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Abstract
Motivation: A maximal match between two genomes is a contiguous non-extendable sub-sequence

common in the two genomes. DNA bases mutate very often from the genome of one individual to another.

When a mutation occurs in a maximal match, it breaks the maximal match into shorter match segments.

The coding cost using these broken segments for reference-based genome compression is much higher

than that of using the maximal match which is allowed to contain mutations.

Results: We present memRGC, a novel reference-based genome compression algorithm that leverages

mutation-containing matches for genome encoding. MemRGC detects maximal matches between two

genomes using a coprime double-window k-mer sampling search scheme, the method then extends

these matches to cover mismatches (mutations) and their neighboring maximal matches to form long and

mutation-containing matches. Experiments reveal that memRGC boosts the compression performance

by an average of 27% in reference-based genome compression. MemRGC is also better than the best

state-of-the-art methods on all of the benchmark data sets, sometimes better by 50%. Moreover, memRGC

uses much less memory and de-compression resources, while providing comparable compression speed.

These advantages are of significant benefits to genome data storage and transmission.

Availability and Implementation: https://github.com/yuansliu/memRGC

Contact: Jinyan.Li@uts.edu.au

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction
The massive amount of genomic sequences produced by next-generation
sequencing platforms presents great challenges to data storage and
transmission (O’Leary et al., 2015; Goodwin et al., 2016). There is an
imperative need to reduce the file size of these sequences by lossless
compression to mitigate the associated concerns and issues (Chen et al.,
2002; Matos et al., 2013; Hayashida et al., 2014; Hernaez et al., 2019).
General-purpose text-compression tools such as gzip (www.gzip.org),
bzip2 (www.bzip.org) and 7zip (www.7zip.org) can be directly applied
to compress these data, but their compression performance is low as these
methods are not specially designed to fully exploit the intrinsic patterns
in this type of sequences (Zhu et al., 2013; Deorowicz and Grabowski,
2013; Pinho and Pratas, 2014; Numanagić et al., 2016). Over the past
two decades, specialized algorithms have been proposed to compress raw

sequencing data (Liu et al., 2019b; Chandak et al., 2019; Kowalski and
Grabowski, 2020) and assembled genomes (Wandelt et al., 2014). These
methods include reference-based and de novo methods. A lot of evaluations
demonstrated that reference-based compression can achieve much better
performance than de novo compression (Zhu et al., 2013; Numanagić et al.,
2016; Hosseini et al., 2016). The basic idea of reference-based genome
compression is to exploit the high similarities between two genomes of
the same species (Wang and Zhang, 2011; Pinho et al., 2011; Pratas
et al., 2017), e.g., the more than 99% similarity between human genomes
(Lander et al., 2001), to encode a target genome using the reference
genome. Some of the reference-based genome compression methods,
including DNAZip (Christley et al., 2008), GenomeZip (Pavlichin et al.,
2013) and TGC (Deorowicz et al., 2013), also make use of variation data of
a genome relative to a reference genome. However, variation data are often
unavailable, and generating them is a problem of high complexity. In this
work, we focus on algorithms for reference-based genome compression
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without variation data (Wang and Zhang, 2011; Deorowicz and Grabowski,
2011; Ochoa et al., 2015; Saha and Rajasekaran, 2015, 2016; Liu et al.,
2017; Shi et al., 2018). Pairwise reference-based genome compression
without variation data is also a foundation step for compressing genome
collections (sets of genomes).

Exact matches have been used as an effective approach to measure
similarities between long sequences (Kurtz et al., 2004; Volfovsky et al.,
2001). For two sequences S1 and S2, an exact match (or simply a match)
between S1 and S2 is a common sub-sequence in both S1 and S2. In
reference-based genome compression problems, an exact match in the
target genome can be concisely represented by a pair of integers (the start
position of the match in the reference sequence and the length of the match).
When lots of long matches exist between the reference and target genomes,
the compression performance can be very high.

Existing methods have explored different ways to detect exact matches
and use them to map the target sequence to the reference for compression.
For example, Lempel-Ziv parsing has been widely used to find long prefix
matches, e.g. in RLZ (Kuruppu et al., 2010), RLZ-opt (Kuruppu et al.,
2011), GDC (Deorowicz and Grabowski, 2011), FRESCO (Wandelt and
Leser, 2013), and GDC-2 (Deorowicz et al., 2015). Most recent methods
(Ochoa et al., 2015; Saha and Rajasekaran, 2015; Liu et al., 2017; Shi
et al., 2018) employ a left-to-right greedy mapping strategy. For example,
ERGC (Saha and Rajasekaran, 2015) divides both the reference and the
target genome into fixed-length blocks and the i-th block of the target
genome is mapped to the i-th block of the reference genome from the
left to right using a hash table. NRGC (Saha and Rajasekaran, 2016)
improves the performance of ERGC. It designs a greedy placement scheme
to place the i-th block of the target sequence to map to a good position at
the reference genome rather than at the fixed i-th block of the reference
genome. iDoComp (Ochoa et al., 2015) generates a suffix array from the
reference sequence and detects exact matches from the left to right of
the target sequence; and then merges consecutive matches to form longer
ones. HiRGC (Liu et al., 2017) maps the target to the reference genome
left-to-right using a hash table and a global greedy matching technique.
HiRGC has a stable and robust performance, and it is not sensitive to the

