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1 Aethionema arabicum sample preparation and data generation

Ae. arabicum (Brassicaceae), represents one of the angiosperm species from this study. Dry seed samples from
two different ecotypes (Turkey and Cyprus) of Ae. arabicum were processed (Haudry et al., 2013; Mohammadin
et al., 2018). Seeds were derived from maternal plants grown at 20° C or 25° C. Genomic DNA was extracted
using the protocol from (Qin et al, 2009) with some modifications. Briefly, 30 mg dry seed was ground in
liquid nitrogen. After adding 700 ul of the extraction buffer (100 mM Tris, pH 8.0, 10 mM EDTA, 2% SDS,
1.5% PVP, 3 U Proteinase K), samples were incubated at 60° C for 60 minutes, then supplemented with NaCl
and CTAB to the final concentration of 1.4M and 0.2%, respectively, and further incubated at 65° C for 10
minutes. Equal volume of chloroform:isoamylalcohol (24:1, v/v) was added and mixed gently, incubated at 0°
C for 30 min, and centrifuged at 4° C, 13,000g for 10 minutes. The supernatant was treated with RNase at
37° C for 30 minutes and centrifuged again at 4° C, 13000g for 10 min. DNA was precipitated with 0.55
volume of isopropanol, washed with 70% ethanol and dried at ambient temperature. To remove remnants of
the gel-like seed mucilage, additional purification step was applied using DNA Clean & Concentration columns
(Zymo Research). The DNA concentration was quantified using Qubit Fluorometer (Thermo Fischer Scientific)
and the DNA quality was checked by gel electrophoresis. Library preparation was performed from 80ng gDNA
using the Pico Methyl-SeqTM Kit (Zymo Research). Each library was further size-selected using AMPure XP
beads (Beckman Coulter) keeping the fragment range between 100-700 bp. Sequencing was performed in the
Vienna Biocenter Core Faculty (www.vbcf.ac.at). 100 bp fragments were obtained in single-end mode with
[lumina HiSeq 2500 according to standard protocols of the manufacturer for cluster generation and sequencing.
After trimming the bisulfite treated reads with Trimmomatic 0.36 (Bolger et al., 2014), data were mapped
with Bismark v0.17.0 (Krueger and Andrews, 2011) with multicore 3, -N 1 and score min L,-1 -1 parameters
using the v2.5 reference genome. Sequence data from Aethionema arabicum can be found in CoGe database
(https://genomevolution.org/coge/) under the following id: v2.5, id33968. SAM alignment files were sorted and
merged with Samtools v1.3.1 (Li et al., 2009).


www.vbcf.ac.at
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Figure 1: lllustration of simulating methylation differences. Panel (A) shows an example for simulated methy-
lation differences using data set Phypa-G-CG as template. In the reference sample (black line), the probability
of methylated reads methylated region is 0.8834, in unmethylated regions 0.0171. For simulation of methylation
differences in a case sample, the changes for these probabilities are uniformly drawn for the subset of differentially
methylated regions (red dotted line). Panel (B) shows methylation frequencies which were simulated accordingly.

2 lllustration of methylation differences

Figure 1 illustrates how methylation difference are simulated if a case sample (red dotted line) is compared with
a control sample (black line). The probabilities for measuring a read indicating methylation is controlled by the
simulation parameters P for methylated regions and P, for unmethylated regions. As a first step, regions
with differential methylation in the case sample are drawn. Then the change in probability A is drawn from a
uniform distribution in the range [0, 0.5] as well as the direction of regulation. The red dashed line in panel (A)
illustrates the resulting differences which results in measurements like depicted in panel (B).



3 Smoothing BS-seq data

For discriminating regions with low methylation levels from regions with higher methylation levels, a custom
smoothing approach is applied which is summarized and illustrated in Figure 2. In order to discriminate low
and high methylation levels, first two thresholds which are shown as horizontal dashed lines in panel (A) are
calculated from the data. As upper threshold, we used the minimum of 80% and of the 80% percentile of the
fraction of methylated reads. Similarly, the maximum of 20% and the 20% percentile is defined as lower threshold.
These two thresholds classify each methylation site into low (blue dots), intermediate (gray dots), or high (red
dots) methylation level. Positions with intermediate levels were then assigned to unmethylated or methylated
according to the closest read which are beyond the thresholds and thereby already assigned as low or high level.
This procedure subdivides the genomic range into measured low and high methylation levels, but in a rather
non-smooth manner as shown in panel (B).

