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Abstract

Motivation: Accounting for biological and practical requirements in DNA sequence design often results in

challenging optimization problems. Current software solutions are problem-specific and hard to combine.

Results: DNA Chisel is an easy-to-use, easy-to-extend sequence optimization framework allowing to

freely define and combine optimization specifications via Python scripts or Genbank annotations.

Availability: The framework is available as a web application (https://cuba.genomefoundry.org/sculpt_a_sequence)

or open-source Python library (see at https://github.com/Edinburgh-Genome-Foundry/DNAChisel for code

and documentation).

Contact: valentin.zulkower@gmail

Supplementary information: attached.

1 Introduction

Advances in DNA synthesis have made it possible for biologists to

routinely order DNA constructs with custom nucleotide sequences (Kosuri

and Church, 2014). While a sequence’s primary purpose may be the

study or engineering of an organism, its design may also account for

manufacturability, host compatibility, and other practical requirements,

resulting in complex multi-constrained optimization problems.

Software solutions have been proposed to address various scenarios,

including host-specific codon optimization or harmonization (Richardson

et al., 2012; Claassens et al., 2017), gene expression enhancement via CpG

island enrichment (Raab et al., 2010), the design of biologically neutral

sequences (Casini et al., 2014), or the removal of synthesis-impeding DNA

patterns (Oberortner et al., 2017). However, these projects focus on specific

objectives and predetermined sequence locations (such as coding regions),

and are hard to integrate in the same workflow, as their optimizations

may undo one another. The D-tailor framework (Guimaraes et al., 2014)

proposed a programmatic solution to this problem, enabling users to freely

define and combine specifications via Python scripts, with a focus on the

exploration of multi-objective problems.

DNA Chisel builds on these approaches with a focus on usability and

versatility. It can be used as Python library, a command-line interface,

or a web application, allowing researchers to model constraints and

optimization objectives via either Python scripts or Genbank annotations.

Over 15 built-in specification classes (listed in Supplementary Section 1A)

can be composed to handle any combination of the optimization objectives

mentioned above, and extended with user-defined specifications. Finally,

the framework introduces new heuristics for efficient local sequence

optimization, and produces comprehensive optimization reports for

traceability and troubleshooting.

2 Usage

An optimization problem is defined in DNA Chisel by a list of global or

local specifications against which a starting linear or circular sequence will

be optimized. A specification can be either a hard constraint, which must

be satisfied in the final sequence, or an optimization objective, whose score

must be maximized. For instance, specification AvoidChanges can be

used as a constraint to forbid sequence modifications in a given region, or

as an objective to simply penalize changes in that region. In presence of

multiple optimization objectives, which can be attributed relative weights,

DNA Chisel will seek to maximize the total weighted score using the

heuristics described in the next section (an example of multi-objective

gene optimization is provided in Supplementary Section 1B).

A problem can be defined by annotating a Genbank record to indicate

the nature and scope of the different specifications to be applied to the

record’s sequence, as shown in Figure 1A. This can be done interactively

using a free Genbank editing software such as SnapGene Viewer

(www.snapgene.com) or Benchling (www.benchling.com). Annotated

Genbank files can be uploaded to a public web application (Figure

1B), which will optimize the sequence and return a multi-file report

(see Supplementary Information 2 for an example). The report features

the optimized sequence in Genbank format with annotations indicating

modified nucleotides, a PDF report summarizing the changes (as shown

This is a preprint. 1



2 Zulkower and Rosser

Fig. 1. Using DNA Chisel online and via scripts. (A) Sequence optimization problem defined via Genbank annotations. Prefix "∼" in annotations indicate optimization objectives, while

"@" denotes hard constraints. Gene NUM1 of Saccharomyces cerevisiae will be codon optimized for Escherischia coli, and have a GC content of 40-60% on every 100-nucleotide window.

