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Abstract

Summary: OCSANA+ is a Cytoscape app for identifying nodes to drive the system towards
a desired long-term behavior, prioritizing combinations of interventions in large scale complex
networks, and estimating the effects of node perturbations in signaling networks, all based on
the analysis of the network’s structure. OCSANA+ includes an update to OCSANA (optimal
combinations of interventions from network analysis) software tool with cutting-edge and rig-
orously tested algorithms, together with recently-developed structure-based control algorithms
for non-linear systems and an algorithm for estimating signal flow. All these algorithms are
based on the network’s topology. OCSANA+ is implemented as a Cytoscape app to enable a
user interface for running analyses and visualizing results.

Availability and Implementation: OCSANA+ app and its tutorial can be downloaded from
the Cytoscape App Store or https://veraliconaresearchgroup.github.io/OCSANA-Plus/. The
source code and computations are available in https://github.com/VeraLiconaResearchGroup/
OCSANA-Plus SourceCode.

1 Introduction

Complex regulatory networks, such as gene regulatory and intracellular signaling networks are ubiq-
uitous in cells. Their computational modeling and analysis is essential to gain understanding of
and ultimately, control cellular behavior. Owing to the development of high-throughput measure-
ment technologies and databases, information about signaling network structure is becoming more
available, but detailed kinetic parameter information about molecular interactions is still limited,
particularly for large-scale complex networks. This lack of knowledge of network dynamics does not
preclude researchers from using the topological information of the network to: (1) identify nodes to
drive the system towards a desired stable long-term behavior, (2) identify and prioritize combina-
tions of pathway interventions while considering off-target effects, and (3) simulate the long-term
dynamic behavior of the system when subjected to perturbations. We previously introduced OC-
SANA (Vera-Licona et al., 2013), which identifies combinations of pathway interventions. Here, we
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introduce OCSANA+, an updated Cytoscape app, with the 3 aforementioned analysis capabilities,
and an optimized algorithm for the identification of combinations of interventions. To demonstrate
the novel capabilities of the tools in OCSANA+ as a pipeline we present two application examples
to successfully reproduce and predict simulated and experimental results.

2 Features

OCSANA+ (Figure 1) is a user-friendly app for the network analysis and visualization software,
Cytoscape (Shannon et al., 2003). It contains 3 main functions:

(1) Combinations of Interventions (CI) Search. A CI is a set of nodes such that each elemen-
tary path (a path from user-selected source to target nodes) contains at least one node from this
set. This CI set indicates the nodes to be intervened to disrupt all the identified elementary paths.
Optimality of CIs is defined in terms of a heuristic scoring. The scoring of a node is based on (i) the
lengths of the paths from the node of interest to the targets, (ii) the type of effect on target nodes
(e.g. activation/inhibition effect), (iii) side effects with respect to off-target nodes, (iv) the number
of elementary paths in which the node participates and (v) the number of targets that such node
can reach simultaneously. To identify CIs, users can select from the different algorithms to identify
Minimal Hitting Sets (MHSes). In its original version introduced in Vera-Licona et al. (2013),
two algorithms to identify MHSes were included: Berge’s algorithm (1989) for an exact solution
and a weighted-greedy algorithm for an approximate solution. OCSANA+ includes an additional
algorithm, the Reverse Search (RS) algorithm of Murakami and Uno (2014). In Gainer-Dewar
and Vera-Licona (2017), the RS algorithm was identified as one of the fastest algorithms from a
thorough benchmark of twenty-one algorithms with diverse synthetic and real-world networks. The
CI search can be accessed using the OCSANA panel of the Cytoscape control menu.
(2) Feedback Vertex Set Control (FC). Structure-based control methods aim to control the

system based only on the information provided by the network topology. In OCSANA+ we have
included structure-based control methods that apply to systems with non-linear dynamics. Con-
sider a system of N nodes, where i = 1, . . . , N, j = N − Ns + 1, . . . , N and Ns is the number of
source nodes (nodes with no incoming edges). At time t, the state of the internal node variables
Xi(t) are governed by dXi

dt = Fi(Xi, XIi , t) (1) which captures the nonlinear response of node i to
its predecessor nodes Ii,and which includes decay in the dependence of Fi on Xi. The state of
the source node variables Sj(t) obeys

dSj

dt = Gj(t) (2). The dynamics described by Eqs. 1 and 2
can be used to describe biochemical dynamics and gene regulation, and are such that they possess
some naturally occurring stable states, or dynamical attractors. Dynamical attractors in biological
systems like gene regulatory networks can be associated to cell fates or phenotypes. Attractor-
based control methods identify control nodes whose manipulation can drive the network from any
initial state to any of its attractors. We have implemented two minimal feedback vertex set (FVS)
structure-based attractor-based algorithms to control systems with dynamics described by Eq.1 and
Eq.2. The minimal FVS (mFVS) of a network is the set of nodes within a graph whose removal
would leave a graph without cycles.
(i) FC by Mochizuki et al. (2013). For a system described by the nonlinear dynamics of Eq.1, the
control action of overriding the state variables of the FVS ensures that the network will asymptot-
ically approach the desired attractor. In this approach, it is assumed that the source nodes of the
system converge to a unique state and do not need independent control.
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Figure 1: Overview of OCSANA+. (A) OCSANA control interface. (B) Dropdown Selection of FC
and SFA algorithms. (C) SFA configuration pop-up menu (D) SFA Results subpanel.

