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Abstract 10 

Multi-modal profiling of single cells represents one of the latest technological advancements in 11 

molecular biology. Among various single-cell multi-modal strategies, cellular indexing of transcriptomes 12 

and epitopes by sequencing (CITE-seq) allows simultaneous quantification of two distinct species: RNA 13 

and surface marker proteins (ADT). Here, we introduce CiteFuse, a streamlined package consisting of 14 

a suite of tools for pre-processing, modality integration, clustering, differential RNA and ADT expression 15 

analysis, ADT evaluation, ligand-receptor interaction analysis, and interactive web-based visualization 16 

of CITE-seq data. We show the capacity of CiteFuse to integrate the two data modalities and its relative 17 

advantage against data generated from single modality profiling. Furthermore, we illustrate the pre-18 

processing steps in CiteFuse and in particular a novel doublet detection method based on a combined 19 

index of cell hashing and transcriptome data. Collectively, we demonstrate the utility and effectiveness 20 

of CiteFuse for the integrative analysis of transcriptome and epitope profiles from CITE-seq data. 21 
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Introduction 24 

The latest advancement in multi-modal profiling of single cells promises to revolutionise our 25 

understanding in cellular biology that was previously inconceivable through bulk profiling technologies 26 

(Datlinger et al., 2017; Macaulay et al., 2015; Mohammed et al., 2017). Among various single-cell multi-27 

modal strategies, cellular indexing of transcriptomes and epitopes by sequencing (CITE-seq) (Stoeckius 28 

et al., 2017) and its variants such as RNA expression and protein sequencing (REAP-seq) (Peterson 29 

et al., 2017) represent a class of approaches that allows simultaneous quantification of global gene 30 

expression and cellular proteins using single-cell RNA-sequencing (scRNA-seq) and antibody-derived 31 

tags (ADTs), respectively, on single cells. Further extensions such as multiplexed detection of proteins, 32 

transcriptomes, clonotypes and CRISPR perturbations enable additional modalities to be profiled on 33 

single cells (Mimitou et al., 2019). 34 

While the surface proteins of individual cells measured by ADTs are also transcriptomically profiled by 35 

scRNA-seq, the measurements of these two different molecule species produced from the same genes 36 

do not necessarily correlate with each other, presumably because of post-transcriptional and post-37 

translational gene regulation (See, Lum, Chen, & Ginhoux, 2018). Therefore, computational integration 38 

of single cell multi-modal profiling data may allow a more accurate characterisation of cells (e.g., cell 39 

type identification) (Buettner et al., 2015) and provide new biological insights that may be observable 40 

from neither a single data source (Lin et al., 2019) nor modality (Stuart et al., 2019).  41 

Here we present CiteFuse, a computational framework that implements a suite of methods and tools 42 

for CITE-seq data from pre-processing through to integrative analytics. This includes doublet detection, 43 

network-based modality integration, cell type clustering, differential RNA and ADT expression analysis, 44 

ADT evaluation, ligand-receptor interaction analysis, and interactive web-based visualisation of the 45 

analyses (Figure 1A). Using both simulations and an experimental CITE-seq dataset generated from 46 

PBMCs (Mimitou et al., 2019), we demonstrate the integrative capacity of CiteFuse in various scenarios 47 

and its advantage over analysing each individual source and modality of data. CiteFuse represents the 48 

first method specifically designed to systematically integrate RNA and ADT modalities of single cells in 49 

CITE-seq data. We anticipate its increasing utility given the rapidly accumulating volume of multi-omic 50 

and multi-modality single cell data generated using CITE-seq from various biological studies (Mimitou 51 

et al., 2019; Stoeckius et al., 2017). Finally, CiteFuse is implemented as an R package 52 
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(http://SydneyBioX.github.io/CiteFuse/) as well as a user-friendly web application 53 

(http://shiny.maths.usyd.edu.au/CiteFuse/), allowing users to upload and analyse their CITE-seq 54 

datasets. 55 

Results 56 

CiteFuse gains information from multi-modal integration of CITE-seq data 57 

To take advantage of the complementary information present in multi-modal CITE-seq data, CiteFuse 58 

integrates mRNA and ADT expression by constructing networks across single cells for each data 59 

modality and fusing these networks using a similarity network fusion algorithm (Wang et al., 2014) 60 

