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Abstract

Motivation: Recent years have seen a growing number and a broadening scope of studies using synthetic oligo
libraries for a range of applications in synthetic biology. As experiments are growing by numbers and complexity,
analysis tools can facilitate quality control and help in assessment and inference.
Results:We present a novel analysis tool, called SOLQC, which enables fast and comprehensive analysis of synthetic
oligo libraries, based on NGS analysis performed by the user. SOLQC provides statistical information such as the
distribution of variant representation, different error rates and their dependence on sequence or library properties.
SOLQC produces graphical descriptions of the analysis results. The results are reported in a flexible report format.
We demonstrate SOLQC by analyzing literature libraries. We also discuss the potential benefits and relevance of the
different components of the analysis.
Availability: https://app.gitbook.com/@yoav-orlev/s/solqc/

1 Introduction

DNA synthesis technology has greatly developed over re-
cent years and is holding a promise to enable a leap in
using natural systems for various applications. For exam-
ple, synthetic DNA is used for making protein therapeu-
tics and drugs. Another application is in genome editing,
wherein optimizing CRISPR-Cas9 systems and reagents
is enabled by using libraries of synthetic DNA oligonu-
cleotides. Synthetic DNA is particularly useful for screen-
ing of large guide-RNA libraries to optimize CRISPR-Cas9
based systems [19]. The use of synthetic DNA also en-
ables the optimization of crops for efficient biofuel pro-
duction [24]. In particular, synthetic DNA can be used to
perform codon-optimization, directed evolution, enzyme
libraries screens, and incorporation of non-natural amino
acids to improve novel enzymatic activities in the biofuel
industry [8]. Last but not least, synthetic DNA is also an
attractive alternative for data storage media, see e.g. [20]
and more details in section 1.1. With an information den-
sity orders of magnitude better than that of magnetic me-
dia and due to its highly robust chemical properties DNA
can potentially efficiently store data for centuries. This
progress in the use of synthetic DNA, as well as its po-
tential to drive future applications, drives work focused
on the optimization of manufacturing processes and of de-
sign cycles. A key to such work is monitoring the quality
of synthetic DNA throughout the process, including at the
hands of the end users.

Synthetic DNA libraries consisting of thousands of

DNA sequences, often referred to as variants, have be-
come a common tool in molecular biology. They allow for
systematic, unbiased investigations for discovery biology,
directed evolution for protein engineering, and in vitro
molecular optimization to generate mutant proteins with
novel properties. Sharon et al. used an oligonucleotide
library (OL) to infer gene regulatory logic [23], Levy et
al. used an OL to discover a bacterial insulation mech-
anism [18], and most recently Kotler et al. found links
between differential functional impact to mutations in p53
using OLs [16].

The process of using OLs in such studies usually starts
with a design file containing the DNA variants, which will
be synthesized as millions of physical oligonucleotides (oli-
gos). These oligos will typically be sequenced in one or
more steps of the experimental process, producing results
in the form of NGS output files (typically fastq). We refer
to each sequenced synthesized strand as a read. To vali-
date and/or optimize the results of the different steps in
an OL based study, it is important to quality control all
components to make sure that the results stem from the
biology and not from noise, from confounding interference
of from other biases related to synthesis and to sequencing.

1.1 DNA Storage Systems

The recent progress in synthesis and sequencing tech-
nologies has paved the way for the development of a
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non-volatile data storage technology based upon DNA
molecules. A DNA storage system consists of three im-
portant components. The first is DNA synthesis. The
stage at which the strands or DNA molecules that encode
the data are produced (those strands called input strands,
or variants). In order to produce strands with acceptable
error rates, in a high throughput manner, the length of
the strands is typically limited to no more than 250 nu-
cleotides [2]. The second part is a storage container with
compartments. This container stores the DNA strands.
No order is assumed for this stage. Finally, sequencing
is performed to read back a representation of the strands
(the output of this stage consists of strands called output
strands or sequencing reads). A decoding process trans-
forms the sequencing output back to digital data. The
encoding and decoding stages are two processes, exter-
nal to the storage system, that convert the user’s binary
data into strands of DNA in such a way that, even in the
presence of errors, it will be possible to revert back and
reconstruct the original binary data of the user.