Flanking promoter and terminator regions are protected against changes by@keep annotations (shorthand for@AvoidChanges). BsaI restriction sites will be removed (@no(BsaI_site)

constraint). Undesirable homologies occurring naturally in the gene sequence will be removed in the region marked @all_unique_kmers, using codon-synonymous mutations only, as

enforced by the @cds constraint. (B) Screenshot of the online DNA Chisel application featuring a file dropzone and a basic annotations editor. (C) PDF report returned by DNA Chisel to

summarize the problem’s specifications and highlight constraint resolutions and objective score improvements. (D) Python script defining the same optimization problem as in panel A.

in Figure 1C), and in case of unsuccessful constraint resolution, a

troubleshooting figure representing the problematic region.

Optimization problems can also be defined and resolved via

Python scripts (Figure 1D), enabling the programmatic definition of

complex optimization scenarios involving hundreds of specifications.

Supplementary Sections 1C and 1D provide example scripts for mass

sequence pattern removal, and genome-scale gene domestication.

3 Implementation

DNA Chisel is implemented in Python. It relies on the Biopython library

(Cock et al., 2009) for Genbank operations and restriction enzyme data,

and on the Codon Usage Database (Nakamura, 2000) for codon usage data.

The optimization algorithm, described in more detail in Supplementary

Section 1E, has two main steps: (1) resolution of all hard constraints,

ignoring optimization objectives, and (2) objectives maximization with

respect to the constraints. This steps separation allows to detect

incompatible constraints early, and quickly reach satisfactory solutions.

During each step, unsatisfactory sequence regions are detected and

separately optimized. The solver speeds up region optimization by creating

a local version of the problem with simplified specifications locally

equivalent to the original problem’s specifications. A region’s sequence

is optimized via either a stochastic search (using random mutations of the

sequence) or an exhaustive search through all possible sequence variants,

depending on the number of variants. Specifications can also implement

custom local resolution methods to improve the solver’s efficiency. For

instance, an insert(CGTCTC) constraint will attempt to place the

pattern "CGTCTC" at different locations of the sequence, rather than

relying on random or exhaustive search to create the pattern in the

sequence.

4 Framework extension with new specifications

The emergence of new biological applications often comes with new DNA

sequence optimization requirements. In this perspective, DNA Chisel

allows to define any new sequence specification that the Python language

can express, without modifying the library’s code nor compromising the

solver’s efficiency. A new specification is defined by creating a new Python

class with custom sequence evaluation and local resolution methods, and

the class can optionally be registered with DNA Chisel’s Genbank record

parser to enable its use via Genbank annotations.
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A. Built-in specifications
The table below lists some specifications available in DNA Chisel v3.1 (please refer to the online
documentation at https://edinburgh-genome-foundry.github.io/DnaChisel for an up-to-date list). For each
specification class, we provide the following information:

Specification class: name of the specification for use in Python scripts.
Example of annotation: example label to use when annotating genbank records. Note that
shorthand annotations can be used, e.g. @gc(39%) instead of EnforceGCContent(target=0.39)
(both annotations will be recognized by DNA Chisel)
Effect: short description of the specification's effect on a sequence.
Examples of use: scenarios in which the specification can be relevant.

Specification class Example of annotation Effect Examples of use

Avoid Pat tern
@no(ATG)
@no(Bsm BI_site)
@no(4x2mers)

Re moves an un wanted pat tern
from the se quence (see Note 1 for
sup ported pat tern types)

Re moval of reg u la tory el e -
ments or el e ments im ped ing
DNA syn the sis and as sem -
bly.

Avoid Changes @keep
@keep(max_ed its=3)

For bids changes in the af fected
se quence re gion (when used as a
con straint) or min i mize changes.
Can be re laxed with e.g.
max_ed its=3 to allow up to 3 nu -
cleotide changes.

Pro tec tion of sen si tive re -
gions against changes (e.g.
reg u la tory el e ments, use ful
re stric tion sites, etc.), when
used as a con straint. En -
force ment of par si mony in
the se quence op ti miza tion,
when used as an ob jec tive.

Avoid Matches @no_ match(e_ coli, 25)

Re moves ho molo gies with a
genome or other se quences. For
in stance, no_ match(25, e_ coli,
mis matches=2) en sures that every
seg ment of size 25 or less in the
se quence has more than 2 dif fer -
ences with any sub seg ment of the
same size in E. coli. See Note 2.