(Figure 1A, blue tile). It subsequently uses a spectral clustering algorithm to cluster the cells based on 61 

the fused matrix. To test whether there is any advantage in using the fused multi-modal expression 62 

matrix over the single-modal matrices, we performed a comparison between the different modalities 63 

and across existing clustering algorithms with simulated CITE-seq data (Zhang et al., 2019) (Figure 64 

S1A). We demonstrate that in both “easy” and “hard” scenarios (see Methods), CiteFuse clusters cells 65 

more accurately than directly applying spectral clustering on the two single-modal data types (Figure 66 

S1B). Moreover, we demonstrate that CiteFuse performs better compared to several established 67 

clustering procedures, including SIMLR (Wang et al., 2017), PCA + k-means, and Seurat (Satija et al., 68 

2015) with either RNA or ADT expression matrix (Figure S1B).  69 

To test if the information gain from multi-modal analysis using CiteFuse observed from the simulation 70 

study translates into real-world data analysis, we next applied CiteFuse to a recent human PBMC CITE-71 

seq dataset (Mimitou et al., 2019) (Figure 1B). We show that clustering using CiteFuse on multi-modal 72 

data and directly applying spectral clustering on single-modal (ADT or RNA) data lead to different 73 

clustering outcomes (Figure S2A). We found that CiteFuse can generate four CD4+ T-cell clusters 74 

(Figures 1C and S2B), of which three are CD4+ memory T-cells (clusters 2, 9, and 16) expressing high 75 

level of S100A4 (a marker of memory T-cells) and one is CD4+ naive T-cells (cluster 14) expressing 76 

high level of SELL (a marker of naive T-cells) (Elyahu et al., 2019; Haining et al., 2008) (Figure S2C). 77 

In contrast, clustering using ADT alone leads to over-partitioning of CD4+ T-cells into five clusters and 78 

clustering using RNA alone leads to under-partitioning of these cells into three clusters (Figures S2B 79 

and S2C).  80 
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Moreover, we observed that clustering using RNA-alone fails to partition CD27+ and CD27- populations 81 

of memory T-cells, whilst clustering using CiteFuse or ADT-alone can discriminate these two 82 

populations, albeit to different resolutions (Figures 1D and S2B). A closer examination of the CD27- 83 

CD4+ memory T-cell subpopulations (Figure 1C; light and dark blue clusters in CiteFuse; light blue 84 

cluster in ADT alone) reveals that only CiteFuse can discriminate between CD27- DR+ (light blue) and 85 

CD27- DR- (dark blue) memory T-cell subpopulations (Fonseka et al., 2018) (Figures 1D and S2D), 86 

revealing that only CiteFuse has the capacity to finely map T-cell subpopulations and further 87 

demonstrates the gain in information CiteFuse benefits from multi-modal analysis. 88 

CiteFuse detects both cross- and within-sample doublets 89 

Identification and removal of doublets from scRNA-seq data derived from microfluidic technology is 90 

essential for downstream analysis. Cell hashing is a multiplexing technique commonly used in CITE-91 

seq for pooling multiple samples (Stoeckius et al., 2018). Because a key principle in cell hashing is the 92 

selection of ubiquitously and highly expressed surface markers, against which distinct hashtag 93 

oligonucleotide (HTO)-conjugated antibodies are raised, the high number of the ubiquitous epitopes 94 

raises the possibility of utilising HTO-derived expression to detect within-sample doublets marked by 95 

anomalous HTO expression. To this end, CiteFuse takes advantage of the matched matrices for RNA, 96 

ADT, and HTO expression generated from a CITE-seq experiment (Figure 2A) and implements a 97 

stepwise approach to detect and filter both cross- and within-sample doublets (Figure 2B). In the first 98 

step, a Gaussian mixture model is used to identify cross-sample doublets that have more than one 99 

hashtag (i.e. stained by orthogonal HTOs) (Figure S3A). Next, by leveraging the ubiquitous nature of 100 

HTO expression, CiteFuse detects within-sample doublets from DBSCAN clustering of single cells 101 

based on two features—total number of captured unique molecular identifiers (UMIs) and total HTO 102 

expression (Figure 2B). Data are filtered in step one based on the mixture modelling step for cross-103 

sample doublets and then based on a baseline HTO threshold calculated through the Gaussian mixture 104 

model for within-sample doublets (see Methods).  105 

We benchmarked our doublet filtering approach with alternative methods, HTODemux (Stoeckius et al., 106 

2018) and Scrublet (Wolock et al., 2019), on the PBMC dataset (Mimitou et al., 2019) by demonstrating 107 

that doublets/multiplets detected through CiteFuse show comparably high number of unique genes and 108 