(ii) FC by Zañudo et al. (2017). This FC approach extends the method of Mochizuki et al. (2013)
to systems in which source nodes are assumed to be governed by Eq.2. As such, in addition to
the FVS sets, source nodes of the network need to be steered in the trajectory specified by the
attractor.
Using a simulated annealing local search approach (Galinier et al., 2013), OCSANA+ identifies
mFVSes in a network. Both FC methods can be selected from the drop-down OCSANA+ menu in
the App menu.
(3) Signal Flow Analysis (SFA). The SFA algorithm estimates the signal flow (information
conveyed by a series of biochemical reactions as represented in a signaling network) based only
on the topological information in a signaling network with 60-80% accuracy. Lee and Cho (2018)
showed that the ability of the SFA algorithm to predict experimental results was disrupted by
randomization of network edges; thus network topology conveys critical information for signal flow,
irrespective of kinetic parameters. The algorithm is based on a linear difference equation that con-
siders (i) the activity of a node at the previous time step, (ii) the effect (activating or inhibiting)
and influence of incoming edges to a node, and (iii) the initial activities of the node. The user can
configure (iii), while (i) and (ii) are calculated from the network topology. Therefore, the estima-
tion of the steady state value for any network node under any perturbation is highly dependent on
the correct edge information between network nodes. A user can compare the outputs of different
node perturbations to predict the direction of activity change of the network nodes resulting from
changes in signal flow. SFA can be selected from the drop-down OCSANA+ menu in the App
menu.
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3 Methods

OCSANA+ is software for the structure-based identification and prioritization of combinations of
interventions, attractor-based control nodes and signal-flow estimation of a perturbation on the
network. OCSANA+ implements three main algorithms- OCSANA, Feedback Vertex Set Control
(FC), and Signal Flow Analysis (SFA). OCSANA+ can be freely accessed and implemented as a
Cytoscape App. The OCSANA, FC, and SFA algorithms are fully described in their respective
papers (Lee and Cho, 2018; Mochizuki et al., 2013; Vera-Licona et al., 2013; Zañudo et al., 2017).
However, we will provide brief descriptions to elucidate their implementation herein.

4 Computing Optimal Combinations of Interventions

OCSANA (Optimal Combinations of Interventions from Network Analysis), originally introduced
in Vera-Licona et al. (2013), identifies and prioritizes optimal minimal combinations of interven-
tions (CIs) that disrupt the elementary paths from selected source nodes to the specified target
nodes. When indicated by the user, OCSANA seeks to additionally minimize the side-effects that
CIs can cause on specified off-target nodes. The identification of CIs proceeds as:

1. Pre-processing step: Compute the collection of elementary paths, that is, paths from selected
source nodes to selected target nodes. Compute paths from selected source nodes to side-effect
nodes, if side-effect nodes have been specified.
2. Score the nodes present in the elementary paths and sort them in a descending order according
to OCSANA’s node score. If side-effect nodes were selected, a side-effect score will be incorporated.
3. Compute the so-called minimal hitting sets (MHSs) for the elementary paths according to the
selected MHS algorithm and sort them according to OCSANA’s CI score. This sorted list of MHSs
is the sought list of prioritized optimal CIs.

4.1 Path Analysis

There are two options for identifying elementary paths between source and target nodes.
1. All non-self Intersecting Paths: identifies all paths between source and target node that do
not include self-loops.
2. Shortest Paths: identifies the minimal length paths from source to target for each pair of
source and target nodes.

4.2 Minimal Hitting Sets

Definition 1.1 Given a pair (V,Λ) consisting of a universe V of n elements and a collection Λ of
subsets of V , a hitting set is a subset H of V that intersects (hits) every λ ∈ Λ. A hitting set H
is minimal if no proper subset of H is a hitting set itself. By mapping the elementary paths (the
paths from source nodes to target nodes) onto the Λ collection of subsets of V , a hitting set H can
be seen as a set of nodes such that each elementary path that leads to the target nodes contains at
least one node from this set.