Cre ation of "bar code" se -
quences which are mu tu ally
or thog o nal, or or thog o nal to
given con strusts or genomes
(as is Casini et al, 2014)

CodonOp ti mize
~use_best_ codon(e_ coli)
~match_ codon_us age(e_ coli)
~har mo nize_rca(h_s api ens=>e_ coli)

Codon- optimizes or codon- 
harmonizes the se quence for a
given or gan ism (see Note 3), by
name or TaxID (Note 4)

Gene ex pres sion en hance -
ment in a tar get or gan ism.

AvoidRareCodons @no_rare_ codons(0.2, e_ coli)
Re places rare codons (whose fre -
quency is under a given thresh -
old) by more com mon codons.

Light codon op ti miza tion
where only rare codons are
re placed.

En forceChanges ~change
@change(40%)

En sures that the final se quence is
en tirely dif fer ent (or as dif fer ent as
pos si ble) from the start ing se -
quence, or from a ref er ence se -
quence

Cre ation of vari abil ity be -
tween se quences. Ob fus ca -
tion or ran dom iza tion of
(parts of) a se quence.

En forceGC Con tent
~gc(39%)
@gc(45-65%)
@gc(45-65%/100bp)

En sures that the GC con tent of
the final se quence is a close as
pos si ble from a tar get per cent age,
or within given bounds. The GC
con tent can be eval u ated ei ther
for the whole se lected (sub)se -
quence, or for the GC con tent on
a slid ing win dow de cided by the
user.

Se quence pol ish ing to
match the con straints of syn -
the sis com pa nies, or match
the GC con tent of a tar get
or gan ism.

https://edinburgh-genome-foundry.github.io/DnaChisel
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Specification class Example of annotation Effect Examples of use

En forceMelt ingTem per a ture ~tm(60C)
@tm(55- 70C)

En sures that the spec i fied re gion
has a melt ing tem per a ture in a
cer tain range or as close as pos si -
ble to a given tar get.

De sign of primer- compatible
re gions for PCR or Sanger
se quenc ing

En for cePat ter nOc curence @in sert(Bsm BI_site)
@in sert(CG, oc curences=5)

En sures that the de sired pat tern
ap pears a cer tain num ber of times
in the spec i fied re gion (this will in -
sert the pat tern if nec es sary, or re -
move sur nu mer ary oc curences)

In ser tion of re stric tion sites
for mol e c u lar cloning, in ser -
tion of GpG is lands or PAM
se quence in a cod ing se -
quence,

En forceRe gion sCom pat i bil ity (not sup ported as an an no ta tion)
En sures that dif fer ent re gions of
the se quence are com pat i ble with
re spect to cri te ria de fined by the
user.

For in stance, en force that
re gions that will be used as
over hangs in the as sem bly
of a syn thetic DNA se -
quence have no ho molo gies,
to avoid as sem bly mis- 
annealing.

En force Choice @choice(Bsm BI_site | BsaI_site)
En sures that the se quence at the
spec i fied lo ca tion is one of sev eral
choices

Pre cise in ser tion of a cut ting
site

En force Se quence @se quence(ATKN NAA)
En sures that the se quence at the
spec i fied lo ca tion is one vari ant of
a de gen er ate se quence pat tern

Pre cise in ser tion of a se -
quence motif.

En force Trans la tion @cds
@cds(start_ codon=keep)

En sures that the pro tein en coded
by the se quence under this spec i -
fi ca tion re mains un changed. See
Note 5 on sup ported ge netic
codes.

Pro tec tion of cod ing se -
quences against non- 
synonymous mu ta tions.

UniquifyAl lK mers @al l_u nique_k mers(20)
@al l_u nique_k mers(20, here)

En sures that all sub seg ment of
size N in the spec i fied re gion has
no ho mol ogy with any other
same- sized seg ment in the se -
quence (or in the cov ered re gion).

Re moval of un de sired intra- 
sequence ho molo gies im -
ped ing DNA man u fac tur ing
or ver i fi ca tion via sanger se -
quenc ing or PCR.

Avoid Heterodimer iza tion (not sup ported as an an no ta tion)

En sures that a primer an neal ing
at the spec i fied lo ca tion will not in -
ter act with other primers from a
given set. Re lies on primer3 (Un -
ter gasser et al. 2012) for het -
erodimer iza tion eval u a tions.