UMIs (Figure S3B). Notably, we show that the within-sample doublets identified through CiteFuse 109 
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represent outlier cells that have both high total UMIs and high HTO expression (Figure S3C). We show 110 

that our approach captures most doublets detected through HTODemux and Scrublet but also identifies 111 

additional ones that may have been missed by HTODemux and Scrublet (Figure S3D). When we 112 

quantified the total UMIs and number of unique genes in cells exclusively identified by each method 113 

(Figure S3E), we found that doublets exclusively detected by HTODemux and Scrublet show 114 

characteristics that resemble singlets whereas those only detected by CiteFuse resemble doublets 115 

(Figures S3B and S3E).  116 

Strikingly, we observed the most improved separation of clusters on the first two principal components 117 

of HTO expression before and after filtering of doublets detected by CiteFuse (Figure 2C), suggesting 118 

our CiteFuse pipeline enables more accurate filtering of both within- and cross-sample doublets when 119 

HTO libraries are available. 120 

CiteFuse doublet filtering preserves the separation between T-cell subpopulations 121 

To evaluate the impact of filtering method on the downstream analysis, we applied CiteFuse clustering 122 

on data either unfiltered (4292 cells) or filtered using the different doublet detection methods—123 

HTODemux (3753 cells), Scrublet (3968 cells), and CiteFuse (3612 cells). Visualisation of the clusters 124 

on UMAP revealed very different clustering outcomes by each filtering method, revealing that filtering 125 

method can have a large impact on downstream analysis (Figure S4A).  126 

We demonstrate the impact of filtering method on downstream analysis by evaluating the capacity of 127 

the unfiltered and filtered datasets to define CD4+ and CD8+ T-cell types, two major groups of T 128 

lymphocytes. We found that the CiteFuse-filtered dataset leads to the best separation of CD4+ (clusters 129 

2, 9, 14, and 16) and CD8+ (clusters 3, 7, 10, and 15) T-cell populations on the basis of purity scores 130 

(Figure S4B). Moreover, our results showed that the CiteFuse-filtered dataset can further discriminate 131 

CD27+ and CD27- subpopulations within CD4+ and CD8+ T-cells (Figure S4C-E). Surprisingly, we 132 

observed that HTODemux- and Scrublet-filtered datasets have low capacity to discriminate between 133 

CD4+ and CD8+ T-cells, let alone CD27+ and CD27- subpopulations within each of the major T-cell 134 

populations (Figure S4C-E). 135 

CiteFuse enables the evaluation of ADTs and visualisation of ADT-RNA networks 136 
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The selection of a set of ADTs for CITE-seq may be an expensive process, requiring in many cases 137 

optimisation through flow cytometry for antibody concentration and selection. To maximise the selection 138 

of ADTs for subsequent CITE-seq experiments, CiteFuse implements a set of evaluation tools that 139 

enables CITE-seq end-users to assess ADTs for relative importance and potential redundancy (Figure 140 

2D). This includes correlating and visualising ADTs based on their expressions (Figure S5A) as well 141 

as calculating the relative importance of individual ADTs based on CiteFuse clustering outcome using 142 

a random forest model (see Methods) (Figure S5B). For example, in the PBMC CITE-seq dataset, we 143 

found that CD223 and IgG1 are the two ADTs receiving the lowest importance scores and therefore 144 

may not provide much additional information for cell type clustering. Indeed, we observed minimum 145 

changes in the clustering outcome (ARI=0.99) even without the two ADTs (Figure S5C). We find that 146 

more ADTs can be excluded (Subsets 2-3) with minimal effect on clustering results. In addition to ADT 147 

evaluation, CiteFuse can also perform cluster-specific differential gene expression analysis to detect 148 

and compare differentially expressed RNA and ADT (Figure 2E) and generate visualisation of ADT-149 

RNA correlation networks unique to each cluster, allowing users to evaluate relationships between ADT 150 

and RNA in an intra-cluster manner (Figure 2F). 151 

CiteFuse facilitates accurate identification of ligand-receptor interactions 152 

Most studies on ligand-receptor interaction in single-cell biology rely solely on mRNA expression 153 