Several algorithms have been developed to identify MHSes for a given pair (V,Λ). In OC-
SANA+, we have provided three different algorithms- Berge’s Algorithm and Greedy Heuristic
Search (from original OCSANA implementation), and the Reverse Search (RS) algorithm:
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Berge’s Algorithm: Berge’s Algorithm is based in the Transversal Hypergraph problem,
defined as follows:

Given a finite set V of vertices v1, v2, ... and a set E of sets E1, E2, ...,⊆ V of hyperedges (or
“edges”), the pair H = (V,E) is a hypergraph. A hypergraph is simple if none of its edges is a
subset of any other edge. If V =

⋃
E∈εE, as is the case in many applications, we can identify the

hypergraph H = (V, E) with the set family E; thus, the theory of hypergraphs is closely related to
that of set families.

Readers interested in the full theory of hypergraphs should consult Berge’s monograph on the
subject (Berge, 1989).

In the finite hypergraph setting, a (minimal) hitting set of E is called a (minimal) transversal
of H. The collection of all minimal transversals of H is its transversal hypergraph TrH. We note
that Tr(TrH) = minH and, in particular, that Tr(TrH) =H in the case that H is simple.

Accordingly, Tr H is sometimes called the dual of H, and the construction of TrH is accordingly
sometimes called dualization. However, other constructions are also commonly called the hyper-
graph dual; in particular, it sometimes denotes a hypergraph obtained from H by transforming
each edge into a vertex and each vertex to an edge, which coincides with the typical definition of
a graph dual. To avoid confusion, we will prefer the term transversal hypergraph throughout.

The core idea of Berge’s algorithm is to proceed inductively over the hyperedges of the hy-
pergraph, alternately adding a new edge to the intermediate hypergraph under consideration and
extending the known transversals. We first introduce three important operations on hypergraphs.

Definition 1.2 Let H1 = (V1, E) and H2 = (V2, E2) be two hypergraphs. Their join H1 ∨ H2 is
the hypergraph with vertex set V = V1 ∪ V2 and edge set E = E1 ∪ E2. Their meet H1 ∧ H2 is the
hypergraph with vertex set V = V1 ∪ V2 and edge set E = A ∪B|A ∈ E1, B ∈ E2.

Definition 1.3 Let H be a hypergraph with vertex set V and edge set E . Its minimization (or
simplification), minH, is the hypergraph with vertices V and edges {A ∈ E|E contains no superset
of A}. In other words, minH retains exactly the inclusion-minimal edges of H. H is simple if H =
minH. These two operations interact nicely with the transversal construction.

Theorem 1 Let H1 and H2 be hypergraphs. Then the following relations hold:

Tr(H1 ∨H2) = min(TRH1 ∧ TRH2) (1)

and

Tr(H1 ∧H2) = min(TRH1 ∨ TRH2) (2)

Algorithm Berge then proceeds as follows (Algorithm 1):
1. Let H be a hypergraph with edge set E = {e1, e2, ..., en} (for an arbitrarily chosen ordering),
and for each i let Hi be the subhypergraph of H with all its vertices and its first i edges e1, ..., ei.
2. For each i in order, compute TrHi inductively: TrH1 = {v|v ∈ e1} and TrHi = min(TrHi−1∧Tr
ei) = min{t ∪ {v}|t ∈ TrHi−1, v ∈ ei} by (1).
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3. When the iteration is finished, Tr Hn = TrH by construction.

Berge’s algorithm can be adapted to search only for MHSs of cardinality bounded by some k
by simply discarding candidates larger than k.

Algorithm 1: Berge’s Algorithm

Input: A finite set family S = E1, E2, ...En
Output: The family T of MHSs of S

1 function BERGE(S)
2 T ← {{v}|v ∈ E1}
3 for all E ∈ S\E1 do
4 T ← {H ∪ {v}|H ∈ T , v ∈ E}
5 T ← minT
6 end
7 return T

Greedy Heuristic: The Greedy Heuristic Approach developed by Vera-Licona et al. (2013) refers
to the algorithm designed to compute, according to the selected parameters, the largest possible
amount of CIs up to a specified size (or set cardinality). The algorithm starts by building CIs of
size 1 and continues building CIs of increasing size until it reaches the specified maximum CI size
to be tested. For a given size, the CIs are identified through a weighted-greedy algorithm. The
weights of the greedy algorithm are provided by the OCSANA scores of the elementary nodes. The
algorithm is initially based on the MTMiner algorithm of Hébert et al. (2007). We follow the
explanation of the algorithm in Elbassioni et al. (2014) which avoids the algebraic complexity of
the original.

Fix a set family S = E1, E2, ..., En with underlying element set V =
⋃
E∈S , E = {v1, v2, .., vm}.