selection of the reference genome. Recently, HiRGC’s overall performance
was exceeded by SCCG (Shi et al., 2018). SCCG combines the key ideas
of ERGC and HiRGC, and estimates whether the block segmentation is
needed or not before the global greedy matching. Nevertheless, SCCG’s
performance can be worse than iDoComp in some cases. So far, there is no
all-win methods on widely used benchmark data sets, although they have
made steady progress on overall compression performance.

These greedy mapping approaches have a common drawback — they
do not aim to detect long matches. Instead of finding long matches,
segments of them are detected and output separately. If a method aims
to detect and use long matches, the encoding cost can be much smaller
than the cost of using multiple shorter matches; cf. Fig. 1(a).

In this work, we propose to detect maximal matches between two
genome sequences and extend these maximal matches to cover some
mismatches (mutations) and their neighboring maximal matches for
reference-based genome compression. A maximal match between two
genomes is a sub-sequence in both genomes that is non-extendable at both
ends. No existing genome compression methods (Numanagić et al., 2016;
Hernaez et al., 2019) use this definition to detect matches. The extension
of a maximal match to cover some mutations and its neighboring maximal
matches is another novelty of our method. We define a mutation-containing
match between two genomes as a string that is a sub-sequence in one of
the two genomes and that is also a sub-sequence in the other genome
after some mutations not at the beginning or ending position of the string.
Use of mutation-containing matches for genome compression is effective
because DNA base mutations or SNPs have been frequently observed in
genomes. A mutation breaks a long exact match and divides the match into
shorter matching segments. The coding cost by these broken segments for
reference-based genome compression is much higher than the cost of using
the maximal match when it is allowed to contain mutations; cf. Fig 1(b).

These ideas form the basis of our method memRGC, which stands for
“maximal exact matches for reference-based genome compression”. An
improved version of our previous algorithm bfMEM (Liu et al., 2019a) is
developed here to detect maximal exact matches (MEMs). The method
in the new version samples k-mers on both the reference and target

ATGTAGCCTAGGATCACTCCGTTCACAACGAAGATCTCATGGT

TGTAGCCTAGGATCACTCCGTTCACAACGAAGATCTCATGGCGCATGTAGCCTAGGATCACG
1 17 45

Ref:

Tar:

GACGTTCACAACGAAGATCTCAACGTAATGTAGCCTAGGATCGTC
26 27

AATGTAGCCTAGGATCGGACGTTCACAACGAAGATCTCAACGCGATGTAGCCTAGGATCGTC
1 18

Ref:

Tar:

(a)

(b)

17 25

41

25
17

18

Fig. 1. Genome encoding by different match-detection approaches. (a) The left-to-right mapping method detects two exact matches (highlighted in red and blue color) and the encoding of
the target sequence is {(45, 17); (17, 25); T}; The encoding can come shorter as {A; (1, 41); T} when the long exact match (underlined) is detected. (b) The mutations at positions
26 and 27 break a long match into two shorter matches. The left-to-right method can find these two matches, i.e., the blue substring of length 25 and the red substring of length 17;
and the encoding of the target sequence is {(18, 25), T, (1, 17), TC}. The mutation-containing match is labeled by a dotted underline and the encoding of the target sequence is
{(18, 25), TA, (18)}, where 18 is the length of the second match as the start position of the second match does not need to be encoded. The gain of the mutation-containing match
encoding is no need of storing the start position in coding the second match.
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sequences (Grabowski and Bieniecki, 2018) under a coprime window-
length constraint, and implements a Bloom filter (Bloom, 1970) to filter
some unnecessary k-mers for reducing the number of indexing k-mers.
Mutation-containing matches are then determined by extending each MEM
at its left- and right-end. In a mutation-containing match, the maximum
length of the mismatching substring is set as 2 in this work and the
minimal length of matching substring is set as 3. The gain of compression
performance after the extension of maximal matches depends on these two
thresholds (evaluation and experiments are shown in Supplementary file).