(Vento-Tormo et al., 2018), thereby making an implicit assumption that the level of mRNA expression 154 

is a proxy for the cell-surface protein expression. Yet studies have shown that the levels of mRNA and 155 

proteins of the same gene can vary widely (Gry et al., 2009; Liu, Beyer, & Aebersold, 2016). In case of 156 

cell-surface proteins, this is further complicated by the amount of proteins translocated to plasma 157 

membrane. CITE-seq opens the possibility to use protein expression at the cell-surface to predict 158 

ligand-receptor interactions. To this end, we predicted ligand-receptor interactions based on mRNA 159 

expression of the ligand and ADT expression of the receptor, after normalisation and scaling of the 160 

mRNA and ADT expression data (see Methods) (Figures 2G and S6A). We compared the ligand-161 

receptor interactions identified by CiteFuse with those identified from the conventional approach where 162 

the expression of RNA alone is used as a readout for both ligand and receptor expression (Figure S6A). 163 

We found that the overlap in interactions between the conventional approach and CiteFuse was variable 164 

across clusters, but generally a large portion of the ligand-receptor interactions identified through the 165 
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conventional approach (referred to as RNA-specific) were not identified as interactions through 166 

CiteFuse (Figure S6B). We also observed in each cluster a fraction of interactions that were identified 167 

only by CiteFuse (referred to as CiteFuse-specific) (Figure S6B). 168 

We then hypothesised that the large proportion of interactions in the conventional approach that are not 169 

detected by CiteFuse may be because of false positive predictions. To investigate this, we calculated 170 

the normalised log expression of the ADT and mRNA of all receptors that were identified in a ligand-171 

receptor interaction for each category (CiteFuse-specific, RNA-specific, and Common). We found that 172 

although the mRNA expression of the receptors was comparable between the categories the ADT 173 

expression of these receptors was much lower in the RNA-specific group than the other two groups 174 

(Figure S6C). Notably, we found that a strong positive correlation of ADT and mRNA expression 175 

(ranked relative to each cluster; see Methods) for receptors identified in a ligand-receptor interaction in 176 

the Common and CiteFuse-specific categories but no correlation for those in the RNA-specific category 177 

(Figure S6D). Similarly, we show that the mRNA expression of ligands detected in the RNA-specific 178 

category have higher rankings than those detected in the other two categories (Figure S6E). These 179 

data show that interactions identified through the conventional approach, which relies on RNA 180 

expression alone, may introduce false interactions. These false interactions may potentially be driven 181 

by high RNA expression that is not reciprocated in the cell-surface protein expression and thus 182 

demonstrates the need to utilise both mRNA and ADT expression in ligand-receptor interaction 183 

predictions (Figure S6F). 184 

Methods 185 

Integration of CITE-seq data through similarity network fusion and spectral clustering 186 

To integrate multi-modal CITE-seq data, CiteFuse first normalises the ADT expression through centred 187 

log-ratio (CLR) transformation. It next calculates cell-to-cell similarity matrices from ADT expression 188 

using perb similarity metric from the propr package (Quinn, Richardson, Lovell, & Crowley, 2017) and 189 

RNA expression using Pearson’s correlation on highly variable genes identified with the scran package 190 

(Lun, McCarthy, & Marioni, 2016). The two similarity matrices are scaled using an exponential similarity 191 

kernel and then fused by a similarity network fusion algorithm (Wang et al., 2014). 192 
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CiteFuse performs spectral clustering (Ng, Jordan, & Weiss, 2002) to identify clusters from the fused 193 

similarity matrix. Spectral clustering on single-modal matrices from CITE-seq data were performed for 194 

comparison. As well as spectral clustering, CiteFuse also provides the additional option of Louvain 195 

clustering (Blondel, Guillaume, Lambiotte, & Lefebvre, 2008), which is an algorithm based on the shared 196 

nearest neighbours, which CiteFuse identifies from the fused similarity matrix. Finally, UMAP or tSNE 197 

can be applied to the fused similarity matrix to visualise the multi-modal data. 198 

CITE-seq data simulation and evaluation of CiteFuse 199 

To evaluate the integrative capacity of CiteFuse, we simulated CITE-seq data with SymSim (Zhang, Xu, 200 