De sign of primer- compatible
re gions for PCR or Sanger
se quenc ing

Notes

[1] Patterns provided to specifications such as AvoidPattern and EnforcePattern can be either:

A DNA sequence (e.g. ATGG)
A degenerate DNA sequence (e.g. ATH to represent ATC or ATT)
An enzyme restriction site (using the annotation BsmBI_site) or any other built-in DNA Chisel
pattern class (e.g. 9xA to represent a homopolymer with 9 "A"s in a row)
A Position-Specific Scoring Matrix (PSSM), representing a DNA motif (Stormo et al. 1982).
Such patterns are not supported for use via genbank annotations and can only be defined
when using DNA Chisel via Python scripts.
A regular expression.

[2] Specification AvoidMatches relies on the Bowtie software (Langmead et al. 2009) to find perfect
(or near-perfect) matches between short subsegments of a sequence and a Bowtie index. As of v3.0
of DNA Chisel, another specification, AvoidBlastMatches, allows to remove any match found using
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the BLAST algorithm instead of Bowtie, allowing for more relaxed dissimilarity in the alignments. Note
that AvoidMatches normally takes a path to a Bowtie index as an argument, and can only be used as
shown in the example (with e_coli as input) if the name e_coli has been associtated with a Bowtie
index in the server.

[3] Three optimization methods, with different objectives, are supported by the CodonOptimize
specification in DNA Chisel v3.1:

Replace each codon by the most frequent codon in the target organism. More precisely, the
Codon Adaptiveness Index is maximized, as defined in Sharp et al. 1987.
Ensure that the relative frequencies of the various codons of the sequence match the global
codon usage of the target organism. Note that this objective, proposed as early as in Hale and
Thompson 1998, appears throughout literature under different names, such as Individual
Codon Usage Optimization (Chung et al. 2012), Global CAI Harmonization (Mignon et al.
2018), and Codon Harmonization (Jayaral 2005) - not to be confused with the more accepted
codon harmonization procedure described next.
Codon-harmonize the sequence by replacing each rare codon for the native organism by a
rare synonymous codons in the target organism, and common codons by common codons.
The score maximized relying on Relative Codon Adaptiveness, as proposed in Claassens et.
al, 2017 as a variant of the codon harmonization method first described in Angov et al. 2008.

[4] DNA Chisel supports codon optimization for virtually any possible target organism thanks to the
python_codon_tables library (pypi.org/project/python_codon_tables), which was developed specifically to
support DNA Chisel and similar projects. Organisms can be specified using either a pre-registered
organism name of python_codon_tables such as e_coli, h_sapiens, etc., or a taxonomic identifier,
e.g. "6239", corresponding to a codon usage table in the Codon Usage Database (kazusa.or.jp,
Nakamura et al. 2000), at which case the codons usage table will be automatically downloaded from
the database.

[5] Any genetic code supported in Biopython's CodonTable module is also supported in DNA Chisel.
This includes the standard genetic code, the bacterial genetic code, the mithocondrial genetic code,
and a dozen others. Note that for genetic code accepting a non-ATG start codon (e.g. GTG in
bacteria) the user must provide a policy for the replacement the original coding sequence's start
codons, to either keep the codobn's original sequence, always replace its sequence with ATG, or
leave a choice of valid start-codon sequences.

https://pypi.org/project/python_codon_tables/
http://www.kazusa.or.jp/codon/readme_codon.html
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B. Example: multi-objective sequence optimization
Note: the source code and data for this example are available in the project's Github repository
(github.com/Edinburgh-Genome-Foundry/DnaChisel/tree/master/examples/manuscript_examples/B_multiobjectives).

In this example we explore different variations of a problem where gene NUM1 of Saccharomyces
cerevisiae is optimized via synonymous mutations, with the goal of maximizing the total sum of 5
competing objective scores (Figure S1):

unique_kmers(20) ensures that no k-mer of size 20 or more have homologies elsewhere in the
sequence (the negative score is the number of non-unique k-mers). The wildtype NUM1
sequence contains many long repeats and therefore over a thousand 20bp segments which
are non unique.
~gc(39%/100bp) is an objective targeting 39% GC on every 100bp window (the negative score
is the sum of all absolute deviations from 39% on all 100bp windows)
~no(CG) seeks to minimize the occurences of "CG" in the sequence (the negative score is the
number of CG patterns in the sequence).
~codon_optimize seeks to maximize the gene's Codon Adaptation Index for E. coli (the
negative score is the sum of each codon's deviation from its optimal relative frequency).
~keep is an objective penalizing differences to the original sequence (the negative score is the
number of changes in the sequence).