One of the first experiments to store information in
DNA was conducted by Clellan et al. in 1999, where they
coded and recovered a message consisting of 23 charac-
ters [7]. Shortly after this, in 2000, Leier et al. have
managed to successfully store three sequences of nine bits
each [17]. A more significant progress, in terms of the
amount of data stored successfully, was reported by Gib-
son et al. in 2010, demonstrating in-vivo storage of 1,280
characters in a bacterial genome [10]. The first large scale
demonstrations of the potential of in vitro DNA storage
were reported by Church et al. who recovered 643 KB
of data [6] and by Goldman et al. who accomplished the
same task for a 739 KB message [11]. Both of these pi-
oneering groups did not recover the entire message suc-
cessfully as no error correcting codes were used. Later,
in [12], Grass et al. stored and recovered successfully 81
KB message, in an encapsulated media, and Bornholt et
al. demonstrated storing a 42 KB message [4]. A signifi-
cant improvement in volume was reported in [3] by Blawat
et al. who successfully stored 22 MB of data. Recently, Er-
lich and Zielinski managed to store 2.11 MB of data with
high storage density [9]. The largest volume of stored data
is reported by Organick et al. in [20]. Organick et al. de-
scribe the encoding and decoding of 200 MB of data, an
order of magnitude more data than previously reported.
Yazdi et al. [28] developed a method that offers both ran-
dom access and rewritable storage. Most recently, Anavy
et al. [1] described how more data can be stored for less
synthesis cycles. Their approach uses composite DNA let-
ters. A similar approach, on a smaller scale, was reported
in [5].

1.2 Synthetic Oligo Library (OL) Er-
rors

The processes of synthesizing, storing, sequencing and
handling oligonucleotides are all error prone. Each step
in the process can independently introduce a significant
number of errors:

1. Both the synthesis process and the sequencing pro-
cess can introduce deletions, insertions, and substi-
tution errors on each of the reads and/or synthesized
strands.

2. Current synthesis methods can not generate one copy
for each design variant. They all generate thousands
to millions of non perfect copies. Each of these copies
has a different distribution of errors. Moreover, there
might be some variants with a significantly larger
number of copies, while some variants may be not
be represented at all. In other words, the represen-
tation and the error profile of variants in the library
is not uniform.

3. The use of DNA for storage or of OLs for other appli-
cations typically involves PCR amplification of the
strands in the DNA pool [13]. PCR is known to have
a preference for some sequences over others, which
may further distort the distribution of the number
of copies of individual sequences and their error pro-
files [21, 22].

Most of the research on characterizing errors in syn-
thetic DNA libraries has been done in the context of in-
dividual studies using synthetic DNA. Tian et al. showed
in [26] that the rate of deletion is 1/100 per position, inser-
tion is 1/400 per position, and the rate for substitution is
1/400. Later, Kosuri and Church [15] noted that column-
based oligo synthesis has total error rate of approximately
1/200 or less for oligos of 200 bases, where the most dom-
inant error is a single base deletion. In addition, they
showed that high GC content, at more than 50% of the
bases in the strand being G or C, can inhibit the assem-
bly and lead to lost data. They also pointed-out that
in OL synthesis, a synthesis method based on DNA mi-
croarrays, the error rates are usually higher than those
for column-based synthesis. Recently, in [13], Heckel,
Mikutis, and Grass, studied the errors in a DNA stor-
age channel based upon three different data sets from the
experiments in [9, 11, 13]. In their work they studied the
deletion/insertion/substitution rate and how it is affected
by filtering reads with incorrect length (compared to the
designed length). In particular, when they considered only
reads with the correct length, they showed, as expected,
that the deletion rate has been significantly decreased in
all of the data sets. They also investigated the conditional
error probability for substitutions and found out that in [9]
the most dominant substitution error was from G to T
(20%), and in the rest of the experiments, the most dom-
inant substitution error was from C to G (about 30-40%).
They also examined the effect of the number of PCR cy-
cles on the coverage depth, which is the distribution of the
number of reads per each of the variants. They concluded
that, since the efficiency of the PCR amplification on each
of the strands is different, a larger number of PCR ampli-
fication cycles leads to a higher differences in the coverage
depth distribution of the variants. Organick et al. also
characterized the errors in their experiment [20]. First,
they found that substitution was the most frequent error
in the library, then deletion, and lastly insertion. Fur-
thermore, they found that while deletions showed almost
equal rates for all of the four bases, insertions were mostly