& Yosef, 2019) and assessed the difference in clustering outcome between the modality of data and 201 

also by different clustering methods. 202 

For each simulation, we generated a dataset of 500 single cells among which were six cell types where 203 

total numbers of RNA and ADT were 10,000 and 100, respectively. The following parameter settings 204 

for sigma (s), which controls within-population variability, and minimum population size (min_pop) were 205 

used to simulate CITE-seq data of different levels of difficulty. 206 

• Simulation 1 (easy): s (RNA) = 0.8; s (ADT) =  0.2; and min_pop = 50 207 

• Simulation 2 (hard): s (RNA) = 0.9; s (ADT) = 0.4; and min_pop = 20 208 

We generated 10 datasets for each simulation setting and benchmarked CiteFuse against spectral 209 

clustering on single-modal matrices and three different clustering methods: k-means clustering on PCA 210 

reduced dimension (PCA + k-means), SIMLR (Wang, Zhu, Pierson, Ramazzotti, & Batzoglou, 2017) 211 

and Seurat (Satija, Farrell, Gennert, Schier, & Regev, 2015). For PCA + k-means, k-means clustering 212 

was performed on the first 10 principal components. For k-means clustering and SIMLR, the number of 213 

clusters was set as six so to be consistent with the simulation set-up. While for Seurat, we set the 214 

resolution parameters between 1.5 and 2 such that the number of communities detected by Louvain 215 

clustering is consistent with the number of cell types in the simulations. The concordance in clustering 216 

outcome was evaluated as the adjusted rand index (ARI), where a higher index indicates better 217 

clustering performance. 218 

CITE-seq data from healthy human PBMCs 219 
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To demonstrate our method, we used the recently published CITE-seq data (Mimitou et al., 2019). 220 

Specifically, we used the ECCITE-seq dataset from PBMC samples isolated from the blood of healthy 221 

human controls. The samples from the human healthy PBMC datasets were pooled from 10x libraries 222 

with four distinct barcodes, representing the four hashtag oligonucleotides (HTO) used in the cell 223 

hashing.  224 

Calculation of signature scores for T-cell subpopulations 225 

To calculate the signature scores for the various immune populations, we averaged the expression of 226 

the following sets of genes that were previously defined as marker genes for the respective cell types 227 

of interest:  228 

(1) S100A4, CRIP1, and AHNAK were used to define memory CD4+ T-cells (Elyahu et al., 2019; 229 

Haining et al., 2008);  230 

(2) TCF, ID3, CCR7, and SELL were used to define naive CD4+ T-cells (Elyahu et al., 2019; 231 

Haining et al., 2008);  232 

(3) GNLY, GZMB, PRF1, GZMA, NKG7, HLA-DRB1, and HLA-DPA1 were used to define CD4+ 233 

CD27- DR+ T-cells (Fonseka et al., 2018);  234 

CiteFuse doublet detection approach 235 

CiteFuse implements a stepwise procedure to identify both the cross-sample doublets and within-236 

sample doublets from CITE-seq data when cell hashing data is available. 237 

(1) Cross-sample doublet identification 238 

First, we fit a two-component Gaussian mixture model to each log-transformed HTO expression. 239 

The intersection point defined from the mixture model is used to categorise each cell in terms 240 

of whether the HTO is either highly or lowly expressed. The cells found to have a single highly 241 

expressed HTO are considered as singlets whilst those that have two or more highly expressed 242 

HTOs are considered as doublets or multiplets. Cells without any highly expressed HTOs are 243 

considered as empty droplets. 244 

(2) Within-sample doublet identification 245 

Data filtered by cross-sample doublets are next subject to within-sample doublet identification 246 

using a density-based spatial clustering and noise detection algorithm (DBSCAN) on an HTO-247 
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specific matrix comprising of two features—total number of UMIs and log-transformed HTO 248 

expression. The two parameters used in the DBSCAN for this study are eps = 190 and minPts 249 

= 50. This procedure is repeated for each HTO and the smallest cluster from DBSCAN 250 

clustering is assigned as within-sample doublets. 251 

We benchmarked our doublet detection method against two existing methods: HTODemux (Stoeckius 252 

et al., 2018) from the Seurat package and Scrublet (Wolock, Lopez, & Klein, 2019). We used the default 253 

parameter settings for sim_doublet_ratio and n_neighbors to construct the KNN classifier to simulate 254 

doublets with Scrublet by following their online tutorial (https://github.com/AllonKleinLab/scrublet/) and 255 

set an expected doublet rate of 0.04. We compared the total number of UMI and the number of unique 256 

expressed genes for each cell by each method (HTODemux, Scrublet, and CiteFuse). To compare the 257 

effect of filtering method on the downstream analysis, we performed spectral clustering on the output 258 

of the similarity network fusion and calculated the purity score of CD8+ cells against CD4+ cells in 259 

individual clusters for each filtering method. 260 

Calculation of purity score 261 

To calculate the purity of CD4+ and CD8+ T-cell populations, we first identified CD4+ and CD8+ T-cells 262 

by creating a Gaussian mixture model on expression of CD4, CD8, and CD11c. For CD4+ T-cells, we 263 

created a Gaussian mixture model of CD4 and CD11c expression to define the CD4+ CD11c- 264 

population. For CD8+ T-cells, the same approach was employed but with CD8 and CD11c expression. 265 