Attributed to the coprime double-window sampling technique and the
Bloom filter indexing idea, memRGC stores only a small fraction of k-
mers for mapping, and results in much less memory usage (< 2 GB)
than existing methods. For example, ERGC, HiRGC and SCCG have to
construct a full index of the reference genome, demanding more than 6
GB RAM in practice for a human reference genome. iDoComp not only
constructs a full suffix-array; it also needs to store exact matches in memory
for merging. If large numbers of matches are detected, iDoComp requires
a lot of memory.

2 Materials and methods
MemRGC proceeds in two stages (Fig. 2): (i) detection of mutation-
containing matches from a pair of genomes for concisely mapping the
target genome to the reference genome; (ii) alternative encoding, that
selects a better encoding method to generate a smaller encoded file. Note
that, memRGC performs lossless compression and does not limit the
alphabet set in the two genomes.

Let R = r1r2 · · · rn and T = t1t2 · · · tm be the reference
genome and the target genome respectively. We use notation SL

i to
denote a substring of length L starting at position i of a sequence S,
i.e., SL

i = sisi+1 · · · s(i+L�1). A maximal exact match (MEM) is
represented by a tuple (i, j, L) satisfying RL

i = TL
j , ri�1 6= tj�1 and

ri+L 6= tj+L, where we always set r0 6= t0 and rn+1 6= tm+1. Note
that exact matches are case-insensitive. MemRGC can deal with mixtures
of upper cases and lowercases as described in the encoding stage.

Detection of mutation-containing matches from a pair of

genomes

A mutation-containing match is formed after extending from a maximal
exact match to cover mismatches and its neighboring maximal exact
matches between the two genomes.

Detection of maximal exact matches

An improved version of our previous algorithm bfMEM (Liu et al., 2019a)
is developed to detect MEMs. The core idea is to sample k-mers on both
R and T and to filter some unnecessary indexing k-mers using a Bloom
filter. The k-mer sampling selects the last k-mer from a block of s number
of contiguous k-mers, where s is the sampling interval (or the sampling
window).

The original bfMEM (Liu et al., 2019a) has three steps. (i) Sample
k-mers on the target genome T with a sampling window s2 and all the
sampled k-mers are added into a Bloom filter f . (ii) All k-mers of the
reference genome R are tested to see whether they are in f . Those k-mers
that pass the Bloom filter test are inserted into a hash table H (k-mer as
key and its position as value) for indexing. (iii) For all the sampled k-
mers from T , they are used as the key to retrieve possible left and right
extensions by querying H. The original bfMEM samples k-mers on T
only, and all k-mers of R are tested on the Bloom filter. Grabowski and
Bieniecki (Grabowski and Bieniecki, 2018) found that sampling on both
R and T can be applied if the two sampling windows are coprime. Taking
this idea, we improve bfMEM by modifying the second step as: sampling
k-mers on the reference genome R with a sampling window s1 and all the
sampled k-mers are tested to see whether they are in f . The details of our
MEM detection are summarized in Algorithm 1. In our implementation,
the tool BioBloom (Chu et al., 2014) is used to create Bloom filter and
ntHash (Mohamadi et al., 2016) is used to calculate hash values fork-mers.
Moreover, the false positive probability (FPP) of the Bloom filter is set as
0.01. Experiments shows that the FPP has little effect on compression
performance (See supplementary file).

This coprime double-window k-mer sampling onR andT is sufficient
to guarantee the completeness of the search space of MEMs with a length
� L. Let the sampling window on the reference genome and on the target
genome be s1 and s2 respectively, where the greatest common divisor of
s1 and s2 is required to be 1 (i.e., coprime), the length of k-mer be k,
and (i, j, L) be an MEM. We prove that this MEM is guaranteed to be
generated from one of these k-mers.

sample k-mers on
reference genome

s1

sample k-mers on
target genome

s2

MEM
detection

MEM
extension

Mutation-containing matches detection

encode with original
sequences

encode with uppercase
version of sequences

select short
coding

BSC

output

Alternative encoding

Bloom
filter

Add k-mers

Query k-mers

hash table

parameters:
k, s1, s2

Fig. 2. Overview of our algorithm memRGC. It has two stages, viz. the mutation-containing matches detection stage and the alternative encoding stage. In the first stage, maximal exact
matches (MEMs) are iteratively detected and extended by different settings of k-mer, and the sampling windows s1 and s2 . In the encoding stage, two encoding schemes are employed in
accordance to whether the original sequences or the uppercase version of the sequences is used. Then the shorter code is compressed by BSC (http://libbsc.com) as the final compressed file.
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Algorithm 1: MEM detection by double k-mer sampling and Bloom
filtering

Input: Reference sequence R = r1r2 · · · rn and target sequence
T = t1t2 · · · tm, size of k-mer k, sampling windows s1
and s2