The MTMiner algorithm is initialized with the set C1 = {{v}|v ∈ V } of element sets of size 1. At
each step of the algorithm, the set Ci of candidate hitting sets of size i is processed. First, any
set in Ci which is a hitting set is removed and presented to the user as output; as will be seen, it
is guaranteed to be minimal. Each remaining set is not a hitting set, so extensions to sets of size
i+ 1 are considered. For each pair (C,C0) of sets with the property that |C ∩ C0| = i− 1, the set
C ∪C0 is constructed. For each of these unions, the algorithm checks whether more sets are hit by
C ∪ C0 than by any of its size-i subsets. If so, C ∪ C0 is added to Ci+1. The algorithm terminates
no later than i = n, by which time all MHSs have been output.
The algorithm proceeds as follows:
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Algorithm 2: MTMiner Algorithm

Input: A family of sets S = E1, E2, ...En
Output: The MHSs of S(in succession)

1 function MTMiner(S)
2 C ← ∅
3 for all v ∈

⋃
E∈S E do

4 if v ∈ E for all E ∈ S then
5 output {v}
6 else
7 C1 ← C1

⋃
{v}

8 end
9 while Ci 6= ∅ do

10 Ci+1 ← ∅
11 for all H,H ′ ∈ Ci such that |H ∪H ′| = i+ 1 do
12 N ← H ∪H ′
13 if N\{v} ∈ Ci and n\{v} hits fewer sets than N for all v ∈ N then
14 if N is a hitting set of S then
15 outputN
16 else
17 Ci+1 ← Ci+1 ∪ {N}
18 end
19 i← i+ 1

20 end

To apply this approach in OCSANA, in lines 13 and 14 we loop over all candidate sets C of
a given size and consider C ∪ {v} for every element V /∈ C such that {v} is not itself a hitting
set. Additionally, the OCSANA score is used for consideration of sets and elements to optimize the
quality of approximate results in cases where complete enumeration is infeasible.

Reverse Search (RS) algorithm: In Gainer-Dewar and Vera-Licona (2017), the RS algorithm,
developed by Murakami and Uno (2014), was identified as one of the fastest algorithms from a
thorough benchmark of twenty-one algorithms with diverse synthetic and real-world networks.

First, we require two definitions. For a given family of sets S, a sub-MHS is a set which is a subset
of some MHS of S. For a given set M of elements of S and a given element m ∈M , a set E ∈ S is
critical for m if E ∪M = {m}.

Theorem 2 If a set M is a sub-MHS of a set family S, then every E ∈ S is critical for some
m ∈M . In this case, we say that M satisfies the minimality condition.

The RS algorithm, proceeds by incrementally building up sets that satisfy the minimality condition,
discarding those which can be shown not to be sub-MHSes and yielding those which become hitting
sets.
Let F be a hyperedge in the hypergraph F . Let F(v) be the set of hyperedges in F that includes
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v. The RS algorithm proceeds as follows:

Algorithm 3: RS Algorithm

1 function RS(S)
2 if uncov=∅ then
3 outputS;return
4 i := min{j|Fj ∈ uncov}
5 for each v ∈ Fi, do
6 put a mark if v is violating (in the same way as lines 8-12)
7 end
8 for each v ∈ Fi, do
9 call Update crit uncov(v, crit[], uncov)

10 if min{t|Ft ∈ crit[f ]} < ifor each f ∈ S then
11 call RS(S ∪ v)
12 recover the change to crit[] and uncov done in line 8

13 end

14 function Update crit uncov(v, crit[], uncov)
15 for each F ∈ F(v) do
16 if F ∈ crit[u] for a vertex u ∈ S then
17 remove F from crit[u]
18 if F ∈ uncov then
19 uncov := uncov \F
20 crit[v] := crit[v] ∪ {F}
21 end

4.3 Scoring Elementary Nodes and Combinations of Interventions

The scoring of a node is based on (i) the length of the paths from the node of interest to the targets
(ii) the type of effect on target nodes (e.g. activation/inhibition effect) (iii) side effects with respect
to off-target nodes (iv) the number of elementary paths in which the node participates (v) the
number of targets that such node can reach simultaneously. Details on the OCSANA score can be
found in Vera-Licona et al. (2013) Supp1 AlgDescription.

5 Computing Structure-Based Attractor-Based Control Nodes with
Feedback Vertex Set Control (FC)

Structure-based methods study the controllability of systems based solely on the structure of the
network (Ching-Tai Lin, 1974; Mochizuki et al., 2013; Zañudo et al., 2017). In the recent years,
structure-based methods for systems with non-linear dynamics have been proposed. One of such
structure-based methods for non-linear dynamics is the feedback vertex set control (FC) introduced
by Mochizuki et al. (2013). FC is a structure-based control method focused on the controllability
of the system by restricting the target states to attractors. Mochizuki et al. (2013) mathematically
proved that, for a network governed by non-linear dynamics like those of cell signaling, the control
action of overriding the state variables of the feedback vertex set (FVS) into the trajectory specified
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by a given dynamical attractor ensures that the system will asymptotically approach the desired
dynamical attractor.