Using the threshold calculated from the mixture model, cells were assigned as either CD4+ negative or 266 

positive cells and CD8+ negative or positive cells. Next, using the CD4+ and CD8+ T-cell labels, we 267 

calculated the purity of each cluster for either CD4 or CD8 T-cells. A purity of 1 denotes a cluster 268 

composed purely of either CD4 or CD8 T-cells, and a purity score of 0 denotes a cluster devoid of either 269 

cell type. 270 

Analysis and visualisation of differentially expressed RNA and ADT 271 

To identify the differentially expressed mRNA and ADTs for each cluster, we used the Wilcoxon rank 272 

sum test to compare the log-transformed expression of mRNA and ADT for each cluster against all 273 

other clusters. The p-values were adjusted using the Benjamini and Hochberg method (Benjamini & 274 

Hochberg, 1995).  275 
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For the selection of RNA and ADT markers for a given cluster, we considered the following three criteria: 276 

(1) An adjusted P-value of lower than 0.05; 277 

(2) The mean expression of RNA and ADT in the cells of the cluster is greater than the mean 278 

expression of RNA and ADT in cells of all other clusters; and  279 

(3) The proportion of cells in the cluster expressing the RNA and ADT is greater than the proportion 280 

of cells expressing the RNA and ADT across all other clusters by at least 10%. 281 

CiteFuse enables two exploration methods to visualise the results of differential expression analysis for 282 

both RNA and ADT in a single plot: 283 

(1) DEcomparisonPlot 284 

The DEcomparisonPlot visualises the positive log10 transformed adjusted P-values as a dot of 285 

the RNA and the negative log10 transformed adjusted p-values of its corresponding ADT signal 286 

on the same y-axis.  287 

(2) DEbubblePlot 288 

We used the circlepack plot to visualise the RNA and ADT markers, where each marker is 289 

represented by a circle and the size of the circle represents the magnitude of the negative log10 290 

P-value. The circles representative of RNA and ADT markers from the same clusters are then 291 

grouped into a larger circle, representing individual clusters. The circlepack plots are generated 292 

using the R package ggraph (Pedersen, 2017). 293 

ADT-RNA correlation network construction 294 

To construct the ADT-RNA co-expression network, we calculated the Pearson’s correlation between 295 

mRNA and ADT expression. Other correlation calculation methods, such as the Spearman and Kendall 296 

correlation, are also available as options in our CiteFuse package. ADT-RNA pairs with high absolute 297 

correlation (above a default setting of 0.6) are used to construct the ADT-RNA correlation network. The 298 

networks are visualised using R packages, igraph (Csardi & Nepusz, 2006) and visNetwork (Almende 299 

& Thieurmel, 2016). 300 

Evaluation of ADT importance 301 
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To evaluate the importance for each ADT towards the clustering outcome, we trained a random forest 302 

model on a subset of randomly sampled cells (80% of total), using the clustering labels from the 303 

similarity network fusion of the PBMC CITE-seq data. After 50 repeated fitting of the random forest 304 

model, we quantified the feature importance in terms of the mean decrease in Gini index as a surrogate 305 

of the importance of each ADT towards clustering outcome. We defined ADT importance score as the 306 

median of the feature importance of all runs. A higher score indicates greater importance of the ADT.   307 

Next, to identify potentially redundant ADTs that do not contribute significantly towards clustering 308 

outcome, we sorted the ADTs by importance and drew cut-offs in accordance to the local maximums 309 

of the difference in importance scores. We then retained the subset of ADTs the with importance scores 310 

greater than the cut-offs and performed similarity network fusion analysis. We calculated the adjusted 311 

rand index (ARI) to measure the concordance in clustering outcome for each subset of ADTs against 312 

that of the full dataset. 313 

Ligand-receptor interaction prediction 314 

One of the key challenges in analysing ligand-receptor relationships between two modalities is the 315 

difference in scaling and distribution. To address this, we first scaled each feature into a range of 0 to 316 

1 through min-max normalisation. Specifically, for every value of a feature 𝑥	 across all single cells, the 317 

normalised expression z is calculated by 318 

𝑧	 = 	 &	'	()*(&)
(-&(&)	'	()*(&)

