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ABSTRACT
Summary: PoSeiDon is an easy-to-use pipeline that helps
researchers to find recombination events and sites under positive
selection in protein-coding sequences. By entering homologous
sequences, PoSeiDon builds an alignment, estimates a best-
fitting substitution model, and performs a recombination analysis
followed by the construction of all corresponding phylogenies.
Finally, significantly positive selected sites are detected according
to different models for the full alignment and possible recombination
fragments. The results of PoSeiDon are summarized in a user-friendly
HTML page providing all intermediate results and the graphical
representation of recombination events and positively selected sites.
Availability and implementation: PoSeiDon is freely available
at https://github.com/hoelzer/poseidon. The pipeline is
implemented in Nextflow with Docker support and processes the
output of various tools. Contact: hoelzer.martin@gmail.com

1 INTRODUCTION
Selection pressure continuously influences the evolution of genes
and can be studied in many ways (Vitti et al., 2013). For example,
positive or diversifying selection can be detected by comparing the
rates of non-synonymous (dN ) and synonymous substitutions (dS)
in an alignment of orthologous genes. Over several sites (codons),
the dN/dS ratio (or ω) can reach values well above 1 (Yang, 2007),
and such sites are likely to be positively selected. For instance,
specific amino acid changes are favored if they increase the host’s
fitness against a pathogen (Fumagalli et al., 2011). Alternatively,
the genes of a pathogen are affected, as in the COVID 19 pandemic,
where positively selected sites in the spike protein of the virus gave
cause for concern (Korber et al., 2020). The detection of positive
selection enables researchers to gain insights into the evolution of
genes and thus develop countermeasures against pathogens that are
in a constant ‘arms-race’ with their host.
Since recombination can have a profound influence on evolutionary
processes and can adversely affect phylogenetic reconstruction and
the accurate detection of positive selection (Shriner et al., 2003),
screening for breakpoints to define recombinant parts within an
alignment should be a standard step in any comparative evolutionary
study.
A comprehensive evolutionary analysis of significantly positively
selected sites consist of several complicated steps, including (1)
in-frame alignment; (2) Indel correction; (3) phylogenetic tree
calculation; (4) selection of a best-fitting nucleotide substitution
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model; (5) detection of topological incongruence and breakpoint
selection to describe putative recombination events; (6) calculation
of positively selected sites (ω > 1) under varying models; (7)
and their impact on the selective pressure acting on the whole
alignment. Thus, such an analysis involves dozens of different tools
and parameter settings.
In addition, the results of many well-established and widely used
tools in this field of evolutionary science are not easy to interpret and
process. Especially, the accurate detection and handling of putative
recombination events is a challenging but essential task.
Currently, only a few tools for the comprehensive detection of
positive selection exist. These tools either do not automatically
combine all of the described steps (Delport et al., 2010), do not take
possible recombination events into account (Doron-Faigenboim
et al., 2005; Stern et al., 2007; Webb et al., 2017), or focus only
on the detection of positive selection in prokaryotic genomes (Su
et al., 2013).
Here we present PoSeiDon, a pipeline that allows researchers
to perform comprehensive evolutionary studies by automatically
taking care of all tasks mentioned above. PoSeiDon does detect
not only positively selected sites in an alignment of homologous
sequences but also possible recombination events that could
otherwise adversely affect the positive selection detection. The input
is a single FASTA file consisting of protein-coding DNA sequences
with a correct open reading frame. The output is summarized in
TEX and PDF format and visualized in a user-friendly HTML page,
providing access to all results and intermediate files.