2

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted November 13, 2019. ; https://doi.org/10.1101/840231doi: bioRxiv preprint 

https://doi.org/10.1101/840231
http://creativecommons.org/licenses/by-nd/4.0/


associated with base G, and substitutions were mostly as-
sociated with base T. Lastly, they also examined the read
error rates per position. It should be noted that substitu-
tion errors are most likely associated with sequencing and
not with synthesis.

1.3 This Work

In this paper we describe SOLQC, a software tool that
supports the statistical analysis and quality control of
OLs. The tool is designed to enable and to facilitate in-
dividual labs obtaining information about DNA libraries
and performing error analysis before or during experi-
ments. We describe our methods and demonstrate the
results of analyzing several libraries from the literature.
The dissemination reflects only the authors’ view and the
EU Commission is not responsible for any use that may
be made of the information it contains.

2 Materials and Methods

2.1 SOLQC Tool

In this section we present our software tool, called
SOLQC - Synthetic Oligo Library Quality Con-
trol. This quality control tool generates a customized
report which consists of several statistics and plots for a
given input synthetic library. Detailed instructions to use
the tool are given in Section 6.

The input to the SOLQC tool is the result of a se-
quencing reaction run on the library. It consists of the
design variants and of all the sequenced reads. The input
to the tool is provided using the following three files.

1. Design file: This file consists of the design variants
that were synthesized and it has to be in a csv for-
mat. The tool also supports an IUPAC descrip-
tion [14] of the design.

2. NGS results file: This file is in fastq format and con-
tains the NGS results.

3. Config file: Auxiliary file which consists of other de-
tails on the design variants such as information on
the barcode etc.

The SOLQC tool is operated in the following order.

1. Preprocessing: The reads can be filtered such that
only valid reads will be processed by the tool. The
selection of valid reads can be configured by the user
according to the sequence barcode and its length.

2. Matching: Each read is matched to its correspond-
ing variant. The matching step can be done by dif-
ferent strategies as follows.

• Barcode matching: If the library has a barcode
assigned to each variant, the barcode will be
used in order to match each read with a tun-
able tolerance in errors for the matching.

• Edit distance [25]: The edit distance between
an input read and, in principle, all the variants
will be calculated, such that the variant with
the smallest edit distance will be selected as the
matched one.

• Fast matching: The tool supports also faster
matching using several approximations of the
edit distance.

Alternatively, this matching step can be done by the
user in advance. In this case the matching between
reads and variants is given by fourth input file (in
csv format). The set of reads which are matched to
the same variant form a variant cluster.

3. Alignment: Every read is aligned according to its
matched variant and an error vector is computed
which represents the location and error types at each
position of the variant (with insertions handled sep-
arately). Fig. 1 demonstrates an example for the
alignment step.

4. Analysis: The matched reads and their error vec-
tors are used in order to create error characterization
and data statistics for the library, as will be described
in the sequel.

5. Report generation: The output of our tool is a
report which consists of analysis results, as selected
by the user, in a customizable format.