We then used the LOWESS (Local regression using weighted linear least squares implementation in Matlab
with three different smoothing spans 10,20, 50 to obtain smooth averages of the local methylation levels. For
this step, we did not account for position distances, i.e. LOWESS smoothing is always based on 10, 20, or 50
consecutive methylation sites. The three curves, plotted as black lines in panel (C), are then merged into a single
curve by taking the minimum or maximum, depending on the methylation state from the previous step (gray
shading in (C)). For low levels, the minimum over the three curves was taken, for high levels the maximum which
results in the red curve shown in panel (C).

The smoothed curve is then used to define new thresholds by taking the 20% and 80% quantiles (panel (D)).
Next, the data points are again assigned to low and high methylation levels like in step (A). Again, data in
the intermediate range between the two thresholds were assigned with respect to being closer to a low or high
methylation region (panel (E)). This finally leads to a smooth subdivision of the genomic range into presumably
methylated (termed PM and highlighted by red shading) and presumably unmethylated (termed PU) regions.
This assignment is then used to calculate data attributes for characterizing methylated and unmethylated regions
as indicated in Figure 3. The two thresholds/quantiles plotted in Figure 2 in panels (D) and (E) are also utilized
as two out of 16 data attributes. These 16 data attributes were considered during calibration of the simulation
parameters to perform realistic simulations.

The approach is available as part of the implementation of our decision tree at the github repository
https://github.com/kreutz-lab/DMR-Decision Tree.


https://github.com/kreutz-lab/DMR-DecisionTree
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Figure 2: lllustration of the smoothing approach applied for discriminating regions which are presumably methy-
lated (PM) from presumably unmethylated (PU) regions. First, two thresholds are used to define methylation
sites with low and large methylation levels (A). Then, sites with intermediate levels are assigned according to the
closest site with low or large levels (B). The gray background indicates methylated regions. The three smoothed
curves (black lines) in panel (C) are then processed, i.e. the minimum or maximum of the three curves is cho-
sen depending on methylation state. The 20% and 80% quantiles are then calculated to define new thresholds
for methylated and unmethylated. Sites between both thresholds are again assigned according to the closest site
above or below the threshold. Red shading indicates the finally obtained classification into presumably methylated.
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Figure 3: Subdividing the genome into presumably low and high methylation levels enables calculation of data
attributes for both cases. As written in the main text, these attributes comprise means and standard deviations
of the number of reads and of the measured methylation levels. Moreover, the mean and standard deviation of
the lengths of these regions is evaluated as data attributes.



4 Characteristics of the experimental data, stochasticity and replicates

Figure 4 and Figure 5 show representative examples of the experimental and simulated data. The data from Ae.
arabicum has the smallest coverage. Ae. arabicum has a much smaller coverage than A. thaliana. Thus, the
number of reads and the methylation levels exhibit discretization. The experimental number of reads measured
from A. thaliana has a rather large variance and seems to show spatial correlations in particular for Arath-CHH
(lower row, right panel). Such correlations can only be partly imitated by the WGBSSuite by distinguishing

presumably methylated and unmethylated regions.
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For some other data sets, the local coverage seems to be
correlated with the local methylation levels, e.g. for P. patens (Figure 5, panel B).

Aetar-C-CHH

3.025 3.03 3.035
position [bp] 108

1125 113 1.435 114
%108
1005 E T mm—e

or--= -
1125 113 1.135 1.14
position [bp] 108

Aetar-T-CHH

ted

=)
S

methlyation [%]
@
3

o

1985 1.99 1995 2
position [bp] 108

1405 141 1.415
%108
100 F = e e T

1405 141 1415
position [bp] 108

Arath-CHH

simulated

experimental

996 998 10 10.02
<10°

996 998 10 10.02
position [bp] 10°

—=

g
Qo

50 f

166 168 1.7 172
position [bp] «105

Figure 4: Representative comparison of experimental and simulated data for Ae. arabicum in panel (A) and A.
thaliana in panel (B). Regions of 2000 consecutive read positions were randomly drawn for each experimental and

each simulated data set.

