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ABSTRACT 

The most fundamental challenge in current single-cell RNA-seq data analysis 

is functional interpretation and annotation of cell clusters. The biological 

pathways in distinct cell types have different activation patterns, which 

facilitates understanding cell functions in single-cell transcriptomics. However, 

no effective web tool has been implemented for single-cell transcriptomic data 

analysis based on prior biological pathway knowledge. Here, we introduce 

scTPA (http://sctpa.bio-data.cn/sctpa), which is a web-based platform 

providing pathway-based analysis of single-cell RNA-seq data in human and 

mouse. scTPA incorporates four widely-used gene set enrichment methods to 

estimate the pathway activation scores of single cells based on a collection of 

available biological pathways with different functional and taxonomic 

classifications. The clustering analysis and cell-type-specific activation 

pathway identification were provided for the functional interpretation of cell 

types from pathway-oriented perspective. An intuitive interface allows users to 

conveniently visualize and download single-cell pathway signatures. Together, 

scTPA is a comprehensive tool to identify pathway activation signatures for 

dissecting single cell heterogeneity. 

 

INTRODUCTION 

Single-cell RNA sequencing (scRNA-seq) technology has been widely used to 

characterize cell-to-cell heterogeneity (1). The single-cell transcriptome 

analyses uncover the new and unexpected biological discoveries compared to 

traditional “bulk” cell methods (2). Many computational methods have been 

developed for cell clustering, marker genes identification and visualization of 

single-cell RNA-seq data (3, 4). However, functional interpretation of cell 

clustering remains challenge for scRNA-seq data analysis. 

Pathways are biological network models defining how biomolecules 

cooperate to accomplish specific cellular functions in distinct cell types, which 

are crucial to disease subtype classification (5), functional annotation of 

cellular diversity (6) and drug discovery (7). In single-cell studies, pathway 

activation analysis has become a powerful approach for extracting biologically 

relevant signatures to uncover the potential mechanisms of cell heterogeneity 

and dysfunction in human diseases (8, 9). For example, the pathway 

signatures exhibit the significant activation difference in breast cancer (10) and 

Alzheimer’s disease cells (11) using gene set enrichment analysis. However, 

there is a lack of online web server for the comprehensive analysis and 

visualization of single-cell transcriptome data based on prior biological 

pathway knowledge. 

Here, we developed scTPA (http://sctpa.bio-data.cn/sctpa), which is a 

web-based platform dedicated to pathway signature discovery and functional 

interpretation of scRNA-seq data in human and mouse. Abundance of 

high-quality curated biological pathways with different functional and 
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taxonomic classifications were manually collected, facilitating the pathways 

selection according to the research context and interests. scTPA incorporates 

four widely-used methods to calculate the pathway activation profiles and 

provides the flexible parameters for downstream analysis. Based on 

well-known biological pathways or user-defined pathways, clustering analysis 

and cell-type-specific activation pathway identification were performed, which 

allow a better understanding of their potential functions from pathway-oriented 

perspective. The scTPA provides an easy-to-use interface for viewing and 

download of pathway activity scores, cell clustering, pathway signatures and 

the associated gene expression. 

 

WORKFLOW OF scTPA 

The scTPA is a web tool for single-cell transcriptome analysis and annotation 

based on pathway activation signatures in human and mouse. Firstly, user 

could upload the single-cell gene expression profiles to scTPA for data 

normalization, filtration and imputation. According to user’s interests, biological 

pathways would be selected from our collected pathway library of different 

function and taxonomy or user defined pathways. Secondly, four widely-used 

enrichment analysis methods are provided to rapidly compute pathway activity 

score (PAS) of each cell. Cell types could be determined optionally by users or 

defined by clustering analysis based on PAS matrix. Finally, statistical analysis 

is performed to identify the cell-type-specific activation pathways (CTSAPs), 

which allows a better understanding of cell type and biological status. Multiple 

interactive visualizations of outputs are also provided. The detailed schematic 

view is showed in Figure 1. 

 

INPUT&DATA PROCESSION 

scRNA-seq profile 

The required input data of scTPA is a processed single-cell gene expression 

matrix where columns correspond to cells and rows correspond to genes. The 

input file is read count or RPKM/FPKM/TPM/CPM of single cells generating 

from different platforms such as 10X genomics and Smart-seq, etc. For users’ 

convenience, scTPA supports the data upload of the input file with a 

pre-compression. 