Output: MEMs

Function MemDetectionSketch(R, T, k, s1, s2) begin

f  empty Bloom filter of size
l
(m�k+1)/s2⇤log2 0.01

ln(1�0.011/6)

m

for i s2 to (m� k + 1) by s2 do . Sample on T
Add T k

i to f

H empty hash table
for i s1 to (n� k + 1) by s1 do . Sample on R

if Rk
i 2 f then

Append i to H[Rk
i ]

Z  an empty array used to store MEMs
for i s2 to (m� k + 1) by s2 do . Sample on T

foreach j 2 H[T k
i ] do

(b, e) (1, 1)
while ti�b = rj�b do

b b+ 1; . Left extension

while ti+e = rj+e do

e e+ 1; . Right extension

if e+ b � s1 ⇤ s2 + k then

Append (i� b, j � b, e+ b� 1) to Z

return Z
end

First, the sampled k-mers in the substring RL
i are its r-th k-mers,

where r = s1� ((i� 1) mod s1)+ s1 ⇤x, 1  r  (L� k+1),
0  x  b(L�k+1)/s1c, and bcc returns the largest integer not larger
than c. Second, the sampled k-mers in the substring TL

j are the t-th k-
mers, where t = s2�((j�1) mod s2)+s2⇤y, 1  t  (L�k+1)
and 0  y  b(L� k + 1)/s2c. According to the Chinese remainder
theorem, given two coprime integers s1 and s2, for any integers a and b,
there exists an integer z 2 [0, s1 ⇥ s2) such that

(
z ⌘ a (mod s1),

z ⌘ b (mod s2).

Therefore, for any integers i and j, the equation

(
r = s1 � ((i� 1) mod s1) + s1 ⇤ x,

t = s2 � ((j � 1) mod s2) + s2 ⇤ y,

has a unique solution r = t 2 [0, s1 ⇥ s2). Combining 1  r, t 
(L � k + 1), the sampling method guarantees that at least one shared
k-mer is sampled in both RL

i and TL
j iff L � s1 ⇤ s2 + k � 1. Any

MEM having length� (s1⇤s2+k�1) including MEM (i, j, L) can be
detected by some left- and/or right-extensions from such sampled k-mers.

Extension of an MEM to cover mismatches and neighboring MEMs

Let (i, j, L) be an MEM. Suppose Rp
i+L 6= T p

j+L, Ru
i+L+p =

Tu
j+L+p and Ri+L+p+u 6= Tj+L+p+u, we define MEM (i + L +

p, j + L + p, u) as a neighboring MEM from the right-side extension
of MEM (i, j, L). We also define (i, j, L + p + u) as a mutation-
containing match (MCM) which covers the mismatch sequence Rp

i+L

and the neighboring MEM (i+L+p, j+L+p, u). Here, the substring
comparison Rp

i+L 6= T p
j+L is defined as: ri+L+z 6= tj+L+z for

0  z < p.

The left-side extension can be conducted similarly as the above right-
side extension. Suppose Rp

i�p 6= T p
j�p, Ru

i�p�u = Tu
j�p�u and

Ri�p�u�1 6= Tj�p�u�1, we define MEM (i� p�u, j� p�u, u)
as a neighboring MEM from the left-side extension of MEM (i, j, L).
We also define (i � p � u, j � p � u, L + p + u) as a mutation-
containing match (MCM) which covers the mismatch sequence Rp

i�p and
the neighboring MEM (i� p� u, j � p� u, u).

We set a maximum threshold for p and a minimum threshold for u.
After several rounds of left-side and right-side extensions, a long mutation-
containing match can be detected. In our implementation, the threshold
for p is set as 2, and the threshold for u is set as 3. That means: the
maximum length of a mismatching sequence is 2 and the minimum length
of a neighboring MEM is 3. Compression performance can be affected by
different settings of these thresholds. We performed some experiments on
four reference-target genome pairs with the mismatch threshold ranging
from 2 to 10, and the neighboring MEM length threshold ranging from 1
to 10 (see results in Supplementary file).

Iterative generation of MEMs and MCMs

We did not take a straightforward approach to detect all MEMs between
R and T by setting one fixed minimum length L. Instead, we detect long
MEMs first. After their extensions to form mutation-containing matches,
we detect long MEMs from the remaining segments ofR andT which have
not been covered by the mutation-containing matches. The main reason of
this adaption is because the extension step can detect many neighboring
MEMs. If the straightforward approach is applied, these neighboring
MEMs are redundantly detected.