These plots nicely illustrate that our BS-seq data cover a broad range of different data characteristics. More-
over, it might also indicate that it is challenging, to properly choose the 13 simulation parameters of the WGB-
SSuite. In order to generate the data as realistically as possible, we considered several attributes of the observed
number of reads, the corresponding methylation levels and the distances. As explained in the main part of the
paper, 16 attributes were calculated for characterizing the experimental data in presumably methylated (PM) and

presumably unmethylated (PU) regions:
1. Mean (M) and standard deviation (SD) of the number of reads n.

2. Mean and standard deviation of the methylation levels Meth



3. Mean and standard deviation of the log;, distances of read positions dPos

4. Mean and standard deviation of the log;, lengths of presumably methylated (PM) regions according to our
smoothing approach

5. Mean and standard deviation of the log;, lengths of presumably unmethylated (PU) regions
6. Smoothing threshold (ST) for the number of reads
7. Smoothing threshold for the methylation level

These attributes were used to optimize the configuration parameters of the WGBSSuite. Figure 6 illustrates
similarities of the experimental data sets at the level of these attributes. The heatmap has been generated by
hierarchical clustering based on euclidean distance using the amap R-package (Lucas, 2018).

The largest difference occurs between the samples generated for CHH context and the other two contexts.
The CHH motif occurs more frequently than CHG and CG in the DNA. This has an impact on several data
attributes that are related to the density of the read positions. The decrease in the methylation levels that is
observed for CHH might be related to strand-specific methylation.

For Ae. arabicum, P. abies and P. patens we had data from two biological conditions for each DNA context.
Those two samples always cluster together which indicates that in our data sets the differences between organisms
are larger than difference between biological conditions.

Figure 7 shows the relationship between the means and standard deviations of the number of reads in panel
(A) and of the methylation levels in panel (B) for simulated data (gray) and the experimental data (black). For
this depiction, 20 consecutive positions were randomly drawn 100 times for each of the 21 data templates. Our
simulation data covers the whole range that occurs for the experimental data. Panel (A) also indicates that the
simulated data has a slightly increased standard deviation for the local coverage.

Our study is based on the 21 experimental data sets summarized in Tables 1 in the main text. These data sets
enables characterization of the variability of BS-seq data over the evaluated biological conditions. Stochasticity
of the simulated data is introduced by randomly drawing the positions and lengths of CpG islands, the positions
of the DNA motifs (CG, CHG or CHH), as well as the lengths and locations of methylated regions and random
selection of the subset of methylated sites.

Because the data does not comprise replicates of the same biological conditions, it is not possible to evaluate
the variability over real biological replicates. Therefore, the stochasticity between replicates of our simulated reads
exclusively originates from the Poisson distribution. Moreover, random subset of these reads are drawn as being
methylated according to the binomial distribution. Both distributions are commonly assumed for sequencing data
and are implemented in the WGBSSuite (Rackham et al., 2015) that has been developed for simulating BS-Seq
data.
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Figure 5: Representative comparison of experimental and simulated data for P. abies in panel (A) and P. patens
in panel (B). For plotting purpose, regions of 2000 consecutive read positions were randomly drawn for each

experimental and each simulated data set.

For P. abies and CHH context, there are only short and weakly

methylated regions. For the CG context, methylation is very heterogeneous and it is hardly possible to distinguish
methylated and unmethylated regions by eye. For P. patens, all three DNA contexts display regions with increased

and decreased methylation levels.
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Figure 8:  lllustration of the workflow applied for calibrating simulation parameters. An iterative cycle of
deterministic least-squares optimization and manual tuning/perturbation of the parameters and the bounds was
applied to prevent local optima and to avoid too stringent bounds. The procedure is repeated until the simulated
data was as similar as possible to the experimental data.

5 Optimization of Simulation Parameters

Table 1: Overview about the simulation parameters available in the WGBSSuite for generating BS-seq
data. 13 parameters 61, ..., 613 were estimated individually for each experimental data set and used
for simulating realistic data.

