset testing and weighted hypothesis testing) produce

higher power than the 1-step approach (Bonferroni correction). We also observe that the weighted

hypothesis testing (wht) performs better than the subset testing (sst). We therefore focus on

comparing the weighted hypothesis testing procedure with the Bonferroni correction to contrast

the power of 2-step and 1-step approaches. In 3rd simulation scenario, when all three phenotypes

have a GxE effect from each of nGE SNPs, the 2-step approach implemented by weighted hypothesis

testing (abbreviated as 2-step-wht) produces 31%−34% higher power than the Bonferroni correction

implementing the 1-step approach (1-step-bonf) (Figure 3). In 2nd scenario, when two phenotypes

have a GxE effect, 2-step-wht produces 23% − 24% power increase than 1-step-bonf (Figure 2).

In the absence of pleiotropy in GxE effect, i.e., when one phenotype has a GxE effect, 2-step-wht

yields 7% − 8% power gain than 1-step-bonf (Figure 1). Hence, overall our 2-step approach offers

substantial power gain compared to the 1-step approach when testing for an overall GxE effect on

a multivariate phenotype. We also find that 2-step-wht performs consistently better than 2-step-sst

(subset testing) and produces a power gain of 16%− 18% in the third simulation scenario (Figure

3), 14%− 15% in the second scenario (Figure 2), and 6% in the first scenario (Figure 1).

For GxE tests with univariate phenotypes, the 2-step approaches (wht and sst) performed

better than the 1-step approach (bonferroni correction) which is consistent with findings from

previous studies [7, 8]. Between the two strategies of 2-step approaches for univariate phenotype,

wht produces higher power than sst (Figure 1, 2 and 3).

Next, we contrast the performance of 2-step-wht for multivariate phenotypes (multivar wht)

with that of 2-step-wht for univariate phenotypes (univar wht). For ease of comparison, we con-

trast the power obtained by multivar wht with the maximum power obtained across the three

univariate phenotypes each obtained by univar wht. In the presence of pleiotropy in the GxE ef-

fect, multivar wht produces 41% − 43% higher power than univar wht under the third simulation

scenario (Figure 3), and 18% − 20% power gain under the second scenario (Figure 2). However,

in the absence of pleiotropy in GxE effect under the first simulation scenario, univar wht offers

marginal power gain (3% − 4%) over multivar wht (Figure 1). Taken together, the multivariate

approach produces substantially higher power than the univariate approach in the presence of

pleiotropy in GxE effect, and loses marginal power in its absence.
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4 Real data application

We considered three lipids LDL, HDL, and Triglycerides in the UK Biobank as the multivariate

phenotype, and the frequency of alcohol consumption as the environmental factor. We removed

individuals with missing values of phenotypes or relevant covariates from the sample, leaving 253,653

White-British unrelated individuals. First, we apply the inverse rank normal transformation on each

lipid separately; then adjust each transformed phenotype for age, sex, and 20 principal components

(PCs) of genetic ancestry by linear regression. We consider the adjusted residual from each linear

regression as the final phenotype vectors Yj , j = 1, 2, 3. We tested 459, 792 genotyped SNPs in

the UKB one at a time. We applied the different procedures presented above for testing the GxE

interaction. We provide the results from multivariate tests of GxE interaction in Table 3.

For four SNPs on chromosome 8 and 11, the 2-step weighted hypothesis testing (2-step-wht)

identified a genome-wide significant overall effect of GxE interaction on the lipids, whereas the

1-step Bonferroni correction (1-step-bonf) identified an overall interaction effect for three SNPs

on chromosome 2 and 8 (Table 3). However, the 2-step subset testing (2-step-sst) identified an

overall GxE effect for only one SNP on chromosome 8 (rs6984305 which was also identified by

2-step-wht and 1-step-bonf). All the SNPs on chromosome 8 detected by 2-step-wht are in linkage

disequilibrium (LD). We identified the lead SNP (colored blue) based on r2 threshold of 0.2 (Table

3). Similarly, 1-step-bonf detected a pair of SNPs on chromosome 2 which are in LD. We note

that 2-step-wht detected a signal on chromosome 11 which was missed by 1-step-bonf. However,

2-step-wht missed the signal on chromosome 2 identified by 1-step-bonf (Table 3).