Multiple data normalization methods are provided including log 

transformation, quantile normalization and Z-score. Users can also choose to 

remove poor cells and genes that are not detected with enough proportion. The 

single cell profile contains excess zero or near zero counts due to extensively 

dropout events caused by the low amounts of mRNA sequenced within 

individual cells. The scTPA also provides option to impute the missing 

values(12).And scTPA only imputated genes with dropout (i.e. expression 

equal to zero) rates larger than 50% to avoid over-imputation. 
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Biological pathways 

To facilitate the evaluation of pathway activation at single-cell resolution, the 

‘Canonical pathway’ and ‘Extended pathway’ options were provided for the 

user to select users interested literature-curated pathways.  

Canonical pathways of scTPA contain 51,210 human and 1,762 mouse 

pathways from seven widely used pathway databases including BioCarta, 

HumanCyc (13), KEGG (14), PANTHER (15), PharmGKB (16), Reactome (17), 

SMPDB (18), which were retrieved from R package graphite (19). Notably, 

these literature-curated pathways were grouped into 6 different catalogs 

including general pathways, metabolic pathways, signaling and regulatory 

pathways, genome maintenance pathways, drug & small molecules pathways 

and cancer pathways (20). It facilitates selecting the relevant pathway 

database suitable for researchers interested context. 

Extended pathways of scTPA represent many functional sets of unordered 

and unstructured collections of genes, which were associated with a specific 

biological process, genomic location, disease, cell identity, cell state or cell fate. 

They have more wide coverage of biological functions with genetic and 

chemical perturbation, computational analysis of genomic information, and 

additional biological annotation relatively to traditional canonical pathways. The 

currently extended pathways contain 19,367 pathways from 9 categories for 

human, and 19,385 pathways from 5 categories for mouse, respectively. They 

were collected from The Molecular Signatures Database (MSigDB V7.0) (21) 

and Gene Set Knowledgebase (GSKB) (22). In addition, the user could 

simultaneously upload their interested pathways, which are not cataloged by 

scTPA for specific scRNA-seq analysis. 

PAS calculation 

Four classic methods including ssGSEA (single sample gene set enrichment 

analysis), GSVA (gene set variation analysis), PLAGE (pathway level analysis 

of gene expression) and Z-scores were incorporated into scTPA to measure 

the activation of pathways signatures for single cell transcriptomes, 

respectively. These methods generally calculate the enrichment scores with 

statistically significance from the expression-level rank statistics for a given 

pathway using the improved the R/Bioconductor package GSVA (23). To 

increase the computation efficiency, we rewrote the main loop function of 

GSVA which could achieve a 1.4-56 fold decrease for the runtime of massive 

parallel scoring pathway activation from processed gene expression matrix 

(supplementary information). This is a desirable feature for fast calculation of 

PAS, as the necessary in the analysis of single-cell gene expression data with 

large cell number. 

Unsupervised cluster analysis 

Unsupervised cluster analysis is a useful exploratory tool to dissect the 

heterogeneity of complex populations. If the cell-type label file not pre-defined 
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by the user, scTPA provided six different clustering methods (24, 25) including 

Seurat, K-means, K-mediods, SIMLR, DBSCAN and hclust to cluster cells 

based on PAS matrix. Main clustering parameters such as number of clusters, 

resolution, number of neighbors, dimensions of PCA were provided. Cell type 

annotation was further used for the following pathway signature analysis. 

Identification of cell-type-specific activation pathways 

Pathways signatures are important for unveiling and characterizing the cell 

types and their functional states. Based on the PAS matrix of individual cells, 

five different statistical methods such as nonparametric Wilcox on rank sum 

test and likelihood-ratio test, and fold-change analysis were provided for 

CTSAPs identification. They may distinguish cell populations into the 

case-control groups consisted of the interested cell type and all other cells. 

scTPA can help the user find CTSAPs that are statistically significant activated 

among different cell types determined by the users or clustering analysis. 

OUTPUT 

After the user submits the input data, a new tab is automatically opened to 

display the job progress of scTPA analysis. All the resulting files are available 

for download to users directly in the same page when the job is completed. 