Figure 1: An example of 25 reads (in purple) aligned
to a variant of length 27 (in yellow). For each read, the
locations of the deletions, substitutions, insertions are
marked in red, blue, green, respectively. This align-
ment output forms the basis of the analysis performed
by SOLQC.
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2.2 Statistical QC Analysis for Syn-
thetic DNA Libraries

In this section we describe and discuss the statistical anal-
ysis performed and supported by the SOLQC tool. These
statistics are explained on actual data from the experiment
in [9] by Erlich and Zielinski. The details of this experi-
ment are summarized in Table 1. These statistical results
are divided into two parts; The first one addresses the com-
position of the synthesized library (composition statistics)
and the second one addresses the errors inferred from se-
quencing reads (error statistics). We sampled 1,689,319
reads out of the 15,787,115 reads of the library, and an-
alyzed only reads with length at most 4 bases shorter or
longer than the design’s length, which is 152 (i.e., their
base-length was between 148 and 156). Those reads were
matched with their closest design variants using an ap-
proximation of the edit distance which calculated the edit
distance between all reads and variants based upon the
first 80 bases.

Table 1: Experiment by Erlich and Zielinski [9]
Data size 2.11 MB

Design length 152 bases

Number of variants 72000

Number of reads 15,787,115

Number of sampled reads 1,689,315

Number of filtered reads 1,427,781

Synthesis Technology Twist Bioscience

Sequencing Technology Ilumina miSeq V4

2.2.1 Composition statistics

1. Symbol statistics (Figs. 2 and 3). This plot
presents, using a stacked-bar plot, the distribution
of all bases in the library by their occurrence at any
position both for the reads and for the design vari-
ants. This is demonstrated in Fig. 2 for the design
variants and in Fig. 3 for the reads.

• X-axis: The position (index) in the DNA vari-
ant or read.

• Y-axis: The number of occurrences for each base
type, scaled for the sequencing depth.

• Description: In Fig. 2, for every position (in-
dex) in the variant, the number of occurrences
of each of the four bases in all of the design
variants is calculated. Similarly, in Fig. 3, the
number in every position is calculated according
to the actual reads.

Figure 2: Base distribution in the design variants
(see 2.2.1.1).

Figure 3: Base distribution in the reads (see
2.2.1.1).

2. Histogram of the cluster size per variant
(Figs. 4 and 5). The plot in Fig. 4 presents the
histogram of the variant cluster size. That is: the
number of filtered reads, per design variant.

• X-axis: The size of a variant cluster, start-
ing from the size of the smallest variant cluster
among all the variants in the library and up to
the largest variant cluster value.

• Y-axis: The number of variants in the library
that have a cluster of size x.

• Description: According to the matching step,
the cluster size for each of the design variants
is calculated and the histogram is generated by
counting the number of variants with a given
cluster size. Note that the sum of the y values
in this histogram is the number of variants in
the experiment, which is 72,000 in [9].
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Figure 4: Histogram of the number of filtered
reads per variant (see 2.2.1.2).

This plot can also have a stratified version by
5 ranges of the GC-content of the design vari-
ants, as depicted in Fig. 5. To define the 5
values of the GC-content presented in the fig-
ure, the tool takes the minimal and maximal val-
ues of the GC content as designed in the li-
brary and partitions the range between them to
5 different subranges of equal size (in terms of
range). The GC-content is presented by percentage.

Figure 5: Histogram of the number of filtered
reads per variant, stratified by the GC-content
(see 2.2.1.2).

3. Sorted bar plot of the number of filtered reads
per variant (Figs. 6 and 7). The plot in Fig. 6
presents a sorted bar plot for the variant cluster sizes.

• X-axis: The variant rank after sorting all vari-
ants in the library by their cluster size.

• Y-axis: The cluster size of variant x.

• Description: In this plot, after calculating the
cluster size for each of the design variants, we
sort them in a non-increasing order by the clus-
ter size. Each variant is associated with a bar
whose height corresponds to the variant cluster
size. Hence, there are 72,000 bars, correspond-

ing to the number of variants in [9].

Figure 6: Sorted bar plot of the number of fil-
tered reads per variant (see 2.2.1.3).

We also plot, as shown in Fig. 7, a stratified version
by 5 values of the GC-content of the variants. These
5 values of GC-content were defined by the tool as
described in Fig. 5.