Parameter description Symbol or value | Fitting options

Number of methylation sites le6 Fixed value

Balance between up- and down-regulation 0.5 Fixed value

Magnitude of differential methylation U(0,2) Uniformly drawn for simulations
Distribution for observed methylation status “binomial” Fixed

Success probability for methylated sites 01 := Preth Bounds: [0.6, 1]

Success probability for unmethylated sites 05 := Py, Bounds: [0, 0.3]

Error rate for methylated sites 03 := FEreth Bounds: [0.01, 4], fitted on log-scale

Error rate for unmethylated sites 04 := Eun Bounds: [0.03, 0.1], fitted on log-scale
Mean number of reads in methylated regions 05 := Mmeth Bounds: [1, 30], fitted on log-scale

Mean number of reads in unmethylated regions 06 := Muyn Bounds: [1, 30], fitted on log-scale

Rate of methylation sites in “CpG” islands 07 := Rigland Bounds: [0.1, 2], fitted on log-scale

Rate of methylation sites in deserts 03 := Rgesert Bounds: [0.001, 0.2], fitted on log-scale
Probability decay for methylation state Oy :=d Bounds: [1070-2, 10'], fitted on log-scale
Transition probabilities desert — island 010 := T12 Bounds: [0.05, 0.8], fitted on log-scale
Transition probabilities island — desert 011 :=To1 Bounds: [0.02, 0.4], fitted on log-scale
Transition probabilities unmethylated — methylated | 612 := ;2 Bounds: [10*3, 10*0'5], fitted on log-scale
Transition probabilities methylated — unmethylated | 613 := Il41 Bounds: [10~2, 1079-5], fitted on log-scale

As described in the main text, the simulation parameters were calibrated by optimizing an objective function
assessing similarity of simulated and experimental data. Optimization of the simulation parameters faces several
serious limitations and challenges. First, the objective function is stochastic because the simulated data sets are
generated by randomly drawing the frequency and positions of methylation sites, the length and frequency of CpG
islands and the total number reads and proportion of methylated reads. We reduced this issue by initializing the
random number generator for each simulation in the same manner. At the same time, the data sets were chosen
large enough to ensure that the chosen random seed does not generate a non-representative special case.

Another limitation is that the objective function V(H_') is non-continuous because CpG islands as well as regions
which are methylated/unmethylated and differentially methylated are intervals which non-continuously change if
the simulation parameters are altered. Moreover, because of the non-linear and non-continuous dependency of
the objective function V(4) on the parameters 6, it is also not possible to calculate derivatives VV (4) of the
objective function.

Several optimization algorithms were tested which do not require derivative information (e.g. patternsearch and
genetic algorithms) but they showed weak performance. We therefore applied deterministic non-linear optimization
with on a trust-region based nonlinear least squares optimization algorithm implemented in Matlab’s optimization
toolbox in function 1sqnonlin. To prevent local optima, we alternatingly performed an automatic optimization
and manual tuning. Moreover, the parameters bounds are extended adaptively if the initial bounds emerged as
too stringent. The overall optimization workflow including the iterative cycle between automatic and manual
optimization is summarized in Figure 8.

Manual inspection was performed by

e plotting experimental and simulated data along the genome,

10



e plotting histograms for methylation levels and for distances of consecutive methylation sites,

e evaluating the fraction of methylation sites in islands/deserts and the occupancy of the four methylation
states used in the WGBSSuite,

e evaluating the effect of manual parameter changes on the objective function V

This inspection cannot be automatically utilized for changes of the simulation parameters of the WGBSSuite but
provided information for manually reducing disagreement between measurements and simulation data. Table 2
shows the finally obtained optimized simulation parameters for the individual data sets.
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Table 2:  Overview about the estimated simulation parameters for each individual data sets. The partly uncommon column names indicate the argument names in the WGBSSuite
as well as to the mathematical notation in this paper.