Typically, the text-based files of pathway activation score (PAS) matrix, 

cell-type labels and statistics of pathway signatures and associated gene 

expression can be downloaded via “download” buttons or the corresponding 

web plugins. The web tool also provides the figures for visualization of PAS 

matrix, dimensional reduction and cluster analysis and pathway signatures. 

Specifically, a heatmap plot for the entire PAS matrix of single cells from a 

global view was provided. Interactive plots in 2D and 3D for dimensionality 

reduction generated using methods of t-distributed stochastic neighborhood 

embedding (t-SNE) (26) and Uniform Manifold Approximation and Projection 

(UMAP) (27) were provided to visualize the differences between cell 

populations. In addition, the statistical results and visualization of pathway 

signature analysis were provided. A heatmap plot was used to show the PAS 

profile of the significantly activated pathway signatures in each cell type. For 

each CTSAP in the corresponding cell type, we provide a UMAP plot and a 

box plot to display the PAS distributions across different cell types. We also 

provide the heatmap for gene expression in the CTSAPs to explore how the 

transcriptional changes affect the pathway activation of the various cell types. 

CASE STUDIES 

To illustrate the function and utility of scTPA, we applied a processed data set 

of gene expression profiles for melanoma study (GEO accession number 

GSE72056, including 4054 cells) (28), which covered a variety of 

non-malignant cell types including B cells, T cells, macrophage, endothelial 

cells, cancer-associated fibroblasts (CAFs) and natural killer cells (NK), and 
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malignant tumor cells. 

Case 1 

To perform this analysis, we uploaded the single-cell gene expression TPM 

and the corresponding cell-type label files to the web server. Owing to the 

missing values in single-cell profiles were more than 80 percentage, we used 

the parameter for missing value imputation and started scTPA analyses with 

the other parameters follow the default setting. 

The PAS matrix of single cells was calculated based on KEGG pathways 

using GSVA method, and its global view was showed in a heatmap (Figure 2A). 

The dimensionality reduction of PAS matrix with UMAP method showed in the 

2D plot (Figure 2B). We found different cell types could be significantly 

distinguished based on pathway signatures, consistent with the original study 

(28). 

Using the likelihood-ratio test, 185 out of 293 KEGG pathways were 

identified as CTSAPs using threshold of adjust P-value < 0.01 and average 

fold change > 0.25, and the 50 significant CTSAPs were displayed in the 

heatmap (Figure 2C). In different cell subpopulations, we found CTSAPs are 

closely related to the corresponding cell identities and their functional states. 

For example, B cell receptor signaling pathway and T cell receptor signaling 

pathway were markedly activated in B cells (P-value = 1.02e-214) and T cells 

(P-value = 1e-216), respectively. Allograft rejection pathway was 

simultaneously across immune cells including B cell (P-value = 6.13e-25), T 

cell (P-value = 9.47e-278) and macrophage cell (P-value = 3.27e-44), which 

was completely inactivated in tumor associated cell types of malignant and 

CAF cells. Natural killer cell mediated cytotoxicity pathway (P-value = 4.00e-26) 

and Platelet activation pathway (P-value = 8.67e-28) were specially activated 

in NK cell type, which are crucial for cellular immune defense mediated by NK 

cell. 

Of note, we found that malignant cells exhibit a common pattern of global 

up-regulation of activities of metabolic pathways comparing to non-malignant 

cells. Nine of top 10 melanoma-specific activated pathways, such as 

Glycosaminogly can biosynthesis and Sulfur metabolism, were metabolic 

pathways reflecting different aspects of cellular metabolism. Our findings with 

scTPA analysis of single-cell gene expression profiles provide a global picture 

of pathway signatures for individual cells, which could provide new insight for 

annotation and understanding of cell types and their functional states on the 

basis of their preferentially or distinctively activated pathway signatures.  

Case 2 

Next, we attempted to test whether scTPA could potentially dissect the 

heterogeneity of tumor cell population and reveal the potential cell 

subpopulations from the pathway-oriented view. 