Consider a directed graph G = (V,E) comprised of node set V and edge set E. The node states
of G are described by the ODE

ẋn = Fn(xn, xIn) n = 1, 2, ..., N (3)

where for the dynamics x of node n ∈ V , In is the set of nodes that regulate node n, such that self
regulatory loops (n ∈ In) are only positive. Additionally, we assume Fn satisfies decay condition:

∂1(Fn(xn, xIn) < 0 (4)

for all n where ∂1 is the partial derivative w.r.t. the first occurrence of xn and not xIn .

Definition 2.1: In G, a subset I ⊆ V of nodes is Feedback Vertex Set (FVS) if and only if a
removal of set G \ I leaves a graph without directed cycles.
Definition 2.2: In a dynamic system, a subset J ⊆ V of nodes is a set of determining nodes if
and only if two solutions satisfy limx→∞ x̃J(t)− xJ(t)→ 0 whenever limx→∞ x̃n(t)− xn(t)→ 0 for
all components n ∈ J ⊆ V .

In Fiedler et al. (2013); Mochizuki et al. (2013) these two definitions were proved to be equivalent
for dynamics in a network. Therefore, observation of the long-term dynamics of the FVS is sufficient
to identify all possible attractors of an entire system. Controlling the dynamics of the FVS (x∗I(t)−
xI(t) → 0) is sufficient to drive the dynamics x(t) of a whole system to converge on one of any
attractors x∗(t).

Zañudo et al. (2017) expanded the FC framework to include graph theory source nodes (nodes
with no incoming edges). Whereas Mochizuki assumes that source nodes converge to a unique
trajectory and do not need independent control, Zañudo asserts that source nodes can denote
external stimuli a system may respond to, which could result in different attractors for source node
states. Under this framework, assume the dynamics of directed graph G are governed by Eq. 3 for
internal nodes((N −Ns) where Ns is the number of source nodes in the network), and

Sj(t) = Gj(t) (5)

where S ⊆ V is the set of source nodes, and the dynamics of each source node j is independent of
the internal node variables, fully determined by Gj(t), and does not include a decay term.

In OCSANA we have included two structure-based FVS-based attractor-based methods for
non-linear systems:

(1) FC control from Mochizuki et al. (2013). In this type of control it is assumed that the
system does not have source nodes or that source nodes converge to a unique state and do not need
an independent control.

(2) FC control from Zañudo et al. (2017). This control approach is an adaptation of Mochizuki’s
FC control: The control of the source nodes and of the FVS of a network is needed to guarantee
that the system can be driven from any initial state to any of its dynamical attractors. The addition
of the control of source nodes is under the assumption that the state of the source nodes can affect
the dynamical attractors available to the system.
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5.1 Identifying the Minimal Feedback Vertex Set

The minimal Feedback Vertex Set problem is a well known NP-hard problem. Many algorithms have
been developed to find the near-minimum FVS. Based on the implementation of FC in Zañudo et al.
(2017), we have used a simulated annealing local search approach, SA-FVSP, originally described
in Galinier et al. (2013). Local search algorithms, when applied to combinatorial optimization prob-
lems define a search space (the set of configurations), an evaluation function, and a neighborhood
function. To perform local search for FVSes, the set of configurations is any ordered sequence S
of vertices such that, if two endpoints of an arc belong to the sequence, the starting point appears
earlier than the endpoint (Algorithm 4). The FVS is G \ S. A simulated annealing algorithm is
used to explore the neighborhood of S. SA-FVSP has been show to outperform the greedy adaptive
search procedure by Pardalos et al. (1998).

Algorithm 4: SA-FVSP Algorithm

Input: a directed graph G
parameter: T0, α,maxMvt,maxFail

1 function SA-FVSP(G)
2 Set T := T0;nbFail := 0;S := (), S∗ := 0
3 repeat
4 Set nbMvt := 0; failure = true
5 repeat
6 Choose a move < v, b > at random in the candiate list
7 Evaluate ∆ := δ(v, b)
8 if ∆ ≤ 0 or exp(−∆/T ≥ rand() then
9 Apply move < v, b > to configuration S

10 Set nbMvt := nbMvt+ 1

11 if f(S) < f(S∗) then
12 Set S∗ := S; failure := false

13 until nbMvt = maxMvt;
14 if failure = true then
15 Set nbFail := nbFail + 1
16 else
17 Set nbFail := 0
18 Set T := T × α
19 until nbFail = maxFail;
20 return S∗

Our Java implementation of the Python code for FC provided by Zañudo et al. (2017) can
be found in the OCSANA+ github repository (https://github.com/VeraLiconaResearchGroup/
OCSANA-Plus SourceCode).
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6 Estimating Signaling Network Perturbations’ Effect with Signal
Flow Analysis (SFA)

The SFA algorithm estimates the signal flow (the information conveyed by a series of biochemical
reactions as represented in a signaling network) based only on the topological information in a
signaling network. Signal Flow Analysis is based on the signal Propagation algorithm, described
in Lee and Cho (2018).