Figure 7: Sorted bar plot of the number of fil-
tered reads per variant, stratified by the GC-
content (see 2.2.1.3).

4. Histogram of the length of reads (Fig. 8). This
plot presents the distribution of the different lengths
of all the reads.

• X-axis: The length of the read.

• Y-axis: The number of filtered reads found in
the library of length x, presented in log-scale.

• Description: This plot presents a histogram of
the different lengths of all reads in the library.
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Figure 8: Histogram of the length of reads (see
2.2.1.4). Note that the difference between 152
and 154 is two orders of magnitude.

2.2.2 Error statistics

1. Total error rates (Fig. 9). This plot presents the
insertion, substitution, and deletion error rates as
inferred from the reads in the library.

• X-axis: Each bar presents the type of error,
which can be one of the following: insertions,
substitutions, single-base deletions, long dele-
tions (deletions of more than one base), and to-
tal deletions (deletions of one or more bases).

• Y-axis: The error rate, calculated as the ratio
between the total number of errors of each type
and the total number number of read bases. The
plot is in log scale.

• Description: After the alignment step, an error
vector is calculated for each of the reads based
upon its errors with respect to the matched vari-
ant. This error vector consists of the locations
of the substitutions, insertions, and deletions
in the read. See Fig. 1 for an example. For
the error rates of insertions, substitutions, and
deletions, we plot the ratio between the number
of occurrences of each error type (in the entire
sequencing data) and the total number of read
bases expected in the library (number of filtered
reads × design length1. For long deletions, we
count each burst of at least two consecutive dele-
tions as a single error, and then plot its ratio
with the total number of read bases in the li-
brary. Lastly, the error rate of the single-base
deletion is calculated is a similar way using the
number of bursts of deletions of length 1.

Figure 9: Total error rates. (see 2.2.2.1)

2. Error rate stratified by symbol (Fig. 10). This
plot presents by a heat map the symbol dependent,
error distribution. Each square presents for each
type of error, its error rate for the specific symbol.
For insertions we address both the inserted symbol,
and the symbol before the insertion. The x, y entry
in the heat map is calculated to be the ratio be-
tween the number of type y errors of base x and the
expected number of base x in the reads2.

Figure 10: Error rates stratified by symbol. Note
that the numbers are in percents. For example
the value of 0.024 for ”A” long deletion, means
that 0.024 percents of the occurrences of base A
in the library creates long deletion error. (see
2.2.2.2)

3. Error rate per position (Fig. 11). This plot
presents the error rate for every error type as it is
reflected in a specific position of the strand.

• X-axis: The position in the strand, from 5’ to
3’; note that the phosphoramidite synthesis di-
rection is 3’ to 5’. It is important to empha-
size that we report rates as calculated from the
alignment results. These rates reflect both syn-
thesis as well as sequencing errors. We expect
substitution and insertion errors to be primar-
ily due to sequencing. Long deletions primarily
due to synthesis.

• Y-axis: The error rates per position in all reads
for single-base deletions, long deletions, substi-
tutions, and insertions, presented in log scale.

• Description: For every position between 0 (the

1For example: the deletion rate in Fig. 1 is 24/(25× 27), which is calculated to be the ratio between the number of red squares (24) and
the product of the number of rows (25) with the variant length (27).

2The expected number of base x in the reads is calculated as the sum of the products of the number of base x in each of the design variants,
and the number of reads matched to it.
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first position, from 5’ to 3’) and 151 (the last
position in [9]) and for each error type as de-
scribed in Fig. 9, the tool calculates the error
rate as the ratio between the number of errors
of each type and the number of filtered reads.

Figure 11: Error rates by position (see 2.2.2.3).
X-axis represents position counted from the 5’
end of the designed variant. The Y-axis is log-
scale.

4. Deletion length distribution (Fig. 12). This plot
presents the distribution of the lengths of all dele-
tions.

• X-axis: Deletion length, which is the number of
consecutive deleted bases.

• Y-axis: The error rate for each length of burst
of deletions with exactly x bases divided by the
number of total bases in the library.