We extracted the gene expression profiles of malignant cells from the 
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melanoma dataset and selected Hallmark gene sets of human cancer as 

pathway signatures to perform scTPA analysis. The malignant cells could be 

clearly classified into 8 groups based on 50 classic cancer hallmark pathways 

using unsupervised clustering method Seurat. Although cancer hallmarks are 

general features for different tumor cells, the dimensionality reduction analysis 

also demonstrated that the malignant cells of different types are clearly 

separated from one another (Figure 3A). The CTSAPs were identified for each 

cell subpopulations and the functional interpretation of the cell populations 

derived from PAS-based classification (Figure 3B). We found some hallmark 

pathways were simultaneously activated in multiple cell clusters, such as 

Angiogenesis in C2 and C8, Oxidative phosphorylation in C7 and C8, G2M 

checkpoint in C3, C4 and C7. In the cell cluster C1, we found several hallmark 

pathways, including inflammatory response, Hedgehog signaling and 

Interferon alpha response, were exclusively activated (Figure 3C). User could 

also inspect expression patterns of genes in CTSAPs for cell clusters of 

interest (Figure 3D). Our present analysis indicates that quantifying variation in 

oncogenic signaling pathways of individual malignant cells could explain the 

underlying mechanism driving tumor cell identity and functional states. 

Overall, these two cases demonstrated that scTPA could not only classify, 

annotate and interpret the functional outcomes for single cell transcriptome 

data with known cell types, but also enable potentially deciphering the 

heterogeneity complexity of cell populations with unknown cell types. 

SUMMARY AND FUTURE DEVELOPMENTS 

We developed an open-access, user-friendly web-based tool, scTPA, which 

provides a one-stop shop for single cell transcriptome dimension reduction, 

clustering and visualization by quickly evaluating the activation of biological 

relevant pathways. By identifying significantly activated pathways, scTPA is 

able to uncover biologically relevant subpopulations and further provides new 

insights for dissecting the complex heterogeneity of unlabeled cell 

subpopulations. The tool will be continuously updated and improved in the 

future to make it easily accessible through a web interface for in-depth 

single-cell transcriptome analyses. It is necessary to integrate more valid tools 

for clarifying the interplay between cell types and functional states in space 

and time. Topological information of the structure of connections among genes 

in the pathways should be taken into consideration to enhance estimation of 

pathway activation. In addition, combined machine learning approaches with 

literature-based knowledge could discover more meaningful pathway 

signatures in the future, which may be useful for annotation and interpretation 

of single-cell transcriptomes. 

DESIGN AND IMPLEMENTATION 

The internal programs of scTPA are implemented using BASH, C++, PYTHON, 

JavaScript, MySQL, and R scripts. The online visualization was implemented 

using Highcharts (https:// www.highcharts.com/), d3 (https://d3js.org/) and R 
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package Seurat (24). Our system deployed on a server with 64 GB of RAM 

and sixteen 2.6 GHz Xeon CPUs. 
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http://sctpa.bio-data.cn/sctpa––this website is free and open to all users, it can 

be accessed by any major modern browsers such as Google Chrome, Mozilla 

Firefox and Safari. 
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FIGURES 

 

 

 

Figure 1. An overview of scTPA web tool. Input single-cell gene expression profile was  

pre-processed and the PAS matrix would be calculated based on interested pathway 

signatures using the enrichment-based methods. The cell-type label could be provided 

either by the user or unsupervised clustering analysis of PAS matrix, and the pathway 

signature analysis was performed. The resulting data for single cell transcriptome 

dimension reduction, clustering, pathway signatures identification, visualization and  

download. 

 

.CC-BY-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 16, 2020. ; https://doi.org/10.1101/2020.01.15.907592doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.15.907592
http://creativecommons.org/licenses/by-nd/4.0/


 

 

Figure 2. The analysis of melanoma dataset using scTPA. (A) The heatmap shows the 

pathway activity profile of highly variable pathways in the scRNA-seq data. Rows 

represent pathways, columns represent single cells. (B) UMAP-dimension reduction of 

cell populations based on the PAS profile. (C) The heatmap plot shows significant 

CTSAPs in each cell type. The colors represent user-defined cell type labels. (D) 

Visualization of individual activation pathway with UMAP plot. 
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Figure 3. The analysis of single-cell transcriptome of malignant cells from 

melanoma dataset. (A) UMAP plot displaying all malignant cells, where each cell is 

clustered into one of the 8 clusters (distinguished by their colors). (B) The conserved 

cell-type-specific pathway signatures. The heatmap displays the PAS profile. Rows 

represent pathway signatures. Columns represent single cells, color-coded by their cell 

types. (C) Pathway activation distribution of a user-interested pathway signature. (D) The 

heatmap displays the gene expression patterns of the selected cell-type-specific 

activation pathway. 
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