We give an example to illustrate how the three parameters of MEM
detection (the length of k-mer and two sampling windows s1 and s2)
are iteratively set for detecting all the MEMs and mutation-containing
matches. First, we set k = 90, s1 = 1, 000 and s2 = 999 to detect
long MEMs having minimum length � (1, 000 ⇤ 999 + 90 � 1) =
999, 089. These detected MEMs are sorted by their length in a descending
order. Non-overlapping MEMs are selected and the substrings of these
MEMs in the target genomeT are mapped to the corresponding substrings
of the reference genome. After mapping, the left-side and/or right-side
extensions of these MEMs are carried out to detect mutation-containing
matches (MCMs). Then, those segments in the target sequence T covered
by the MCMs are labeled, and they are excluded from participating in
subsequent rounds. In the second round, we set s1 = 1000 and s2 =
499 to detect MEMs having minimum length� (1, 000 ⇤ 499 + 90�
1) = 499, 089, and then detect MCMs, and then label segments covered
by these MCMs. The iteration terminates when short segments are not
detected in T . Note that the setting of k affects not only the length of
MEM but also the speed of MEM detection. For genomes of small size,
the parameters k, s1 and s2 should be set small as well. For example,
k = 20, s1 = 7, s2 = 1 are used in our implementation.

We note that it is difficult to optimize this iterative framework. It
has slight effects on the compression performance and running time.
Some evaluation results on this iterative framework are presented in
Supplementary file.

Alternative encoding

We encode the target sequence left-to-right like HiRGC (Liu et al., 2017).
The basic procedure is: for an MEM, it is stored as two integers in a
line, i.e., the start position in the reference sequence and its length; for
mismatch bases or substrings, they are stored in a separate line. For two
MEMs (i0, j0, L0) and (i1, j1, L1), they are in a mutation-containing
match if i1 � (i0 + L0) = j1 � (j0 + L0). The start position of the
second MEM does not need to be stored as it is equal to the end position of
the first MEM plus the length of the unmapped substring between these two

liu yuansheng



“main” — 2020/6/9 — page 5 — #5

memRGC 5

MEMs. Finally, the encoded file is compressed by the BSC compressor
(http://libbsc.com).

To deal with upper cases and lowercases, the following two encoding
schemes are employed:

• Encode with the uppercase version of the sequences. First, find the
intervals of lowercase letters in T and save these intervals in the
encoded file. Then, the bases in R and T are converted to uppercases.
Finally, the mapped and mismatching bases are encoded as the above
description.

• Encode with the original sequences. To store the case information, a
match is divided into some fragments according to whether the cases
are the same or different between the target and reference genome.
Then, the MEM is stored as a series of numbers including the start
position in the reference sequence and the lengths of those fragments.
For instance, an MEM “ATTgcTAG” is divided into four fragments
and encoded by 4 length integers “3 2 2 1” if the substring of this
match at the reference genome is “ATTGCTAg”.

The shorter coded one is stored in a file alone with a label of the encoding
method.

3 Results
All experiments were carried out on a computing cluster running Red Hat
Enterprise Linux 7.5 (64 bit) equipped with 2.7 GHz Intel® Xeon® 6150
(18Cores), 384GB RAM and 10TB disk space. We compared memRGC
with four state-of-the-art compression algorithms: iDoComp (Ochoa et al.,
2015), ERGC (Saha and Rajasekaran, 2015), HiRGC (Liu et al., 2017) and
SCCG (Shi et al., 2018).

Eight human genomes including six reference genomes (viz., HG17,
HG18, HG19, HG38, KOREF_20090131 (denoted by K131) and
KOREF_20090224 (denoted by K224) (Ahn et al., 2009)) and two
individual genomes (YH (Wang et al., 2008) and HuRef (Levy et al.,
2007)) were pairwise tested for reference-based genome compression by
each of these methods. Moreover, two genome collections consisting
of 50 and 200 human genome sequences from the 1000 Genomes
Project (The 1000 Genomes Project Consortium, 2015) were tested using
an external reference for compression. Furthermore, we conducted
experiments for reference-free compression of genome collections where
internal reference-based genome compression is a foundation step. We
collected 11 human reference genomes for the purpose of reference-free
compression. In addition, genomes of some other species such as C.

elegans, S. cerevisiae, A. thaliana, O. sativa and C. lupus, were tested.
These data sets from a variety of species are widely used benchmark data
sets (Ochoa et al., 2015; Saha and Rajasekaran, 2015; Liu et al., 2017; Shi
et al., 2018). They have very different features including the alphabets they
contain, the number of chromosomes and the genome size. More details
of these genomes are listed in Supplementary Table S1.