The script runs variations of this problem where:

All objectives are considered at once, with equal weight ("equal weights")
Only a single objective is considered ("~keep only", "~gc(39%) only", etc.)
One objective is given 5 times more weight than the others ("~keep 5x", etc.).

The resulting optimization scores, plotted in Figure S1, show that:

When optimized separately as single objectives, 4 out of 5 objectives are fully optimized by
DNA Chisel, with the maximum theoretical score (e.g. ~no(CG) alone leads to no CG in the final
sequence, and ~unique_kmers alone leads to no non-unique k-mers). The only objective which
does not reach a prefect score is ~gc(39%), whose score is improved 7.5 fold (from -309 to -41)
but it impossible to ensure exactly 39% GC on every 100bp window with only synonymous
mutations.
Applying a 5x boost to an objective has the expected effect: the objective gets a 5 to 10 times
smaller negative score than in the scenario with equal weights.
The unique_kmers objective seems to be a preferred target of the algorithm, which is linked to
the fact that a single mutation can remove remove several non-unique kmers at once, making
this score easy to improve.

file:///home/valentin/Documents/EGF/dnachisel_paper/DNAChisel/paper/paper_si/github.com/Edinburgh-Genome-Foundry/DnaChisel/tree/master/examples/manuscript_examples/B_multiobjectives
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10,000750050002500

~all_unique_kmers(20, here)

~best_codon(e_coli)

~gc(39%, window=100)

~keep

~no(CG)

Figure S1. Multi-objective problem definition and resolution.  Top: schema of the problem with the position of the different
specifications. Bottom: score profiles of the 5 objectives of the problem, after optimization in the different scenarios described
in this section. Objective scores are shown in negative: a lower score means a better compliance to an objective, and a score
of 0 indicates perfect compliance. The initial sequence profile at the bottom provides the scores in the initial sequence, and the
equal weights profile provides the results of the default optimization by DNA Chisel.
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C. Example: generation of a restriction-free sequence
Several molecular biology applications require to remove restriction sites from a DNA sequence, for
instance to allow the future assembly of the sequence with other DNA fragments using restriction-
based cloning methods.

To demonstrate DNA Chisel's ability to cope with a high number of such constraints, the following
Python first generates a list of constraints forbidding the restrictions sites of 458 different enzymes,
corresponding to all 6-cutter listed in the Biopython library.

The script then generates a 5000bp random sequence, which initially features ~1500 chance
occurences of the restriction sites at various locations, and proceeds to optimize the sequence to
remove all sites. It completes in 5 to 6 seconds on a Intel® Core™ i5-6500 CPU @ 3.20GHz × 4)

from dnachisel import DnaOptimizationProblem, AvoidPattern, random_dna_sequence 
from Bio.Restriction import AllEnzymes 
 
# CREATE AN AvoidPattern CONSTRAINT FOR EACH ENZYME SITE OF LENGTH 6 
 
sites_constraints = [ 
    AvoidPattern("%s_site" % enzyme) 
    for enzyme in AllEnzymes 
    if enzyme.size == 6 
] 
 
# CREATE AN RESOLVE THE PROBLEM: 
 
problem = DnaOptimizationProblem( 
    sequence=random_dna_sequence(5000), 
    constraints=sites_constraints, 
) 
 
problem.resolve_constraints() 
 
print ("Final sequence:", problem.sequence)
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D. Example: genome-wide gene optimization
The script below downloads the ~4Mbp E. coli genome and extracts its ~5000 genes one by one to
optimize them (removal of BsaI and BsmBI enzyme sites impeding DNA assembly via Golden Gate
assembly, and codon optimization for CAI index maximization) and write them in separate files (a
scenario inspired by Scher et al. 2019). The script takes 5 to 6 minutes to run on an Intel® Core™ i5-
6500 CPU, 3.20GHz × 4 (i.e. ~15 genes are optimized per second).