For simplicity, results from the univariate analysis based on 2-step weighted hypothesis testing

(2-step-wht) procedure are presented in Table 4. In simulations, 2-step-wht produced highest power

for univariate case. For HDL, it identified genome-wide significant signal of GxE effect, but none

for LDL and triglycerides. Even though it detected six SNPs on chromosome 8 for HDL, all of

them are in strong LD resulting in the same lead SNP rs6984305, which was also identified by the

multivariate tests (Table 3). We note that the multivariate 2-step-wht identified the GxE signal on

chromosome 11 (rs964184) which was missed by the analogous univariate 2-step-wht.

At rs964184 on chromosome 11, the univariate GxE test (multiple linear regression) p-value for

three lipids were 0.004, 0.0007 and 0.009, none of which is genome-wide significant. Even though

this seems to be a moderate evidence of pleiotropy in GxE effect, the 1-step multivariate test

(MMLR) p-value for an overall GxE effect across lipids was 6.9 × 10−5 which is also not genome-

wide significant. However, since this SNP has a strong evidence of pleiotropy in marginal main

genetic effect with univariate p-values across lipids as 5.8 × 10−52, 2.6 × 10−176, P < 10−300, and

also a p-value < 10−300 for the multivariate main genetic association, the multivariate 2-step-wht
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approach prioritized this SNP in the second step while testing GxE, and identified a genome-wide

significant overall GxE effect for this SNP.

At rs6984305 on chromosome 8 which is mapped to a nearby gene AC022784.1, a previous

study [25] identified an effect of GxE interaction on HDL with sleep duration as the environmental

factor. In NHGRI-EBI GWAS catalog, this SNP is also reported to be marginally associated with

liver enzyme levels and serum alkaline phosphatase levels. At rs964184 on chromosome 11, previous

studies found GxE interaction effect on HDL with sleep duration as the environmental factor [25],

on triglycerides with physical activity as the environmental factor [17]. It was also reported to

be marginally associated with many phenotypes including lipid levels, cardiovascular disease, red

blood cell phenotypes, etc.

5 Discussion

We have proposed a two-step approach to test for an aggregate-level gene-environment interaction

across multiple related phenotypes. Using simulations, we demonstrate that our method produces

substantially higher power than the Bonferroni-corrected one-step test of overall effect of GxE

interaction on a multivariate phenotype. While our proposed approach also provides substantially

higher power than competing univariate approaches in the presence of pleiotropic GxE effect, in the

absence of pleiotropy, the method only loses marginal power compared to the analogous two-step

univariate approach.

We demonstrate our 2-step approach by applying it to a vector of three lipid phenotypes in

the UK Biobank with the frequency of alcohol consumption as the environmental factor. Our

method identified a pair of independent genome-wide significant signals of overall effect of GxE

interaction on the three lipids. Previous studies reported these SNPs to have GxE effect on HDL

with sleep duration as the environmental factor, and on triglycerides with physical activity as the

environmental factor.

There are some limitations to our approach and potential for future improvement. First, as

commonly practiced in standard GWAS, the multiple testing procedures implemented in our ap-

proach to identify the genome-wide significant signals of GxE effect do not explicitly account for

LD among the SNPs. Hence, the procedures are expected to be conservative in nature, limiting the

power of the tests. An interesting future direction of research will be to adjust the multiple testing

strategies for LD, in particular, the weighted hypothesis testing and subset testing procedures.

Second, we have only explored the performance of our proposed approach for quantitative pheno-

types. In future work, we plan to extend the approach for multiple related case-control phenotypes

under a logistic regression framework. Third, we have considered one environmental factor in the
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model. However, considering multiple relevant environmental factors at the same time as multiple

phenotypes should further improve the power of detecting an overall GxE effect.