Performance comparison for pairwise reference-based

genome compression

A total of 8 ⇥ 7 = 56 reference-target pairwise genome compressions
were conducted. The file size of every target genome after compression
with regard to each reference genome by iDoComp (Ochoa et al.,
2015), ERGC (Saha and Rajasekaran, 2015), HiRGC (Liu et al., 2017),
SCCG (Shi et al., 2018) or our memRGC is presented in Supplementary
Table S4 and part of results (24 reference-target pairs) is shown in
Table 1. The table shows the compression gain of memRGC over
the best result of these state-of-the-art methods. It is calculated by
( compression rate of memRGC

the best compression rate of the other methods �1)⇤100%, where the
compression rate of a method on a data set is calculated as the original file

size divided by the compressed file size (i.e., the compression fold). Note
that the compressed file does not include the reference genome, strictly
the same as the existing reference-based genome compression tools did.
The numbers inside brackets in the compression gain column of the table
are the absolute volume of file size reduction (in megabytes) from the
second-best in the row.

Our memRGC achieves the best compression performance on all
of these pairwise reference-based genome compressions (all-win). In
particular, our method achieves around 10% to 50% compression gain
compared to the best result of the other methods for37 of the total56 cases.
There are other 12 cases, where the compression gain is even higher (more
than 50%). For the remaining 7 cases, the compression gain is around 8%.
Averaging over the 56 reference-based genome compressions, memRGC’s
compression gain is 27%. The best compression gain by memRGC is
83.57%, where the compressed file size of HG38 is further reduced from
SCCG’s 17.99 megabytes to only 9.80 megabytes.

SCCG wins the second-best performance49 times. On the remaining7
cases, iDoComp is the second-best algorithm. For these 7 cases, iDoComp
is much better than SCCG and our memRGC further achieves at least 49%
improvement. On 12 of the 56 cases, ERGC has very close (< 1 MB)
performance to the second-best.

We also conducted experiments for random pairwise genomes from the
1000 Genomes Project (The 1000 Genomes Project Consortium, 2015).
MemGRC is always better than the other methods. These reference and
target genomes are very similar, and the compression folds achieved are
high. Some examples are shown in the last two rows of Table 1. We note
that the performance of GDC-2 (Deorowicz et al., 2015) is also very good
at compressing these highly similar reference-target pairs. Although the
compressed file size of NA12413 and that of NA20770 by GDC-2 are only
16.89MB and 4.71MB respectively, our memRGC’s performance is still
superior.

Performance comparison on memory usage

The memory usages by these methods for the 56 pairwise reference-
based compressions are shown in Supplementary Figure S1. The memory
consumption by memRGC is at least 6.8, 3.8 and 5.5 times smaller than
ERGC, HiRGC and SCCG respectively. iDoComp’s memory consumption
is less than memRGC on 13 cases when the suffix-array (SA) generation is
excluded. However, for other 32 cases, iDoComp’s memory consumption
is 6 times more than memRGC. If the memory used in the SA generation is
included, memRGC always uses less memory than iDoComp. The memory
usage saved is attributed to memGRC’s double-sampling technique and the
filtering method that stores only a small fraction of k-mers for indexing.

Performance comparison on compression speed

Supplementary Table S2 presents detailed running time (wall-clock) of the
methods. The total wall-clock time is measured using /usr/bin/time
-v Unix command. HiRGC is the fastest tool for the compression of all
the 56 reference-target pairs. In most cases, HiRGC is about twice as fast
as memRGC. However, memRGC is at least 1.5 times faster than ERGC.
MemRGC is faster than SCCG except for two cases, and is 1.5 times faster
in 27 cases. For iDoComp, if the time used to generate the SA is included,
it is at least 2 folds slower than memRGC in 53 cases. If the time of the
SA generation is not included, memRGC is slightly faster than iDoComp
in 32 cases and iDoComp is much faster than memRGC in the other 24
cases.

Computational resources utilization for decompression

Supplementary Table S3 presents detailed running time (wall-clock)
and memory usage of memRGC vs the others during decompression.
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Table 1. Compressed file size (do not include the size of reference genome), compression gain, memory reduction and time reduction by different
methods for the pairwise reference-target genome compression

Reference Target
Raw size
(MB)

File size (MB) after compression by Compression gain
(file size reduction)