2 PIPELINE AND IMPLEMENTATION
PoSeiDon comprises an assembly of different scripts and tools
(Fig. 1) that allow for the detection of recombination and
positive selection in protein-coding sequences. Each third-party tool
encapsulates in a Docker container and all steps are connected
in a Nextflow (Di Tommaso et al., 2017) implementation for
full parallelization and simple execution. If Nextflow and Docker
are configured, PoSeiDon can be installed and run with a single
command: nextflow run hoelzer/poseidon --help.
Different profiles allow the reliable execution of PoSeiDon in the
cloud or on a cluster system. Starting from homologous coding
sequences provided by the user, we build a multiple sequence
alignment guided by amino acid information with TranslatorX
(v1.1) (Abascal et al., 2010), using Muscle (v3.8.31) (Edgar, 2004)
to align the sequences. The resulting in-frame nucleotide alignment
is cleaned for Indels. A best-fitting substitution model is selected
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using MODELTEST (Posada and Crandall, 1998), which is part of
the HyPhy suite (v2.2.7) (Pond et al., 2005).
Possible recombination events and corresponding breakpoints in
the alignment are detected using GARD (Pond et al., 2006b,a)
under the previously selected substitution model. All breakpoints
are tested for significant topological incongruence using a Kashino
Hasegawa (KH) test (Kishino and Hasegawa, 1989). KH-
insignificant breakpoints most frequently arise from variation
in branch lengths between segments. However, we observed
interesting positively selected sites in fragments without any
significant topological incongruence (Fuchs et al., 2017). Thus,
KH-insignificant breakpoints can be taken into account and are
marked in the final output, as they might not occur from real
recombination events. Positions of putative breakpoints that would
destroy the open reading frame are adjusted to the next valid
position. Phylogenetic reconstructions on the full alignment and
all fragments are performed with RAxML (v8.2.12) (Stamatakis,
2014) using the GTRGAMMA model for nucleotide sequences and
PROTGAMMAWAG for amino acids. All calculations are performed
with 1 000 bootstrap replicates. The user can apply optional
outgroup rooting. The Newick Utilities suite (v1.6) (Junier and
Zdobnov, 2010) is used to visualize the calculated trees in different
formats.
Positive selection is analyzed on the full alignment and each of the
fragments separately. Maximum-likelihood tests to detect positive
selection under varying site models are performed with CODEML
(M1a vs. M2a, M7 vs. M8) implemented within the PAML suite
(v4.9) (Yang, 2007). Furthermore, we implemented the M8a vs.
M8 test proposed by Swanson et al. (2003) as an additional model
test in PoSeiDon. The different statistical site models that do
not allow (neutral models) or allow (selection models) a class of
codons to evolve with ω > 1 are compared. Furthermore, varying
codon frequency models are applied to simulate different nucleotide
substitution rates. A gene is declared to be positively selected if
the neutral model can be rejected in favor of the positive selection
model based on a likelihood ratio test. Then, a Bayes empirical
Bayes (BEB) approach (Yang et al., 2005) is applied to calculate
posterior probabilities (PP ) that a codon comes from the site class
with ω > 1. Positively selected sites with an assigned PP > 0.95
are depicted as significant.
We graphically summarize all positively selected sites under varying
frequency models in the output (Fig. 1). Thus, we allow the user
to investigate sites that would be dismissed from the output when
using a PP threshold. For example, such sites could be located in
regulatory domains of the final protein, yielding a lower PP value
due to insufficient species sampling (McBee et al., 2015). The final
output of PoSeiDon is based on a heavily modified version of the
TranslatorX HTML output. The amino acid color code is adapted
from TranslatorX.

3 CONCLUSIONS
Here we present PoSeiDon, an easy-to-use Nextflow pipeline
for the accurate detection of site-specific positive selection and
recombination events in protein-coding sequences. The input
is a multiple FASTA file of homologous coding sequences
that is automatically transferred into a codon-based alignment.
Since recombination can have a profound impact on the

evolutionary history of sequences, we initially check the alignment
for topological incongruence to define putative recombination
breakpoints. The whole evolutionary analysis of PoSeiDon
is performed independently for the full alignment and all
possible fragments. PoSeiDon automatically calculates maximum
likelihood-based phylogenetic trees for all alignments, estimates
ω values at each site, and computes their impact on the positive
selection. All identified sites and their significance values are
projected onto the codon and amino acid alignment of the input
sequences to allow visual identification of evolutionary hot-spots
with high ω values. Additionally, publication-ready PDF and LATEX
tables are provided, including all breakpoints and significantly
positively selected sites. All results are summarized in a user-
friendly and clear manner, allowing researchers to study positive
selection.
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Fig. 1. The workflow of the PoSeiDon pipeline and example output. The PoSeiDon pipeline comprises in-frame alignment of homologous protein-coding
sequences, detection of putative recombination events and evolutionary breakpoints, phylogenetic reconstructions and detection of positively selected sites in
the full alignment and all possible fragments. Finally, all results are combined and visualized in an HTML web page. The resulting alignment fragments are
indicated with colored bars in the HTML output.
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