. 319 

Another challenge we encountered was the difference in distribution between the two modalities: we 320 

observed that the distribution of mRNA expression tends to be more zero-inflated than ADT expression. 321 

Because comparing unequal distributions has the potential to introduce bias, especially during ligand-322 

receptor predictions when the mean expression is compared, we thus performed another step of 323 

transformation on the ADT expression to force the low-expression values to zero. For the normalised 324 

expression 𝑧, with 𝑧 ∈ [0,1], the transformed expression is calculated by 325 

𝑧	 = 40, 𝑧 < 𝑡
𝑧, 𝑧 ≥ 𝑡 , 326 

where 𝑡 is set as 0.5 by default. 327 
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Lastly, we performed a similar procedure to the method from Vento-Tormo et al. to predict ligand-328 

receptor interactions (Efremova, Vento-Tormo, Teichmann, & Vento-Tormo, 2019). For each ligand-329 

receptor interaction pair originating from a cluster expressing the ligand and another cluster expressing 330 

the receptor, we performed a permutation test on the mean of the average RNA expression from the 331 

ligand cluster and the mean of the ADT expression from the receptor cluster. Only ligand-receptor pairs 332 

with a P-value of lower than 0.05 were defined as significant pairs. 333 

Calculation of average and relative ranking of RNA and ADT expression  334 

For the analysis of the ligand-receptor interactions identified through CiteFuse and the conventional 335 

approach using only mRNA expression, we calculated the concordance of mRNA and ADT expression 336 

of receptors. Because the same gene may be predicted to be involved as a receptor in a ligand-receptor 337 

interaction in multiple clusters, we performed a cluster-specific analysis as the expression and 338 

correlation of the mRNA and ADT of the receptor is likely to be different between clusters. Therefore, 339 

we evaluated concordance between mRNA and ADT in a cluster-specific and relative manner by 340 

calculating the ranking of mRNA and ADT expression in the cluster of interest in relation to all other 341 

clusters. We then plotted the relative ranking of mRNA and ADT expression against one another. For 342 

ligands, we also calculated a cluster-specific ranking based on their mRNA expression. 343 

Data and code availability 344 
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Figures and legends 453 

 454 

Figure 1. An overview of CiteFuse and application to clustering of PBMC CITE-seq data. (A)  A 455 
summary of the key components and functions implemented in CiteFuse. (B) UMAP visualisation of 456 
human PBMC CITE-seq data (Mimitou et al., 2019). (C) Clustering outputs (represented by colours of 457 
points) of CD4+ T-cells using multi-modality (CiteFuse), or single-modality (antibody-derived tag [ADT] 458 
or RNA alone). (D) Expression of key markers of sub-cell types in CD4+ T-cells.  459 
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 460 

Figure 2. Doublet detection and downstream analysis using CiteFuse. (A) A schematic 461 
representation of the CITE-seq experiment and the cell hashing data generated by using hashtag 462 
oligonucleotide (HTO). (B) The doublet detection approach implemented in CiteFuse. This includes 463 
cross-sample doublet identification using Gaussian mixture modelling and a novel within-sample 464 
doublet identification method using a combined index of cell hashing and transcriptome data. (C) PCA 465 
visualisation of HTO expression before and after filtering of doublets using HTODemux (Stoeckius et 466 
al., 2018), Scrublet (Wolock et al., 2019), or CiteFuse. (D-G) Key downstream analytical tools 467 
implemented in CiteFuse.  468 
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Supplementary figures and legends 469 

 470 

Figure S1. Evaluation of CiteFuse and other alternative methods using simulations (related to 471 
Figure 1). (A) A schematic summary of different methods and data modalities used for clustering cells. 472 
(B) Ten simulations were conducted for an easy and a hard scenario, respectively. Y-axis shows the 473 
adjusted rand index (ARI) calculated for clustering outputs from using various methods and data 474 
modalities on each of the two scenarios were presented as boxes. 475 
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 476 

