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ABSTRACT: By binding to specific structures on antigenic proteins, the so-called epitopes, B-cell antibod-
ies can neutralize pathogens. The identification of B-cell epitopes is of great value for the development of
specific serodiagnostic assays and the optimization of medical therapy. However, identifying diagnostically
or therapeutically relevant epitopes is a challenging task that usually involves extensive laboratory work.
In this study, we show that the time, cost and labor-intensive process of epitope detection in the lab can
be significantly shortened by using in silico prediction. Here we present EpiDope, a python tool which
uses a deep neural network to detect B-cell epitope regions on individual protein sequences (github.com/
mcollatz/EpiDope). With an area under the curve (AUC) between 0.67± 0.07 in the ROC curve, EpiDope
exceeds all other currently used B-cell prediction tools. Moreover, for AUC10% (AUC for a false-positive
rate < 0.1), EpiDope improves the prediction accuracy in comparison to other state-of-the-art methods.
Our software is shown to reliably predict linear B-cell epitopes of a given protein sequence, thus contribut-
ing to a significant reduction of laboratory experiments and costs required for the conventional approach.

Introduction

The public health system is highly dependent on
the use of vaccines to protect the population from
a range of dangerous infectious diseases. Through
decades of systematic vaccination, diseases like
measles, mumps, rubella, pertussis, poliomyelitis,
diphtheria, tetanus and others have been largely
eradicated [1, 2]. Vaccination is also an efficient
approach to avoid or reduce prescriptions of antibi-
otics and, as a consequence, minimize the emer-
gence of ever more multi-resistant strains of mi-
crobial pathogens. To assess the degree of protec-
tion of vaccination at population level, faster and
more efficient serological tools need to be devel-
oped. They should be capable of identifying ge-
ographical and social heterogeneities in the diver-
sity of population immunity [3, 4]. In addition,
it is important to know the status of a patient’s
immunization in order to avoid unnecessary vacci-
nations. In cases where this is not or only incom-

pletely documented, various tests can be used to
determine which specific immunities already exist
and which vaccinations are missing. The serological
tests currently used, however, are still largely based
on ELISA technology and are only able to detect
antibodies against a single, specific pathogen [4].
These tests are not only slow and expensive, but
usually also use whole cell antigens to detect anti-
bodies, which limits their specificity [5].
B-cell antibodies of the immune system of a host
are able to detect certain exposed amino acids and
subsequently bind the corresponding antigenic pro-
teins. These bound protein regions are called epi-
topes and represent the interface between infection
and immune response [6, 7]. The antibody part
that binds the epitope is called paratope. Epitopes
themselves are not intrinsic features of a protein,
but rather relational units defined by the interac-
tion with a binding paratope [6]. This relatively
vague definition makes it a challenging task to pre-
dict epitopes in silico [7, 8]. Furthermore, epitopes
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are divided into linear and conformational epitopes,
where linear epitopes consist of a contiguous piece
of amino acids and conformational epitopes consist
of atoms of surface residues that come together by
protein folding [6]. In this study, we will focus on
the prediction of linear B-cell epitopes.
A frequently used tool to predict linear B-cell
epitopes is BepiPred2 [9]. Jespersen et al.
state an area under the curve (AUC) of 0.57
for their tool’s receiver operating characteristic
(ROC) curve. This is on par with other pre-
diction scales provided by the ”Immune Epi-
tope Database” IEDB (http://tools.iedb.org/
main/bcell/) and demonstrates the difficulty of
in silico epitope identification. Therefore, we de-
veloped EpiDope, a tool based on deep neural net-
works (DNN) to detect epitopic regions in proteins
based on their primary amino acid sequence.
DNNs are often used in complex classification prob-
lems with limited knowledge about useful features
of the objects to be classified. With sufficient data,
a DNN can automatically recognize appropriate
classification features, making DNNs very suitable
for the prediction of linear B-Cell epitopes [10].
We will show that our DNN-based program
EpiDope succeeds in identifying linear B-cell epi-
topes with a ROC AUC of 0.67± 0.07, which sig-
nificantly exceeds previous methods. This helps to
considerably reduce the number of potential linear
epitopes to be validated experimentally and, thus,
can accelerate the development of serological assays
and immunotherapeutic approaches.

Material and Methods

Data

The ”IEDB Linear Epitope Dataset” (available at
http://www.cbs.dtu.dk/services/BepiPred/

download.php), which was also used for the
evaluation of the B-cell epitope prediction tool
BepiPred2 [9], served as a training basis for our
DNN. It consists of 30,556 protein sequences, in
which each sequence contains a marked region,
in the following called ’verified regions’, that
represents an experimentally verified epitope or
non-epitope. The subset of epitopes has a average
length of 13.99, whereas the subset of non-epitopes
has a average length of 13.20 (see Table 1).