from Bio import SeqIO 
from genome_collector import GenomeCollection 
import tqdm 
from dnachisel import * 
 
# LOAD THE E. COLI GENOME (DOWNLOAD THE DATA FROM NCBI IF NEEDED) 
genome_record = GenomeCollection().get_taxid_biopython_records(taxid=511145)[0] 
 
# COLLECT OPTIMIZED GENE RECORDS 
optimized_records = [] 
for feature in tqdm.tqdm(genome_record.features): 
    if feature.type == "CDS": 
        protein_id = feature.qualifiers.get("protein_id", [None])[0] 
        if len(feature) % 3 or (protein_id is None): 
            continue 
 
        problem = DnaOptimizationProblem( 
            sequence=feature.location.extract(genome_record), 
            constraints=[ 
                EnforceTranslation(genetic_table="Bacterial"), 
                AvoidPattern("BsaI_site"), 
                AvoidPattern("BsmBI_site"), 
            ], 
            objectives=[CodonOptimize(species="e_coli")], 
            logger=None 
        ) 
        problem.resolve_constraints() 
        problem.optimize() 
        optimized_records.append(problem.to_record(record_id=protein_id)) 
 
# EXPORT AS FASTA 
SeqIO.write(optimized_records, "optimized_genes.fa", format="fasta") 
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E. Sequence optimization techniques in DNA Chisel
This section describes the mechanisms underlying DNA Chisel's constraint resolution and objective
optimization algorithms.

Mutation space

DNA Chisel relies on a "mutation space" data structure to guide sequence modifications during
sequence optimization. The mutation space indicates the acceptable values for the different
nucleotides and/or sub-segments of the sequence, and is determined by the problem's nucleotide-
restricting constraints. In an unconstrained problem, each nucleotide can be mutated to either A, T,
G, or C. When an EnforceTranslation constraint is applied to a stop codon, it constrains the
nucleotides triplet to only 3 possible choices, TAG, TGA, and TAA (see Figure S2 for an illustration).

Computed only once at problem initialization, the mutation space reflects the restrictions of all
nucleotide-restricting constraints at once, incidentally allowing the early detection of incompatible
constraints (i.e. constraints with no compatible solutions at certain sequences locations). More
advantageously, constraints which are entirely guaranteed by restrictions of the mutation space (such
as AvoidChanges and EnforceTranslation) can be removed from the problem after mutation space
initialization, thereby significantly accelerating the optimization procedure.

Note that preexisting frameworks also restrict mutations in their own way. The D-tailor framework
introduces manipulations of the mutation space, which differ significantly from DNA Chisel's as they
happen within the optimization loop and constrain the location of possible mutations, rather than the
choice of nucleotides. Frameworks BOOST (Obertorner et. al., 2017), D-tailor (Guimaraes et. al.
2014), and GeneOptimizer (Raab et. al. 2010) all implement a form of mutation space restriction to
ensure synonymous mutations in coding sequences, but only for this particular use case, while DNA
Chisel will combine mutation space restrictions coming from constraints such as @keep, @cds,
@change, @sequence(...), @no_rare_codons(...), etc.

Figure S2: Restriction of the mutation space by different specification classes. In this example the problem consists of a
21-nucleotide sequence and four constraints. The mutation space, represented in red, consists of contiguous sub-segments,
each associated with a set of sequence choices. For instance, the first nucleotide is unconstrained and can take any of the four
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possible values. The next nucleotides are constrained by @cds which enforces synonymous codons mutations, and these
restrictions are combined with a @keep constraint which keeps the affected sequence segment in its original state.

Specification evaluation on a sequence

In DNA Chisel, each specification implements a custom evaluation method indicating how well a
given sequence complies with the specification. The output is the same whether the specification is
used as a hard constraint or an optimization objective, and comprises:

A score indicating whether and how well the sequence complies with the specification (the
more compliant, the higher the value). By convention, a negative score indicates that the
specification is breached, while a score of 0 or more indicates compliance.