The activity a of a node i is determined by the activities of its regulators and the basal activity
of the node. This can be defined as

ai(t+ 1) =

∏
j

aj(t)
W
i j

a

ab(i)
1−α, a ∼ (0, 1) (6)

where ai(t) and ab(i) ∈ P are the activity at time t and the basal activity of node i, Wij ∈ P
is the weight of an edge between node j and node i, which represents how much node j and node
i through the edge, and α ∈ P is a hyperparameter for weighted multiplication (default=0.5).
The effect of input stimulation is reflected to the basal activity of input nodes. When taking the
logarithm of Eq.6, it becomes a linear difference equation

xi(t+ 1) = α
∑
j

Wijxj(t) + (1− α)bi (7)

where x = log(a) ∈ PN , b = log(ab) ∈ PN and W = PN×N is the link weight matrix. This is solved
exactly for the steady state values (xs) by

xs = αWxs + (1− α)b (8)

To determine the effect of multiple perturbations the difference between the log steady state
values can be calculated as

xfold = xc2 − xc1 (9)

where ci denotes each condition. Since x is the logarithm of the activity at steady state, Eq.9 is
essentially a log fold change. The sign (positive or negative) of xfold denotes if the activity is up or
downregulated in the compared conditions, rather than predicting the accurate amount of change.

The OCSANA+ Java implementation of the Python code of Lee and Cho (2018) can be found in
the OCSANA+ github repository (https://github.com/VeraLiconaResearchGroup/OCSANA-Plus
SourceCode/tree/master/OCSANA Plus SourceCode).

7 Results: Application Examples

We demonstrate the ability of OCSANA+ to successfully reproduce simulated and experimental
results from two biological signaling networks with non-linear dynamics. Furthermore, we show
how OCSANA+ can improve the simulated results. All computations are available in https://
github.com/VeraLiconaResearchGroup/OCSANA-Plus SourceCode.
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8 Application Example 1: Ascidian embryo cell fate specification

To show experimentally the ability of FC nodes to control cell fates, Kobayashi et al. (2018)
identified FC nodes in the gene regulatory network of Ciona intestinalis embryos and performed in
vitro knock-down and upregulation experiments of the FC nodes to control cell fate specification.

8.1 Description of the network and FC Analysis Performed in Kobayashi et al.
(2018)

The Gene Regulatory Network (GRN) for the specification of cell fate was determined by a genome-
wide gene knockdown assay for regulatory genes that are expressed during embryogenesis (Imai
et al., 2006) and that was recently updated using data that had been accumulated after the initial
construction (Satou and Imai, 2015). This GRN contained 92 genes (nodes) and 328 regulatory
interactions (edges) (Figure 1).

They identified all 12 of the minimal Feedback Vertex Sets (FVS) found in the network, each
comprised of 5 genes. After selection of 1 FVS containing nodes Foxa.a, Foxd, Neurog, Zic-r.b, and
Erk signaling, morpholino antisense oligonucleotides and synthetic mRNAs were used to knock-
down and up-regulate gene activity, respectively. RT-qPCR was performed for all combinations
of perturbations (25 = 32). 22 of the perturbations were then classified into their predominant
cell fate (epidermis, brain+pan-neural, pan-neural, endoderm, notochord, mesenchyme) based on
marker expression patterns as compared to an unperturbed control embryo (Table 1). For each
tissue fate, one perturbation was selected for in-situ hybridization experiments.

Figure 2: Gene Regulatory Network for Cell Specification in Ascidian Ciona intestinalis used in Kobayashi
et al. (2018). Purple edges indicate activating interactions, while blue edges indicate inhibitory interactions.
Nodes highlighted in yellow are those who are members of the FC set explored in Kobayashi et al. (2018).
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epidermis brain+ pan-neural pan-neural endoderm notochord mesenchyme

adnze
adnZe adNzE, adNze, aDNZe aDnze adnZE
adNZe adNZE, aDNzE, Adnze ADnze
AdNZE AdnZe, AdNzE, ADnZE ADNze

AdNze, AdNZe, ADnZe
AdnZE

Table 1: Marker expression of experimental embryos. Each experimental condition is represented by a
five-letter code in which up-and down-regulation of Foxa.a, Foxd, Neurog, Zic-r.b, and Erk signaling are
represented by A/a, D/d, N/n, Z/z, and E/e, respectively. Perturbations in bold letters were selected for
in-situ hybridization experiments. Reproduced from Kobayashi et al. (2018)

8.2 Analysis on the Ascidian Embryo Cell Fate Network using OCSANA+

After performing the FC without source nodes analysis through OCSANA+ we identified the same
12 minimal FVSes as in Kobayashi et al. (2018). To reproduce the RT-qPCR and in-situ hybridiza-
tion results in Kobayashi et al. (2018), we used SFA to predict the effect of perturbations (up- or
downregulation) of the 5 FVS nodes. We additionally simulated an unperturbed state using ini-
tial values of activated Gata.a and Zic-r.a which are noted to initiate the zygotic developmental
program (Kobayashi et al., 2018, Satou and Imai, 2015). Since the values produced by SFA are
qualitative and not quantitative, we can calculate the logFC as the difference between perturbed
and unperturbed log steady state values which is equivalent to the log of the ratio of the perturbed
and unperturbed steady state values. The logFC values that are positive indicate up-regulation
in the perturbation attractor, while negative values indicate down-regulation in the perturbation
attractor. Our simulations were deemed successful if the perturbation logFCs was upregulated for
the correct marker gene for the specified tissue (Table 2). For four of the six perturbations (66%),
we were able to predict the correct upregulated gene for tissue fate specification.