Data set ProbSucc ProbSucc Err Err Non- Mean Mean Denselnlsland, DenselnDesert, distvalue  Staylnlsland, LeaveDesert, LeaveMeth, LeaveNonmeth,
inMeth inNonmeth ~ Meth meth Meth Nonmeth  cpgmatrix(2), cpgmatrix(1), d transCp- transCp- transPi(1)  transPi(3),
Preth Pun Emeth Ein M meth Muyn Rigland Ryesert gLOC(3)1 Toa gLOC(l), Tha II12 II34
Phypa-G-CG 0.88 0.012 0.049 0.054 9.4 11.6 0.62 0.021 0.27 0.072 0.14 0.0018 0.0011
Phypa-R-CG 0.87 0.011 0.085 0.051 10.9 11.9 0.64 0.024 0.43 0.061 0.17 0.0007 0.00059
Phypa-R-CHG  0.87 0.01 0.11 0.051 6.5 15.9 0.47 0.027 0.37 0.052 0.16 0.00071 0.00038
Phypa-R-CHH 0.6 0.026 0.026 0.053 6.8 8.9 0.96 0.19 0.34 0.094 0.28 0.00071 0.00029
Phypa-G-CHH  0.66 0.0021 0.23 0.067 7.5 13.8 0.85 0.2 0.75 0.14 0.28 0.00032 0.00018
Phypa-G-CHG 0.9 0.011 0.11 0.06 9.8 8.9 0.53 0.024 0.42 0.063 0.17 0.0011 0.00086
Aetar-C-CG 0.93 0.042 0.035 0.051 2.8 1.7 0.34 0.0065 0.33 0.054 0.11 0.015 0.0094
Aetar-c-CG 0.94 0.043 0.052 0.055 1.9 2.3 0.47 0.0021 0.24 0.034 0.35 0.026 0.011
Aetar-C-CHH 0.85 0.019 0.052 0.049 5.3 1.6 0.55 0.062 0.69 0.18 0.19 0.0053 0.00037
Aetar-T-CHH 0.86 0.024 0.064 0.054 1.3 1.5 0.28 0.085 0.61 0.037 0.13 0.0021 0.00018
Aetar-C-CHG 0.95 0.028 0.048 0.058 3.3 1.2 0.54 0.015 0.18 0.16 0.16 0.0033 0.00064
Aetar-T-CHG 0.93 0.032 0.049 0.059 2.8 1.7 0.69 0.018 0.32 0.39 0.15 0.0039 0.00055
Picab-P-CG 0.94 0.036 0.043 0.057 3.0 10.7 0.45 0.011 1.0 0.054 0.036 0.00054 0.00049
Picab-M-CG 0.95 0.036 0.033 0.054 3.0 9.0 0.19 0.017 0.47 0.13 0.048 0.0066 0.011
Picab-M-CHG 0.8 0.033 0.18 0.061 7.0 10.5 1.0 0.035 0.55 0.8 0.042 0.0025 0.0011
Picab-P-CHG 0.83 0.05 0.25 0.044 3.5 5.4 1.8 0.027 0.39 0.77 0.11 0.0039 0.001
Picab-M-CHH 0.6 0.006 0.066 0.059 2.6 6.7 0.62 0.11 0.45 0.14 0.1 0.032 0.0027
Picab-P-CHH 0.87 0.015 0.034 0.077 2.5 5.9 0.37 0.053 1.2 0.056 0.31 0.016 0.00031
Arath-CG 0.82 0.012 0.31 0.079 17.8 30.0 1.4 0.04 0.43 0.61 0.19 0.00082 0.00033
Arath-CHG 0.44 0.0063 1.3 0.055 23.3 23.3 1.8 0.048 0.2 0.49 0.21 0.0013 0.00047
Arath-CHH 0.21 0.022 0.26 0.057 18.0 24.2 0.25 0.26 0.49 0.6 0.23 0.0013 0.00018




6 Application of DMR algorithms and configuration options

As explained in the main part of this article, the analysis of the simulated data sets was performed in a blind
manner. This means that the analyses in the Marburg lab were performed without any knowledge about how the
data was generated. Like in real application setting, the algorithms had to be configured as good as possible by
manual inspection and/or by using default configuration as guiding instruction. In this section, we summarize the
configuration options which were chosen by the Marburg lab. All scripts used for the analyses are provided online
at https://github.com/kreutz-lab/DMR-DecisionTree.