A list of segments coordinates (start, end) indicating the locations of breaches (or, for
optimization objectives, sub-optimal regions). For each breach, the coordinates indicate the
largest sequence sub-segment where modifications are susceptible to resolve the breach.

A message in plain English which can be used in reports to help users understand why the
sequence does not comply with the specification.

Optimization algorithm overview

DNA Chisel's algorithm first ensures that all constraints are verified, then optimizes the objectives
with respect to the constraints. The solver follows the following procedure:

For each constraint:
Evaluate the constraint on the problem to find the location of all breaches.
For each breach location, from left to right:

Define a local problem to resolve the breach via a local search, while making sure
not to create new breaches for already locally-verified constraints.

For each optimization objective:
Evaluate the objective on the problem to find the location of all sub-optimal regions.
For each sub-optimal region, from left to right:

Define a local problem and use it to optimize the local region in order to increase
the overall objectives score while making sure that all constraints remain verified.

While some other frameworks also use local optimization, DNA Chisel introduces new techniques,
described in the next paragraphs, to simplify local problems and accelerate their resolution.

Definition of local problems

In DNA Chisel, a local problem is a version of a problem where only a small segment of the sequence
(denoted [start, end] in this section) will be mutated, in order to locally resolve a particular constraint
breach, or increase the sequence's fitness with respect to local objectives.
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The mutation space of the local problem is obtained by freezing the problem's mutation space
outside of segment [start, end], and the local problem's specifications are a simplified version of the
problem's specifications using the following rules:

Specifications whose location has no overlap with segment [start, end] won't be affected by the
local mutations, and can simply be removed from the local problem to avoid unnecessary
evaluations.
Any constraint that is not initially verified in the mutated region, except the constraint being
resolved, is removed from the local problem (this constraint will be resolved in its own time in a
subsequent iteration of the main "for each constraint" loop).
Each remaining specification  can be simplified to a local version  whose evaluation is
restricted to the neighborhood of [start, end] in order to detect any breach to  that can be
caused by mutations on segment [start, end]. Said otherwise, the local specification  has a
simpler and faster evaluation method, while being locally equivalent to .

The computation of local forms for the specification (illustrated by an example in Figure S3) is one of
the most computationally advantageous mechanisms introduced by DNA Chisel. Each specification
class implements a custom localization method to ensure that the local specification will be as fast to
compute as possible, while still being able to detect newly-create constraints breaches.

Figure S3: Problem simplification via localization. The problem represented in panel A is localized to the short segment
[21, 29] (highlighted in red) to obtain the local problem represented in panel B. Note that the @keep specification disappears
completely in the local problem as it does not overlap with the localization segment. Constraint @no(CGTCTC) is reduced to the a
region corresponding to the localization segment with a 5-nucleotide addition on each flank, in order to capture any formation
of new CGTCTC sites (notice that changing A to C at position 29 would create such a site at position 29-34). Constraint @gc(30-
60%/15bp), which uses a 15bp window, gets reduced to the only 15bp windows that can be affected by changes in segment 21-
29, i.e. reduced to segment 21-44.

Local sequence optimization

Given a local problem with mutations restricted to a sequence segment, DNA Chisel proceeds as
follows:

S S′

S

S′

S
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1. Select a search method to explore the mutation space.
2. Use this method and find a sequence variant satisfying all constraints (when resolving

constraints) or maximizing objectives scores (when optimizing objectives).
3. Replace the problem's sequence with the successful variant, and move on to the next location

to optimize.

In step 1, the search method is selected based on number of possible sequence variants in the local
problem. This number can be easily computed from the mutation space, as the product of the number
of choices at the different locations. For instance, in the problem shown in Figure S2, the mutation
space allows

If the sequence admits only a small number of variants, the solver performs an exhaustive search. If
this number is above a certain threshold (which can be set by the user, and defaults to 10,000), then
a guided stochastic search is used instead. Finally, in the (uncommon) case where the specification
being resolved (or optimized) implements its own resolution method, this custom method will be
used.

Note that many classes of hard constraints such as pattern restrictions or GC content bounds could
also be efficiently modeled and resolved using Constraint Programming frameworks (such as
NumberJack for the Python language, see Hebrard et. al. 2010). However, more complex constraints,
such as avoiding homologies with a given genome, could not be integrated as formal constraints in
such a framework.