Considering that the GRN studied contains source nodes, which in principle can affect the dy-
namical attractors in the system, we applied the extended FC approach from Zañudo et al. (2017).
We identified nine source nodes: Ctnnb, Gata.a, Gdf1/3-r, Hes.a, Pem1, Sox4/11/12, Tp53.a,
Tp53.b, Zic-r.a. In addition to being critical for zygotic development, Gata.a and Zic-r.a are re-
quired for the specification of ectodermal tissue and mesenchyme tissue, respectively (Satou and
Imai, 2015).

We used OCSANA in OCSANA+ to canalize the signal from the network source nodes to
a specified cell fate. For example, if we want to predict additional nodes that may control the
signal to epidermal specification, we identify combinations of interventions that can be used to
intervene in paths from the nine source nodes to epidermis marker Epi1. Configuring path finding
for all non-self-intersecting paths with a maximum length of 20 nodes from source to target, and
CI discovery with the RS algorithm, allowing source nodes to be in CIs, we identify a CI of two
nodes: source node Gata.a, and FVS node Erk signaling. SFA was used to predict the effect of
downregulation of all FVS nodes perturbation (adnze), and activation of Gata.a (Table 2). The
addition of Gata.a activation then produced a steady state value for epithelial marker Epi1 that
matched the experimental result. However, neither addition of the source nodes, nor a CI from
source nodes to pan-neural marker Celf3.a was able to achieve SFA simulation that upregulated
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Celf3.a.

adnze adnZe adNze Adnze aDnze adnZE
adnze+
Gata.a

activation

marker nodes
exp.

logFC
SFA

logFC
exp.

logFC
SFA

logFC
exp.

logFC
SFA

logFC
exp.

logFC
SFA

logFC
exp.

logFC
SFA

logFC
exp.

logFC
SFA

logFC
exp.

logFC
SFA

logFC

Epi1 (epidermis)

Bco (brain)

Celf3.a (pan-neural)

Alp (endoderm)

Noto1 (notochord)

Fli/Erg.a (mesenchyme)

Table 2: Summary of results of in silico simulations of FVS node perturbations. Yellow boxes indicate
upregulation of the cell fate tissue marker. Blue boxes indicate downregulation of cell fate tissue marker.
For each perturbation, the experimental logFC is compared with the SFA logFC between the perturbed and
unperturbed state (perturbed-unperturbed).

9 Application Example 2: Drosophila Segment Polarity Genes
Network

To assess the extended FC approach with source nodes, Zañudo et al. (2017) used the Drosophila
Melanogaster segmentation polarity genes network that guide gene expression during embryonic
development. The purpose of this study was to show the success of FC to steer the dynamics of a
system towards any natural attractor in a validated model. With an established Boolean Model of
the Segment Polarity gene network, the authors showed that fixing the values of the FC nodes to
their state in the correctly patterned attractor (the wild-type attractor) was sufficient to guide the
system to the patterned attractor irrespective of the initial state of all other network nodes.

9.1 Description of the segment polarity gene network and FC Analysis Per-
formed in Zañudo et al. (2017)

The fruit fly Drosophila Melanogaster segment polarity gene network is a well studied model of
embryonic patterning. The fruit fly body is composed of segments, and the segment polarity genes
play an essential role in the correct location of appendages, and maintaining boundaries between
embryonic sections (Hooper and Scott, 1992). Albert and Othmer (2003) showed that a model solely
of the network topology of the segment polarity genes was sufficient to reproduce the dynamics of
the segment polarity gene networks. The model constructed by these authors and used by Zañudo
et al. (2017) represents four cells as a repeating unit to reproduce wild-type stable cell patterning
(Figure 2). This model contains 56 nodes and 144 edges representing the four cells as hexagons
with two cell-to-cell boundaries. Zañudo and coauthors focused on the expression of hedgehog in
cell 2 (hh2) and engrailed in cell 2 (eg2) at the steady states, as they are the major determinants
of embryonic patterning and development.