There are three configuration parameters which were set to the same values for all algorithms:

e The default p-value for all tools was set to 0.05.
e The minimum number of CpGs per DMR was set to 10.

e The minimum methylation difference was set to 10%

The R package MethylKit v1.8.1 from Bioconductor Release 3.8 has been used to apply MethylKit. The core
commands are

MethylRawList_filtered <- filterByCoverage(MethylRawList, lo.count=10, hi.perc=99.9)
MethylRawList_methDiffDSS <- calculateDiffMethDSS(MethylRawList_filtered, mc.cores=2)
MethylRawList_methDiff_ subsetDSS <- getMethleiff(MethleawList_methDiffDSS,
difference=10,qvalue=0.05)

MOABS takes inputs files from MethylKit's fitted files. First, a custom Python script is run to get proper
input files for MOABS:

python toMoabsMcompInput.py inputFolder outputFolder  # produces input files for moabs
Then the MOABS executable is run from command line:

moabs-v1.3.2.src.x86_64_Linux.data/bin/mcomp -p 2 -d 10
-r wt_rl1.CG.bed,wt_r2.CG.bed,wt_r3.CG.bed -r ko_r1.CG.bed,ko_r2.CG.bed,ko_r3.CG.bed
-m wt.bed ko.bed -c comp.wt.vs.ko.txt # filenames have to be adapted for CHG, CHH

Then, the columns of interest are selected via

cut dmr_M1_wt.CG.bed_vs_ko.CG.bed.txt -f1,2,3|tail -n +2
> moabs_dmrs.bed # filenames have to be adapted for CHG, CHH

Metilene is run from command line via
metilene_linux64 -a groupl -b group2 input_file > output_file

For CHH and CHG contexts, the option -G 200 is used. The following metilene Perl script generates DMR
files and some visualisation like quantile-quantile plots:

perl metilene_output.pl -q output_file -o output_dir
Control and sample groups were analysed by Defiant via
defiant -L control,case -b -c 0 -i controll.txt,control2.txt,control3.txt casel.txt,case2.txt,case3.txt

The option put-c 0 was chosen to set the coverage parameter to zero because Defiant generated empty
output for Ae. arabicum because the coverage was too small.
The core R commands for DMRcate are

obj_bsseq <- makeBSsegData(samples, sampNames)

DSSres <- DMLtest(obj_bsseq, groupl=sampNames[1:3], group2=sampNames[4:6], smooth=F)
wgbsannot <- cpg.annotate(datatype="sequencing", DSSres, analysis.type="differential")
wgbs.DMRs <- dmrcate(wgbsannot, lambda = 1000, C = 50, pcutoff = 0.05, mc.cores = 1)

Again, Bioconductor release 3.8 was applied.
The core R commands for Methylsig are

meth_cpg <- methylSigReadData(filelist, sample.ids = sample_ids,
assembly = "sim_cpg_gl129", treatment = rep(c(1,0),
each = length(sample_ids)/2), minCount=10, context = "CpG", destranded = F)
meth_cpg_tile <- methylSigTile(meth_cpg, win.size = 200)
meth_cpg_dmr <- methylSigCalc(meth_cpg_tile, groups = c(1,0), min.per.group=3,
local.disp = T, winsize.disp= 200, local.meth = T, winsize.meth = 200)
meth_cpg_dmr_filtered <- meth_cpg_dmr [meth_cpg_dmr[,"qvalue"] < 0.05 \& abs(meth_cpg_dmr[,"meth.diff"] > 10)]

The core R commands for Bsmooth are
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dataBSmooth <- BSmooth(m_dataBS, mc.cores=1, verbose=T)
dataBS_cov <- getCoverage(dataBSmooth ==10 )
BS_cov_filtered <- which(rowSums(dataBS_cov[,m_dataBS\$Type == "test"]>= 2)>=2 \&
rowSums (dataBS_cov[,m_dataBS\$Type == "control"]>=2)>=2)
dataBSmooth <- dataBSmooth[BS_cov_filtered,]
dataBSmooth_tstat <- BSmooth.tstat(dataBSmooth,

groupl
group2

estimate.var="same", local.correct = T, verbose = T)