Memory
reduction

Time
reductioniDoComp ERGC HiRGC SCCG memRGC

YH
HG38 3004.12 64.82 580.54 27.04 26.03 21.89 18.91% (4.14) 74.57% 29.96%

HuRef 2717.67 14.04 478.43 13.97 13.34 11.50 16.00% (1.84) 35.57% 22.94%

K224 2986.70 18.10 11.57 16.05 10.86 9.52 14.08% (1.34) 61.97% 7.27%

HG17
HG19 3011.33 8.23 379.90 11.65 11.57 5.33 54.41% (2.90) 37.17% 65.74%

HG18 2996.49 3.37 171.80 10.34 10.30 2.25 49.78% (1.12) 33.89% 38.97%

HG38 3004.12 29.60 580.92 19.70 19.46 13.39 45.33% (6.07) 49.80% 53.58%

HG18
HG19 3011.33 6.20 299.45 10.66 10.62 4.02 54.23% (2.18) 35.36% 68.26%

HG17 2992.95 2.26 87.61 9.43 9.42 1.49 51.68% (0.77) 34.53% 34.84%

HG38 3004.12 28.12 582.28 18.99 18.74 12.34 51.86% (6.40) 48.83% 65.52%

HG19
HG38 3004.12 24.14 526.20 18.15 17.99 9.79 83.76% (8.20) 41.57% 59.21%

HG17 2992.95 6.18 175.71 9.70 9.68 3.88 59.28% (2.30) 37.69% 49.86%

HG18 2996.49 5.26 131.34 9.60 9.58 3.32 58.43% (1.94) 35.91% 57.83%

HG38
HG19 3011.33 8.44 184.49 11.55 11.43 5.58 51.25% (2.86) 35.17% 62.00%

HG18 2996.49 11.45 266.51 11.25 11.14 7.39 50.74% (3.75) 44.05% 61.19%

HG17 2992.95 11.75 333.13 11.09 10.98 7.55 45.43% (3.43) 45.39% 62.74%

K131
HG38 3004.12 237.04 603.86 28.56 27.39 22.82 20.03% (4.57) 74.40% �17.97%

HG19 3011.33 216.99 442.33 20.43 19.42 17.24 12.65% (2.18) 74.19% 41.00%

YH 2986.68 32.62 8.97 13.33 7.99 7.14 11.90% (0.85) 57.80% 34.09%

K224
K131 2986.70 6.66 5.98 10.19 5.84 4.40 32.73% (1.44) 33.43% 52.83%

HG38 3004.12 233.49 609.93 28.48 27.33 22.73 20.24% (4.60) 74.40% 23.68%

HuRef 2717.67 27.34 483.47 14.43 13.77 11.85 16.20% (1.92) 37.71% 23.35%

HuRef
HG38 3004.12 171.50 619.79 41.78 40.67 36.20 12.35% (4.47) 74.57% 12.47%

K131 2986.70 56.25 603.84 36.78 32.16 28.80 11.67% (3.36) 63.37% 0.22%

K224 2986.70 53.22 602.50 35.26 30.61 27.43 11.59% (3.18) 62.45% 10.32%

HG00113 NA12413 2986.29 17.43 84.81 16.78 16.97 15.39 9.03% (1.39) 32.92% 32.26%

NA11919 NA20770 2986.50 4.51 70.72 4.99 4.91 4.34 3.44% (0.15) 32.88% 60.22%

Note: Bold font indicates the best result in the row. Italic font represents the second best. Memory reduction =⇣
1 � memory usage of memRGC

the smallest memory usage of other tools

⌘
⇤ 100%. In the last column, the run time is only compared with the tool SCCG as it achieves the

second best compression ratio in most cases. Time reduction is calculated by
⇣
1 � run time of memRGC

run time of SCCG

⌘
⇤ 100%.

MemRGC is consistently faster than the other methods for all of the
cases. MemRGC is one order of magnitude faster than iDoComp in 32
cases and 3 times faster in the remaining 24 cases. It is at least 4.6
times faster than ERGC; a little faster than HiRGC; and 2.3 times faster
than SCCG. In terms of memory usage for decompression, memRGC
is an order of magnitude smaller than those of iDoComp, ERGC and
SCCG. The memory requirement of HiRGC is 2 folds higher than that of
memRGC. Thus memRGC achieves the fastest decompression speed with
less memory than the other methods.

Using an external reference to compress genome

collections from the 1000 Genomes Project

We compressed two genome collections containing 50 and 200 genomes
from the1000Genomes Project (The 1000 Genomes Project Consortium,
2015). The recently published human genome HG38 was chosen as
the external reference genome. The genomes from the 1000 Genomes
Project (The 1000 Genomes Project Consortium, 2015) are stored in the
VCF format and they were reconstructed to fasta files using vcf2fasta
tool provided by GDC-2 (Deorowicz et al., 2015). The raw size of the
50 genomes and of the 200 genomes are about 145.8 GB and 583.1
GB respectively. The method GDC-2 (Deorowicz et al., 2015), specially
designed to compress a collection of these genomes, is compared with out
method on the performance.

The sizes of the compressed files are shown in Supplementary Table
S5. In the compression of the 50 genomes, memRGC achieves a 1357-fold
compression rate, with the file size of these genomes reduced to only 110
MB. The compressed file by GDC-2 is 4.8 times larger than memRGC’s;
and those by HiRGC and SCCG are at least 3 times larger.