Zañudo and coauthors identified two initial conditions for network nodes that yielded either the
wild-type patterned steady state, or the unpatterned steady state. They identified an FC consist-
ing of the following nodes: SLP0, SLP1, SLP2, SLP3, wg0, wg1,wg2, wg3, PTC0, PTC1, PTC2,
PTC3, CIR0, CIR2.
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Figure 3: Drosophila Segment Polarity network Purple edges indicate activating interactions, while blue
edges indicate inhibitory interactions. Nodes highlighted in yellow are those who are members of the FC set
explored in Zañudo et al. (2017).

Using a Boolean model derived from the network, Zañudo and coauthors simulated the results
of FC perturbations. From any arbitrary initial condition, including the unpatterned initial state,
fixing the state of the FC nodes to their values at the wild-type steady state resulted in the wild-type
steady state (Table 3).

steady state initial conditions steady state expression values

wild-type
ON: ptc0, ci3, ci1, wg1, SLP1,ptc3,

ptc1,hh2,SLP0,en2,ci0

hh2:ON
en2:ON

unpatterned OFF: all nodes
hh2:OFF
en2:OFF

FC controlled
ON: wg1,PTC0, SLP1, PTC3,

PTC1, SLP0, CIR0

hh2:ON
en2:ON

Table 3: Summary of the results of the Boolean simulations of Drosophila segment polarity gene network
reproduced from Zañudo et al. (2017).

9.2 Analysis on the Segment Polarity Genes Network using OCSANA+

We loaded the static Segment Polarity Network used in Zañudo et al. (2017) into Cytoscape. Using
the FC with source nodes algorithm through OCSANA+ we identified 6 FCs including the above
FC set used for control in Zañudo et al. (2017). To reproduce the control results we simulated the
wild-type steady state and unpatterned steady state using SFA through OCSANA+. We calculated
the logFC between the wild-type and unpatterned log steady state values for en2 and hh2 generated
by SFA. Then, we simulated the FC control in the same manner as in Zañudo et al. (2017) by fixing
the state of the FC nodes to their values at the wild-type steady state, and leaving all other nodes
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at the unpatterned state initial values. The logFC between the FC controlled steady state and the
unpatterned steady state indicates upregulation of en2 and hh2 (Table 4).

wild-type unpatterned FC Controlled

Boolean model result
SFA logFC

(unpatterned-wild-type)
SFA logFC

(FC controlled-unpatterned)

hh2
en2

Table 4: Summary of results of in silico simulations of FC node perturbations. The wild-type column
represents the state of nodes in the wild-type attractor (ON). Yellow boxes indicate upregulation of the
segment polarity gene. Blue boxes indicate downregulation of the segment polarity gene, as computed from
the SFA logFC.

10 Discussion

We show that OCSANA+ can be used to accurately predict up to 85% of the experimental results
of Kobayashi et al. (2018). We were able to correctly predict the upregulated gene for tissue fate
specification for 66% of the FVS perturbations when simulating steady states using SFA. This
result is expected, as the SFA algorithm has an accuracy of about 60-80% for estimation of steady
state values based only on topological information (Lee and Cho, 2018).

Additionally, the use of FC with source nodes and CIs produced by OCSANA improved upon the
simulated results, increasing the correct simulation of the experimental results to 85%. The addition
of graph theory source nodes to the optimal control set increases the power of the computational
model to precisely simulate the activities in the actual embryo. Experimentally, Gata.a is necessary
for zygotic development and ectodermal specification; although a source node in the GRN, Gata.a
is activated in the ascidian embryo by animal sphere orientation (Satou and Imai, 2015). Thus,
control of Gata.a in silico replicates a crucial signal in a biological system. We were unable to
replicate the specification of the pan-neural cell fate using FVS perturbation adNze, or adNze with
additional control of source nodes. This is mostly likely due to limitations of the GRN topology. In
the GRN, only Zic-r.b activates pan-neural marker Celf3a. However, Zic-r.b is down-regulated in
the adNze perturbation. The topological estimation of signal flow performed by SFA for Celf3.a is
downregulated when compared with the unperturbed steady state because direct inhibition of Zic-
r.b cannot be overcome by multiple activating signals into Zic-r.b. In Mochizuki et al. (2013), it is
noted that if the FVS cannot explain all of the observed biological diversity in phenotypes, the issue
may lie within the gene network structure. Furthermore, SFA is highly dependent on the network
topology to correctly predict steady state activities of network nodes. Overall, the FC, SFA, and
OCSANA algorithms in OCSANA+ can be used to simulate and prioritize in vitro perturbation
experiments using solely the topological information provided by gene regulatory networks.

Finally, using the FC and SFA algorithms in OCSANA+, we are able to reproduce the results
of FC of the Boolean simulation for the Drosophila segment polarity genes network in Zañudo et al.
(2017) with the derived signaling network. We observe that by activating a set of FC nodes, we are
able to upregulate all the correct patterning genes when compared to the unpatterned state. It is
important to note that the ability of SFA to predict steady state values is highly dependent on the
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correct network topology. OCSANA+ provides a useful tool for simulating FC experiments when
dynamic models may not be available.
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