7 Computation times

c("percentC_samplel", "percentC_sample2","percentC_sample3"),
c("percentC_sample4", "percentC_sampleb","percentC_sample6"),

tool Version All P.patens P.abies A. thaliana Ae. arabicum
time, min |RAM, min |time, min |RAM, min |time, min |RAM, min |time, min |RAM, min [time, min |RAM, min
Defiant v1.1.3 0,14 55,3 0,13 71,4 0,17 6,98 0,13 71,4 0,14 71,5
MethylKit  |v1.8.1 20,7 1098,5 33,8 1258,5 24,7 764,1 19,8 1389,5 4,60 982,0
Metilene v0.2-7b 70,9 1335,5 83,8 288,8 0,14 71,3 55,6 3404,0 144,0 1578,0
MethylSig  |v0.5.2 102,4 1009,3 118,0 467,0 197,5 1392,2 55,2 1260,2 39,0 917,7
MOABS v1.3.2.src.x86_64_Linux 251,8, 4943,4 124,9 3527,8 288,0 2378,8 414,2 6933,1 180,0 6934,1
DMRCate  |BioC Release 3.8 329,9 1969,8 293,6 1412,4 278,3 2820,2 463,3 1336,1 2845 2310,6
Bsmooth BioC Release 3.8 2246,9 1592,5 730,7 1012,4 333,0 3148,3 7504,0 293,0 419,9 1916,4
tool Version All P.patens P.abies A. thaliana Ae. arabicum
time, max |RAM, max |[time, max |RAM, max [time, max |RAM, max |[time, max |RAM, max [time, max |RAM, max
Defiant v1.1.3 12,0 866,2 1,38 71,5 46,3 3250,0 0,15 71,7 0,19 71,7
MethylKit  |v1.8.1 65,7 2022,4 93,5 1303,7 60,5 1359,1 55,5 1634,9 53,5 3792,1
Metilene v0.2-7b 959,1 1885,3 85,6 1050,0 66,2 178,8 89,5 4288,0 3595,0 2024,6
DMRCate BioC Release 3.8 3816,7 3726,6 313,0 33744 307,1 4136,6 548,0 2780,5 14098,6 4615,1
MethylSig  |v0.5.2 5252,0 1353,9 465,9 1768,0 551,9 1396,1 162,7 1262,7 19827,4 988,6
MOABS v1.3.2.5rc.x86_64_Linux 5572,6 6977,6 130,2 6935,1 2016,0 6936,9 19292,4 7101,7 852,0 6936,7
Bsmooth BioC Release 3.8 6103,3 1843,7 941,4 1111,0 964,6 3158,8 12225,5 410,7 10282,0 2694,4
tool Version All P.patens P.abies A. thaliana Ae. arabicum
time, mean |RAM, mean [time, mean |RAM, mean [time, mean |RAM, mean |time, mean |RAM, mean [time, mean |RAM, mean
Defiant v1.1.3 4,1 327,4 0,6 71,4 15,5 1109,5 0,1 71,5 0,1 57,2
MethylKit  v1.8.1 41,6 1360,8 77,1 1333,2 43,4 1080,6 41,4 1511,9 4,6 1517,5
Metilene v0.2-7b 51,9 2090,5 87,2 745,3 33,0 2107,8 69,9 3882,7 17,4 1626,1
DMRCate  BioC Release 3.8 777,7 23745 307,4 2133,7 295,8 3260,4 500,0| 1844,3 2007,7 2259,7
MethylSig  v0.5.2 2203,7 1231,9 356,2 1508,8 375,3 1394,3 125,9 1261,7 7957,2 762,8
MOABS v1.3.2.5rc.x86_64_Linux 2204,8 5968,8 138,4 4672,4 1536,0 5416,8 6740,9 2371,5 404,0 5548,6
Bsmooth BioC Release 3.8 3580,1 1633,3 953,5 1078,1 615,4 3152,6 7385,5 365,2 5366,0 1937,4
Table 3: Minimal, average and maximum of the runtimes (in seconds) and RAM (in kB) load for the different

tools for analyzing the simulation data with 1e6 genomic positions. Defiant is clearly the fastest approach and
also requires least memory. Metilene and MethylKit are faster than the other tools.