• Description: The tool counts the number of
deletion bursts of size exactly x bases, based
on the alignment error vector. The error rate is
then calculated as the ratio between this num-
ber and the expected number of bases in the
reads.

Figure 12: Deletion length distribution (see
2.2.2.4).

5. Cummulative distribution based upon the
number of errors (Fig. 13). This plot presents
the percentage of reads in the library with x or less
errors.

• X-axis: Number of errors.

• Y-axis: Percentage of reads with at most x er-
rors.

• Description: For a given number of errors x, the
tool calculates the fraction of reads with at most
x errors.

Figure 13: Cummulative distribution based
upon the number of errors (see 2.2.2.5). Note
that 70% of the reads have neither sequencing
nor synthesis error.

6. GC-content error analysis (Fig. 14). Error rates
in a form of box plot based upon the GC-content.
This plot depicts the reads error rates, grouped by
the GC-content of their corresponding design vari-
ants. Each point represents the error rate of one of
the reads in the library, with GC-content x. The box
extends from the lower to upper quartile error rate
of the reads with GC-content x, and plots green line
at the median and green triangle at the mean value.

Figure 14: Error rates by the GC-content (see
2.2.2.6).

3 Results

In this section, we present several results from the analysis
of four synthetic DNA libraries. These results are based on
previous experiments for storage applications conducted
by Erlich and Zielinski [9], Grass et al. [12], Organnick et
al. [20], and Yazdi et al. [27]. While OLs are used for a
variety of applications, we focused on data storage OLs as
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Table 2: Synthetic DNA Libraries
EZ-17 [9] G-15 [12] O-17 [20] Y-16 [27]

Data storage size 2.11 MB 83 KB 200 MB (9.503066 MB) 3,633 bytes
Design length (bases) 152 158 150 880-1,060
Number of variants 72,000 4,991 607,150 17

Number of reads 15,787,115 3,312,235 62,879,612 6,660
Number of filtered reads 1,427,781 1,945,744 91,898 6,660

Synthesis Technology Twist Bioscience CustomArray Twist Bioscience Integrated DNA Technology (IDT)
Sequencing Technology Ilumina miSeq Ilumina miSeq Ilumina NextSeq MinION

the library data for these is typically more accessible. We
matched each read with its relevant variant using edit dis-
tance estimation as will be described below. The analyzed
data sets and their details are summarized in Table 2. We
next present how we process the data of each experiment.

3.1 Pre-processing and Filtering of the
Libraries

• Erlich and Zielinski [9], will be referred in this paper
as EZ-17: As explained in Section 2.2, we analyzed
this library using a sample of 1,689,315 reads out
of the reported 15,787,115 reads. In this library the
design length of each variant was 152. We present ex-
ample results from three different filtering schemes:

1. Filtering only reads with length between 148
and 156 - 1,427,781 reads.

2. Filtering only reads with length between 142
and 162 - 1,466,069 reads.

3. Analyzing all the reads in the sample - 1,689,315
reads.

The estimated matching between each of the reads
and its design variant was calculated in two steps.
First, the edit distance of the first 80 bases between
the read and each of the variants was calculated.
Then, the read is matched with the closest variant
according to this calculation.

• Grass et al. [12], will be referred in this paper as
G-15: The analysis of this library is based on all of
the 3,312,235 reads. The length of each variant in
this library was 158, with two primers of length 20
at the 5’ end and 21 at the 3’ end. The results pre-
sented were calculated according to the 117 bases of
the data in each of the reads. The reads were filtered
by their length: 1,945,744 reads with length between
112 to 122 bases were analyzed by the tool. The esti-
mated matching of the reads to their corresponding
design variants in G-15 was performed as in EZ-17.

• Organick et al. [20], will be referred in this paper as
O-17: The analysis of this library is based on a sam-
ple of 101,243 out of the 62,879,612 reads of one file of
the library. The design length of each variant in this
library was 150. Similarly to G-15 [12], there were
two primers of length 20 at each end. Hence, the
reads were filtered by their length: we omitted the
primers from each read, and analyzed 91,898 reads
with length between 105 and 115 bases. The results

are presented for the information bases (the primers
were trimmed). The estimated matching of the reads
in O-17 was performed as in EZ-17.