In summary, our proposed 2-step approach is a powerful method to detect an overall effect of

GxE interaction on a multivariate phenotype. The approach is theoretically sound and computa-

tionally efficient. It can be implemented using the existing R software package ‘car’.
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1-step Bonf. 2-step subset 2-step weighted
#asso-pheno mGE correction testing multiple testing

1 10 0.07 0.04 0.05
1 20 0.095 0.05 0.08
1 30 0.05 0.02 0.04
1 40 0.07 0.03 0.05
2 10 0.06 0.07 0.06
2 20 0.06 0.05 0.05
2 30 0.07 0.06 0.04
2 40 0.03 0.03 0.03
3 10 0.04 0.06 0.04
3 20 0.05 0.06 0.04
3 30 0.06 0.07 0.03
3 40 0.05 0.08 0.04

Table 1: Simulation results: estimated overall type I error rate obtained by different tests of overall
GxE effect for a multivariate phenotype using various strategies of multiple testing adjustment.
Here, #asso-pheno denotes the number of phenotypes that have a marginal genetic effect or an
interaction effect due to risk SNPs; mGE denotes the number of SNPs out of 100 (mG) risk SNPs
that have a GxE interaction effect. We present the overall type I error rate (FWER) at 0.05 level of
significance with the desired level 5× 10−7 per SNP, since we considered 105 null SNPs which have
no marginal G or GxE effect. The type I error rate is estimated based on 200 simulated datasets.
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1-step Bonf. correction 2-step subset testing 2-step weighted hypothesis testing
#asso-pheno mGE pheno1 pheno2 pheno3 pheno1 pheno2 pheno3 pheno1 pheno2 pheno3

1 10 0.06 0.08 0.05 0.08 0.07 0.05 0.05 0.04 0.04
1 20 0.05 0.02 0.07 0.06 0.03 0.04 0.06 0.04 0.02
1 30 0.06 0.03 0.07 0.07 0.07 0.04 0.04 0.05 0.04
1 40 0.07 0.06 0.07 0.05 0.08 0.04 0.06 0.06 0.06
2 10 0.07 0.05 0.03 0.04 0.04 0.03 0.05 0.02 0.02
2 20 0.05 0.07 0.06 0.05 0.06 0.08 0.04 0.03 0.06
2 30 0.04 0.07 0.08 0.03 0.06 0.06 0.02 0.04 0.05
2 40 0.06 0.06 0.04 0.05 0.09 0.05 0.02 0.04 0.07
3 10 0.08 0.05 0.05 0.05 0.06 0.07 0.05 0.05 0.05
3 20 0.08 0.07 0.05 0.05 0.07 0.08 0.05 0.03 0.05
3 30 0.07 0.07 0.06 0.07 0.06 0.05 0.03 0.04 0.05
3 40 0.11 0.06 0.10 0.02 0.04 0.07 0.03 0.03 0.03

Table 2: Simulation results: estimated overall type I error rate obtained by different tests of GxE
effect for univariate phenotype using various strategies of multiple testing adjustment. Here, #asso-
pheno denotes the number of phenotypes that have a marginal genetic effect or an interaction effect
due to risk SNPs; mGE denotes the number of SNPs out of 100 (mG) risk SNPs that have a GxE
interaction effect. We present the overall type I error rate (FWER) at 0.05 level of significance
with the desired level 5×10−7 per SNP, since we considered 105 null SNPs which have no marginal
G or GxE effect. Three univariate phenotypes are abbreviated as pheno1, pheno2 and pheno3,
respectively. The type I error rate is estimated based on 200 simulated datasets.
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2-step weighted hypothesis testing

SNP CHR BP P.g P.ge (MMLR) P.ge.wht

rs6984305 8 9178268 6.09E-111 6.12E-08 0.0006
rs11782386 8 9201787 1.35E-64 3.89E-06 0.04
rs11779870 8 9211723 5.34E-68 4.80E-06 0.05
rs964184 11 116648917 < E-300 6.86E-05 0.01

2-step subset testing

P.g P.ge (MMLR)

rs6984305 8 9178268 6.09E-111 6.12E-08

1-step Bonferroni correction

P.g P.ge (MMLR)

rs77400814 2 24073810 0.41 1.26E-08
rs76614804 2 24626991 0.70 6.63E-10
rs6984305 8 9178268 6.09E-111 6.12E-08