The DMR algorithms were applied on a linux computer with Intel(R) Xeon(R) CPU E5-2609-0 2.40GHz and
62.9 GB RAM. The required computation times and memory usages are summarized in Table 3. Metilene that
had on average the best performance is also faster than most other tools on average. Only Defiant is clearly
faster and MethylKit exhibits a minor benefit in terms of computation times.
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8 Result of multivariate analysis of performance

Figure 9 shows power curves for each algorithm and the 21 analysed data settings. These curves indicate the
dependency of the Fl-score on the magnitude of the “signal’, i.e. the underlying difference of the methylation
levels. In real experimental studies, the magnitudes of the methylation differences depend on the similarity of the
investigated biological conditions. The performance of DMR approaches in general depends on this similarity (or
difference). Thus, it depends on the biological setting at which point these power curves have to be evaluated to
assess the performances for data from new applications. In addition, the power of the approaches also depends
on the number of replicates that were available as well as on the sequencing depth. We assessed the performance
of the DMR approaches for a signal-to-noise ratio for three replicates and the sequencing depth given by our data
templates. More replicates and/or an increased number of reads in general improve the signal-to-noise ratio. As
a rule of thumb, a larger sample size always increases the power of statistical analyses. Thus, in our context
a large number of replicates and/or an increased sequencing depth enables identification of smaller methylation
differences.

Nevertheless, the rankings of the approaches is mostly concordant over a large or even the whole range of
methylation differences. Therefore, the ranking of the DMR approaches hold for a broad range of signal-to-noise
levels. Metilene is most frequently superior, but has a rather weak performance for Aetar-T-CHH, Aetar-C-CHH,
Aetar-c-CG and Aetar-C-CG.

The F1-scores averaged over the differential methylation levels A were analysed by a multivariate linear model
to estimate the average impact of the choice of the DMR algorithm and for assessing significance. The sample size
for this analysis is given by the number of simulated and analyzed data sets that could be increased. Increasing the
number of data sets would decrease the size of the standard errors and would lead to further significant outcomes
if there is are real, possibly small, performance advantages. This aspect should be considered for interprations of
the calculated p-values.

Table 4:  QOutcomes of the multivariate regression analysis. The intercept denotes the performance of
metilene for the Phypa-R-CG data set which has been defined as reference performance and yields an
F1-score equals to 0.76. The other estimates denote changes of the Fl-score relative to this number if
the algorithm or data context changes. For this parameterization, it can be tested whether switching
the algorithm cause significant performance changes relative to the reference analysis. SE denotes
standard errors. Except for DMRcate, the estimated decreases of the performances of the alternative
approaches are significant.

estimate SE t-statistic p-value
Intercept 0.75 0.072 10 4.6e-19™""
DMRcate -0.052 0.054 -0.95 0.34
Defiant -0.12 0.054 -2.2 0.026™
BSmooth -0.16 0.054 -3 0.0037**
MethylKit -0.27 0.057 -4.8 3.9e-6"*"
MethylSig -0.35 0.057 -6.1 9.8e-9%**
MOABS -0.22 0.054 -4 0.00011***
MethylScore -0.29 0.054 -5.4 3.6e-7"""
Phypa-G-CHG 0.006 0.088 0.068 0.95
Phypa-G-CHH 0.014 0.088 0.16 0.87
Phypa-G-CG 0.071 0.088 0.8 0.42
Phypa-R-CHG -0.1 0.088 -1.2 0.25
Phypa-R-CHH 0.18 0.088 2 0.044*
Picab-P-CG -0.2 0.088 -2.3 0.021*
Picab-P-CHG -0.078 0.088 -0.89 0.38
Picab-P-CHH 0.042 0.088 0.48 0.63
Picab-M-CG -0.21 0.088 -2.4 0.02"
Picab-M-CHG 0.068 0.088 0.77 0.44
Picab-M-CHH 0.076 0.088 0.86 0.39
Aetar-C-CG -0.35 0.095 -3.7 0.00032***
Aetar-C-CHG -0.36 0.095 -3.7 0.00027***
Aetar-C-CHH -0.032 0.088 -0.36 0.72
Aetar-c-CG -0.28 0.088 -3.2 0.0016™"
Aetar-T-CHG -0.28 0.091 -3.1 0.0026™*
Aetar-T-CHH -0.14 0.091 -1.5 0.13
Arath-CG 0.2 0.088 2.3 0.025"
Arath-CHG 0.028 0.088 0.32 0.75
Arath-CHH 0.012 0.088 0.14 0.89
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Figure 9: Power curves of the compared approaches for the individual data sets. Metilene as superior approach
on average exhibits beneficial performance for most, but not all data sets. This indicates the requirement of a
data-based selection guideline.
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