• Yazdi et al. [27], will be referred in this paper as Y-
16: The results presented are based on all the 6,660
reads in the library. This library consists of 17 vari-
ants - 15 of length 1,000, one of length 1060 and one
of length 880. The estimated matching of the reads
to their corresponding design variants, was done in
a similar way that used for EZ-17. However, since
the number of variants was significantly smaller, we
were able to calculate the edit distance for the en-
tire strand between each read and all of the variants.
Then, the read was matched with the closest variant.
In this experiment, the design variants were longer
and the reads were sequenced by the MinION se-
quencing technology. Hence, this data is likely have
different error characteristics than those observed for
the other three.

3.2 Analysis of Synthetic DNA
Datasets

1. Total error rates. The results show significant dif-
ferences between the four experiments. The three ex-
periments of EZ-17 [9], G-15 [12], and O-17 [20] show
higher rates for deletions and substitutions than in-
sertions. EZ-17 and O-17 have the lowest error rates
overall. In Y-16 [27], we observe higher rates for
insertions rather than deletions and substitutions.
Moreover, the error rates in Y-16 [27] are higher by
two orders of magnitude than the other three. These
results are presented in Fig. 15.

2. Cummulative distributions based upon the
number of errors. As mentioned above the data
of Y-16 [27] is much more erroneous. Indeed, we
can see that none of its reads had less than 100 er-
rors. In EZ-17 [9] and O-17 [20], 70% and 60% of
the reads were synthesized and sequenced without
any error respectively, while only 30% of the reads
in G-15 [12] show no errors at all. These results are
presented in Fig. 16.

3. Error rates, stratified by symbol. Base G
showed slightly less errors compared to the other
bases in EZ-17 [9]. Similarly, base A and base G
showed slightly lower error rates compared to the
other bases in Y-16 [27]. However, in G-15 [12], and
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(a) EZ-17 [9] (b) G-15 [12]

(c) O-17 [20] (d) Y-16 [27]

Figure 15: Total error rates in the four datasets. Note that total error rates are also due to sequencing errors. While
EZ-17 [9], G-15 [12], and O-17 [20] were sequenced on Ilumina sequencing machines, the fourth dataset, Y-16 [27], used
a much noisier sequencing platform, which explains the differences in the error rates.

in O-17 [20], base C was the least erroneous base.
These results are presented in Fig. 17.

4. Histograms of the length of the reads, using
different filtering schemes in EZ-17 [9]. We can
see that in each of the filtering schemes we used, the
length of the majority of the reads was 152 (the de-
signed length) or shorter. These results correspond
to our findings that deletions were the most domi-
nant errors in the library. These results are presented
in Fig. 18.

5. Histograms of the cluster size per variant.
Fig. 19 shows the distributions of the cluster size
per variant for the experiments in EZ-17 [9] and G-
15 [12]. While the shape of the distribution of EZ-
17 [9] has the form of a normal distribution, there is
no similar trend in G-15 [12]. However, it is possible
to notice that the number of variants decreases with
the size of the cluster size. Furthermore, in G-15 [12]
we also observed very large clusters of size ranging
between 2,000 and 8,000, which were omitted from
the figure for its clarity.

6. Error rates by GC-content. The results (pre-
sented in Fig. 20) show that the median and the
mean values of the read error rates increase with
its designed GC-content in G-15 [12]. In Y-16 [27]
we can surprisingly see error rates which are greater
than 1. Such high error rates are encountered when
there is a large number of insertions together with
deletions and substitutions in the read such that the
number of errors is strictly larger than the design

length. These results corresponding to our findings
that insertions were the most dominant errors in this
library.

7. Error rate per position. In all four experiments
analyzed, the error rates in the 3’ end are greater
than the error rates in the 5’ end. Note that in Y-
16 [27] there were different design lengths: 880, 1,000
and 1,060. For uniformity, we present only results of
reads which correspond to variants of length 1,000.
These results are presented in Fig. 21.