Figure S2. Clustering of CITE-seq data using single- or multi-modality (related to Figure 1).  (A) 477 
UMAP of the fused expression matrix, ADT-alone and RNA-alone expression matrix of the human 478 
PBMC CITE-seq data (Mimitou et al., 2019). Clustering outcomes are highlighted by coloured points for 479 
both multi-modality (CiteFuse) and single-modality (ADT or RNA) approaches. (B) Centred log-ratio 480 
(CLR, y-axis) transformed ADT expression of CD4 and CD27 epitopes in clusters defined from CiteFuse, 481 
ADT-alone, and RNA-alone and (C) log RNA expression of S100A4, a marker of CD4+ memory T-cells, 482 
and SELL, a marker of naive CD4+ T-cells, in clusters defined from each approach. Clusters correspond 483 
to memory CD27+, CD27- DR+, CD27- DR-, and naive cells are highlighted by red arrows. (D) CLR-484 
transformed expression of ADT (CD4 and CD27; first two panels) and log RNA expression of a set of 485 
signature genes for memory, naive, or CD27- HLA-DR+ CD4+ memory cells (third, fourth, and fifth 486 
panels) highlighted on UMAP of fused similarity matrix. A brighter colour denotes higher expression.  487 
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 488 

Figure S3. Cross-sample and within-sample doublet detection of CiteFuse (related to Figure 2). 489 
(A) Gaussian mixture modelling of log-transformed hashtag oligonucleotide (HTO) expression to 490 
identify cross-sample doublets (red points). (B) Total number of unique molecular identifiers (nUMI) 491 
and total number of genes expressed in all cells (both filtered and unfiltered) and HTODemux-, 492 
Scrublet-, and CiteFuse-identified singlets and doublets/multiplets. (C) A scatter plot of nUMI and log-493 
transformed HTO expression for each HTO (1-4) highlighted by cross-sample doublets (red; left 494 
panel) and within-sample doublets (color-coded by HTO sample; right panel). (D) A Venn diagram of 495 
doublets depicting the overlap in identified doublets between the three filtering methods. (E) nUMI and 496 
total number of genes expressed in doublets uniquely identified by each filtering method.  497 
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 498 

Figure S4. Clustering results from unfiltered and doublet filtered data (related to Figure 2). (A) 499 
UMAPs of the unfiltered, HTODemux-filtered, Scrublet-filtered, and CiteFuse-filtered matrix. Clusters 500 
generated by fused matrix of both unfiltered and filtered data are highlighted in different colours. (B) 501 
Purity scores of CD8+ cells (y-axis) against CD4+ (and CD11c-) (x-axis) cells in individual clusters by 502 
unfiltered data or data filtered by each of the three methods. CLR-transformed ADT expression of (C) 503 
CD4 (D) CD8 and (E) CD27 highlighted on UMAPs from (A). 504 
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 505 

Figure S5. Evaluation of ADTs on CiteFuse clustering outputs (related to Figure 2). (A) Heatmap 506 
of pairwise correlation of ADT expression. Importance score of each ADT was generated by fitting a 507 
random forest on CiteFuse clustering outputs of fused matrix (see Methods). (B) Importance scores (x-508 
axis) of ADT towards CiteFuse clustering outputs calculated as the average Gini index after 10 repeated 509 
fitting of random forest model. (C) UMAP of CiteFuse with various subsets of ADTs (in decreasing order 510 
from left to right panels) and adjusted rand index (ARI) of clustering outcomes against the full ADT set. 511 

  512 

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted November 25, 2019. ; https://doi.org/10.1101/854299doi: bioRxiv preprint 

https://doi.org/10.1101/854299
http://creativecommons.org/licenses/by-nd/4.0/


 513 

Figure S6. Ligand-receptor interaction prediction with CiteFuse (related to Figure 2). (A) A 514 
schematic illustrating the pre-processing step in CiteFuse (scaling of the RNA and ADT expression data 515 
and normalization of ADT expression data) and the two types of ligand-receptor interaction prediction 516 
methods: 1) conventional approach based on only RNA expression data and 2) CiteFuse approach 517 
based on both RNA and ADT expression to predict ligand-receptor interactions. (B) Number of ligand-518 
receptor interactions predicted for each cluster by both conventional approach and CiteFuse (Common), 519 
or only by conventional approach (RNA-specific) or CiteFuse (CiteFuse-specific). (D) Scatter plot of 520 
relative ranking of RNA and ADT expression across clusters for all receptors identified in a ligand-521 
receptor interaction in each of the three categories (i.e. RNA-specific, CiteFuse-specific, and Common). 522 
(E) Relative ranking of RNA expression of ligands in the three categories predicted by conventional 523 
approach and/or CiteFuse. (F) Schematic illustration of true and false ligand-receptor interactions and 524 
their mRNA and ADT expression where “+” and “-” denote high and low expression, respectively. 525 
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