Similarly in the compression of the200 genomes, our method achieves
the highest compression rate 1907-fold, where each genome is succinctly
represented by a file of about 1.5 MB. The compressed files by HiRGC
and SCCG are about 4 times larger than ours.

Another very recent method, HRCM (Yao et al., 2019), is
an improvement on HiRGC for genome collection compression by
incorporating the two-level idea of FRESCO (Wandelt and Leser, 2013)
and GDC-2 (Deorowicz et al., 2015). Its performance on pairwise
reference-based genome compression is not good, but HRCM achieves
much progress in compressing a genome collection. The performance
of HRCM is much better than the other four state-of-the-art methods;
however, our memRGC still surpasses HRCM by about 10% compression
gain.

No need of external reference for a compression of 11

human genomes

We considered a scenario of external-reference-free compression of a
genome collection. Such a scenario relaxes the burden of selecting a
good external reference genome to compress a genome collection. By
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memRGC, the first genome sequence in the collection is compressed by
BSC, a block-sorting data compression tool. Before that it is used as a
reference genome to compress one of the remaining genomes G2. This
target genome G2 is identified through a search on the remaining genomes
to find a genome that has the smallest code. Then we use this target
genome (G2) as a reference genome to compress one of the remaining
uncompressed genomes. Iteratively, memRGC constructs a chain structure
of this genome collection for compression. This approach is different from
the compression process of using the first genome stored in the genome
collection as a fixed reference genome to compress all the remaining
sequences. We note that for a large collection of human genomes, the
search on the remaining genomes can be scoped to a small number such
as 10 or 20.

This genome collection containing 11 genomes (32 GB) can be
compressed down to only 748 MB by memRGC. The compressed file by
GDC-2 has a size of 1216 MB, which is 1.6 times bigger than memRGC.
For other methods such as HiRGC, SCCG and HRCM, they were not
designed to compress the first reference genome. For a fair comparison,
the volume of the first genome after compressed by BSC is added into their
compressed files. The file size compressed by HiRGC or SCCG is 1016
MB or 987 MB respectively, much bigger than memRGC’s. HRCM’s
compressed file is also 50 MB larger than memRGC’s.

Compression performance on other species’ genomes

To further assess the effectiveness and applicability of our memRGC,
other species’ genomes were tested as well. The experiments were
conducted on 18 pairs of reference-target genomes and the compression
results are presented in Supplementary Table S6. MemRGC achieves
the best compression result for 17 out of the 18 pairs. On the only
one remaining pair (where sacCer3 is used as reference and sacCer2 as
target), the compressed file by memRGC is just 38 bytes larger than
iDoComp’s. MemRGC outperforms ERGC, HiRGC and SCCG on all
of the pairs. Moreover, memRGC achieves at least 30% compression
gain over iDoComp on 10 pairs. Compared with ERGC, memRGC has
compression gains of at least 23% and up to 91% on 10 pairs. MemRGC
outperforms HiRGC by an average of 34% (up to 96% in some single
cases). MemRGC is also better than SCCG by at least 7% and up to 97%
(29% on average).

Effect of the maximal match extension on compression

performance

To demonstrate the impact of MEM extension, we ran experiments on 21
reference-target genome pairs without using the step of MEM extension.
The results are presented in Supplementary Table S7. MemRGC without
MEM extension has a lowered compression performance for all of the
tested cases. For more than half of the reference-target pairs (12 cases),
the impact of using the idea of MEM extension is very significant — the
compressed files by memRGC without MEM extension is 20% larger than
the standard memRGC.

4 Conclusion
Our extensive comparative experiments have demonstrated that memRGC
is the best algorithm for reference-based genome compression. It is the
first all-win method having better performance than current state-of-the-
art methods on all the benchmark data sets of human genomes. The key and
novel idea of our method is to detect maximal matches between genomes
and then extend the maximal matches to cover some mutations and
neighboring maximal matches for minimizing the codes of a target genome.
The comparative experiments have also shown that the compression speed

of memRGC is comparable to the existing methods, its de-compression
speed is much faster, and its memory consumption is remarkably smaller.
These advantages provided by our method will bring significant benefits
to genome data storage and transmission. There remain several issues to
overcome to improve the performance of memRGC. For example, the
iterative procedure and the settings of k, s1 and s2 are coded in a brute-
force way, and they have not been optimized for different reference-target
pairs. As future work, it would be useful to consider mutation-containing
matches for genome comparison and genome distance estimation. In the
current implementation, memRGC needs to set up the reference-target
genome pairs. It is cannot be directly used to compress genomes having
large number of contigs such as white spruce (Warren et al., 2015). We will
adapt the current version for an efficient construction of the reference-target
genome pairs when the genomes have large number of contigs.
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