Exhaustive search

In an exhaustive search, the solver considers each possible sequence variants one after the other.

When the solver's goal is the resolution of a constraint breach, the loop stops as soon as one variant
verifying all constraints is found. If the loop completes without such variant being found, it can be
concluded that the problem has no solution, as some constraints cannot be (simultaneously)
satisfied. The solver then terminates and raises an error (when optimizing with a PDF report output,
this error will be processed to generate a schema of the problematic region for troubleshooting).

When the solver aims at objectives score maximization, each variant is first evaluated against the
problem's constraints, and only constraints-complying variants are considered. The loop stops when
a variant is found for which the total objective score equals the theoretical maximum (in the case
where all objectives have an attributed theoretical maximum), or when all sequence variants have
been evaluated, at which case the sequence variant with the highest score is retained.

Exhaustive searches present the advantage of being able to find even rare solutions (needles in
haystacks), or providing evidence of the absence of solution. However, they can be slow for problems
with a large mutation space, for which random searches are better adapted.

4 × 1 × 1 × 2 × 1 × 3 × 3 × 3 × 3 × 2 = 1296 variants
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Guided random search

In a guided random search, the solver uses random mutations to iteratively progress towards a
solution.

A sequence mutation is created by substituting the sequence of one sub-segment of the mutation
space by another acceptable choice for this sub-segment. By default, 2 mutations are performed at
each iteration, although this number can be set by the user. If the resulting candidate sequence
performs better than the non-mutated sequence, it becomes the reference sequence for the next
iterations, otherwise it is simply discarded, and the next iteration proposes new mutations of the
current reference sequence. The maximum number of allowed iterations to reach a solution can also
be set by the user, and defaults to 1000.

When the solver's goal is the resolution of a constraint breach, each candidate sequence is evaluated
against the local constraints. If all constraints are verified, the resolution stops and the candidate
sequence is retained. Otherwise, the constraints score of the candidate sequence is computed by
summing the scores of all failing constraints evaluations. If this score is above the score of the non-
mutated sequence (meaning that the mutations made the sequence closer to being compliant), the
candidate sequence becomes the reference sequence. If the maximum number of iterations is
reached without finding a solution first, the solver terminates and returns an error. When optimizing
with a PDF report output, the report will feature a schema of the problematic region. However, in this
case, it is not to determine whether the failure was due to un-satisfiable constraints, or whether the
solver simply failed to reach a solution in the allowed number of iterations.

When the solver aims at objectives score maximization, each candidate sequence is first evaluated
against the local constraints, and if any breach is detected the candidate is directly discarded. Else,
the sum of all local objectives is evaluated, and if this score is above the score of the non-mutated
sequence, the candidate sequence becomes the new reference sequence. The loop stops when a
variant is found for which the total objective score equals the theoretical maximum (in the case where
all objectives specify a theoretical maximum), when no improvement of the sequence was observed
after a number of successive iterations (this stagnation threshold can be set by the user, and defaults
to 150), or when all variants have been evaluated, at which case the sequence variant which scored
highest is retained.

Custom search methods

Some specifications cannot be easily met with an exhaustive or random search. For instance,
assume that specification EnforcePatternOccurence("AarI_site") is used to create a AarI site
(CACCTGC) in a 50bp sequence (possibly also constrained by other specifications). The size of the
mutation space, , prohibits an exhaustive search, and a random search is unlikely to create a
CACCTGC site in the sequence.

Therefore, the EnforcePatternOccurence class of specification implements its own constraint
resolution strategy, which it substitutes to the solver's. First, an AarI site is placed in the middle of the

450
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sequence, then all constraints are evaluated and any new breach created in the operation is resolved
(using an exhaustive or random search). If this resolution succeeds, then the AarI site has been
successfully created in the sequence. Otherwise, the algorithm makes a new attempt, shifting the
insertion location by a few nucleotides, and iterates until the site creation of the pattern in compliance
with other constraints succeeds, or until all possible insertion locations have been considered, at
which case it is proven that the pattern cannot be inserted in the sequence, and the constraint
resolution fails with an error.
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