4 Use-Case Examples

In this section we present several use-case examples
for SOLQC.

(a) Design-quality evaluation. Different li-
braries can have different robustness levels. For
example: a design of one library can have many
homopolymers, while another can limit the pres-
ence of homopolymers. SOLQC outputs statis-
tical reports describing the error behavior of a
given library/design. The user can create sev-
eral small test experiments with different de-
signs and properties. Then, the user can use
SOLQC to evaluate the effect of different de-
signs on the error behavior. This analysis can
then be considered as part of the final design of
the library.

(b) Binning of synthetic DNA-libraries. The
result of a sequencing reaction on a given li-
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(a) EZ-17 [9] (b) G-15 [12]

(c) O-17 [20] (d) Y-16 [27]

Figure 16: Cummulative distributions based upon the number of errors. Note differences in the range of Y-axes in the
four figure. Also note that the X-axes are truncated (see 2.2.2.1).

brary does not include the matching of each
read to its design variant. SOLQC provides
several methods to bin the reads according to
their corresponding design variants. The match-
ing/clustering methods can be performed on li-
braries with or without the barcode. In ad-
dition, users can get coverage depth statistics
from SOLQC as well as quality related statis-
tics, which can be different for different variants
or set of variants. Lastly, in applications like
data storage, the set of reads that is binned to
any given variant can be used in order to decode
the stored variant.

(c) Comparison of different synthesis and se-
quencing technologies. SOLQC provides its
users composition and errors statistics. Accord-
ingly, the user can synthesize libraries using sev-
eral synthesis technologies and their process pa-
rameters. Then, the user can compare the qual-
ity of the results of each technology and/or of
each parameter configuration. In order to op-
timize the process parameters, the experiments
can be conducted with the same design while us-
ing different parameter configuration. Thus, it
is possible to determine how to choose the best
configuration.

(d) Design of error-correcting codes and cod-
ing techniques for DNA-storage. In data
storage applications, SOLQC can be used as a
characterization tool of the DNA channel. The
user can characterize the DNA channel using

data from previous experiments of various tech-
nologies and design parameters. Then, using
this information, the user can design appropri-
ate error-correcting codes and coding techniques
to improve the error rates.

(e) Standardization and reproducibility.
SOLQC enables determining whether a library
is behaving as previous libraries from the same
vendor with similar preparation characteristics.
This enables comparison between the same li-
brary preparation protocol performed in differ-
ent labs, or in the same lab at different times or
by different lab members.

5 Discussion

In this work we presented SOLQC, a software tool
designed to characterize synthetic DNA libraries.
While SOLQC provides many useful tools and fea-
tures, it will benefit from further development in sev-
eral aspects:

(a) Matching approximations. Matching each
read with its design variant is a complex calcu-
lation, especially when the library is not bar-
coded and/or when there are many variants in
the library. In fact, the matching step is the
heaviest step in any initial run of the SOLQC
pipeline. Hence, we plan to provide, in the fu-
ture, several faster approximation approaches to
the matching step.
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(a) EZ-17 [9] (b) G-15 [12]

(c) O-17 [20] (d) Y-16 [27]

Figure 17: Error rates, stratified by symbol in the four datasets (see 2.2.2.2). Note that the colorbars are different in
each plot.

(b) Reconstruction algorithms. When synthetic
DNA libraries are used for data storage appli-
cations, the first step of decoding the data is to
reconstruct the original variant out of the noisy
reads. We plan to add to SOLQC additional
features related to this step. Thus, SOLQC
will perform reconstruction on a given cluster
of reads, in order to decode the sequence of the
original variant.

(c) Additional statistics. SOLQC will report
several more statistics in the future. These
statistical analysis will examine more deeply
whether there is a connection between the char-
acteristics of the design variants and the errors
observed for them.

6 Installation Link

https://yoav-orlev.gitbook.io/solqc/.
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