Table 3: Real data results: genome-wide significant signals of aggregate-level GxE interaction effect
on the vector of three lipids (LDL, HDL, Triglycerides) obtained by multivariate tests for overall
GxE effect. The frequency of alcohol consumption is considered as the environmental factor. CHR
denotes chromosome, and BP denotes base pair position. P.g denotes the p-value of testing the
multivariate marginal genetic association between the SNP and the lipids; P.ge (MMLR) denotes
the p-value of testing overall GxE effect on the lipids using multivariate multiple linear regression
(MMLR) prior to adjustment for multiple testing; P.ge.wht denotes the p-value of testing the overall
GxE effect using the 2-step approach based on weighted hypothesis testing. The lead SNPs, i.e.,
the independent SNPs having the strongest genome-wide significant signal of aggregate-level GxE
effect, are colored blue. The lead SNPs are obtained based on r2 threshold 0.2.
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SNP CHR BP P.g P.ge (UMLR) P.ge.wht

rs6984305 8 9178268 1.61E-78 1.40E-08 3.59E-05
rs9987289 8 9183358 1.87E-98 4.12E-06 0.003
rs6601299 8 9184691 5.29E-79 3.28E-06 0.008
rs2126259 8 9185146 4.52E-81 2.73E-06 0.007
rs11782386 8 9201787 1.40E-48 2.86E-06 0.007
rs11779870 8 9211723 5.27E-51 2.68E-06 0.007

Table 4: Real data results: genome-wide significant signals of univariate GxE effect on HDL ob-
tained by 2-step weighted hypothesis testing. The frequency of alcohol consumption is considered
as the environmental factor. P.g denotes the p-value of testing univariate marginal genetic associa-
tion between the SNP and HDL; P.ge (UMLR) denotes the p-value of testing univariate GxE effect
on HDL using univariate multiple linear regression (UMLR) prior to adjustment for multiple test-
ing; P.ge.wht denotes the p-value of testing univariate GxE effect using 2-step weighted hypothesis
testing. The lead SNPs, i.e., the independent SNPs having the strongest genome-wide significant
signal of univariate GxE effect, are colored blue. The lead SNPs are obtained based on r2 threshold
0.2.

18

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 7, 2020. ; https://doi.org/10.1101/2020.07.06.190256doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.06.190256
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 1: Simulation results: estimated power obtained by different tests of overall GxE effect for
multivariate phenotype (multivar), and tests of GxE effect for univariate phenotype (univar) using
various strategies of multiple testing adjustment: 1-step Bonferroni correction (bonf), 2-step subset
testing (sst), and 2-step weighted hypothesis testing (wht). Here, 1st phenotype (but not 2nd and
3rd) has a marginal genetic effect or an interaction effect due to risk SNPs. We denote the number
of SNPs out of 100 risk SNPs which have a GxE effect as mGE . The power is estimated based on
200 simulated datasets.
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Figure 2: Simulation results: estimated power obtained by different tests of overall GxE effect for
multivariate phenotype (multivar), and tests of GxE effect for univariate phenotype (univar) using
various strategies of multiple testing adjustment: 1-step Bonferroni correction (bonf), 2-step subset
testing (sst), and 2-step weighted hypothesis testing (wht). Here, first two phenotypes (but not
3rd) have a marginal genetic effect or an interaction effect due to risk SNPs. We denote the number
of SNPs out of 100 risk SNPs which have a GxE effect as mGE . The power is estimated based on
200 simulated datasets.
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Figure 3: Simulation results: estimated power obtained by different tests of overall GxE effect
for multivariate phenotype (multivar), and tests of GxE effect for univariate phenotype (univar)
using various strategies of multiple testing adjustment: 1-step Bonferroni correction (bonf), 2-step
subset testing (sst), and 2-step weighted hypothesis testing (wht). Here, all three phenotypes have
a marginal genetic effect or an interaction effect due to risk SNPs. We denote the number of SNPs
out of 100 risk SNPs which have a GxE effect as mGE . The power is estimated based on 200
simulated datasets.
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