Data preparation

In order to ensure the best possible training ba-
sis for the DNN, we pre-processed the dataset in
several steps (see Figure 1). First, we merged
identical protein sequences while keeping the in-
formation about their verified regions, resulting in
a reduced dataset containing 3,158 proteins pre-
serving all 30,556 verified regions (Figure 1 A and
B). Second, to reduce redundancy by non-identical
but highly similar protein sequences, we clustered
all sequences with cd-hit [11] using an identity
threshold of 0.8 (Figure 1 C). This resulted in 1,798
protein sequence clusters. From each cluster, only
the protein sequence containing the largest num-
ber of verified regions was retained, reducing the
number of verified regions by 19.46 % to 24610 (see
Table 1, Figure 1 D). This reduces the number of
very similar and thus overrepresented proteins in
the data, as these might bias the training of the
DNN.

Table 1: Comparison of the original dataset provided
by Jespersen et al.[9], and the redundancy reduced data
used as training data.

original reduced

# verified regions 30,556 24,610
# epitopes 11,834 8,519
# non-epitopes 18,722 16,091

median length 15 15
avg. length 13.50 13.27
avg. length epitope 13.99 13.88
avg. length non-epitope 13.20 12.95

The clustering step was repeated on the reduced
protein sequences using an identity threshold of 0.5,
resulting in 1,378 sequence clusters. These clusters
were then used to build the 10-fold cross-validation
for the DNN, where the data was divided into ten
equally sized subsets according to the number of
clusters. This sequence reduction approach was im-
plemented with the following advantage in mind:
The DNN training, and test sets share no proteins
with a sequence identity of more than 0.5, ensuring
that both sets are as independent as possible from
each other, avoiding the DNN from simply memo-
rizing specific epitopes.

Deep neural network architecture

We compared several DNN architectures, includ-
ing different ordering, layer types and numbers of
nodes. The DNN architecture used in EpiDope con-
sists of two parts (see Figure 2). The first part
(Figure 2 A) uses context-sensitive embeddings of
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Figure 1: The data preparation to generate the training and validation set. First all identical amino acid sequences
from the raw dataset (A) are merged while preserving the verified regions (B). In the next step (C), all remaining
sequences are clustered with a sequence identity of 0.8 and higher. For each of the resulting clusters only the
sequence with the highest number of verified regions is selected (D). These selected sequences are then clustered
again, this time with a sequence identity of 0.5 and higher (E). Each cluster is then assigned to only one of ten
different subsets for the 10-fold cross-validation (F). The data preparation generates training and test data with a
low sequence identity of< 0.5 while limiting the loss of potential sequences.

embedding layer

20 bidir-LSTM nodes10 bidir-LSTM nodes

ELMo embedding

amino acid sequence

10 dense nodes10 dense nodes

10 dense nodes

2 dense nodes

A B

Figure 2: The DNN architecture of EpiDope consists of two parts. The first (A) uses context-sensitive ELMo
embeddings for the epitope prediction. These embeddings are previously calculated by an ELMo DNN. The second
part (B) uses classic embeddings for prediction. These classic embeddings are not context-sensitive. Both parts are
then joined to predict two classes, epitopes and non-epitopes.
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amino acids produced by an ELMo DNN. This
DNN was previously trained by Heinzinger et al.
to encode various chemical, physical and structural
information and was demonstrated to be usable
for various high-quality predictions on protein se-
quences [12]. Each amino acid of a given protein se-
quence is encoded in a vector of length 1,024 which
encodes the chemical, physical and structural in-
formation. These embeddings are the input for a
bidirectional LSTM layer with 2×5 nodes [13], fol-
lowed by a dense layer containing ten nodes.

The second part of our DNN architecture (Fig-
ure 2B) encodes each amino acid into a vector of
length ten. This embedding is not context-sensitive
and is trained together with the rest of the DNN.
This embedding layer is connected to a bidirec-
tional LSTM layer with 2×10 nodes, again followed
by a dense layer with ten nodes.

Both dense layers are then connected with an ad-
ditional dense layer containing ten nodes, which is
concluded by the output layer with two nodes rep-
resenting the two classes, epitope and non-epitope.

Note, the number of nodes in this DNN is compar-
atively low. However, due to the high dimension-
ality of the context-sensitive embedding (1024 per
amino acid), the number of parameters tuned by
the DNN is substantial.

Evaluation of epitope prediction
approaches

We compared our tool EpiDope against
five frequently tools for linear B-cell epi-
tope prediction from the IEDB (http:
//tools.iedb.org/bcell/) in their latest
version. Namely Bepipred 2.0 [9], Parker

Hydrophilicity prediction [14], Chou and

Fasman beta turn prediction [15], Emini

surface accessibility scale [16], Kolaskar

and Tongaonkar antigenicity scale [17] and
the independent prediction tool for intrinsically
unstructured protein regions IUPred [18].

For each tool, we calculated the corresponding pre-
diction values for the entire protein sequence on
each amino acid and sliced out the verified re-
gions. For each of the sliced regions, we calculated
the average score as the prediction score to dis-
criminate between epitope and non-epitope. For
the antigenicity scale approach we additionally
subtracted the mean of the full protein as suggested
in the original paper [17].

We compared all the tools using ROC and
Precision-Recall curves. For the EpiDope ROC

curve, any subset of the 10-fold cross-validation was
predicted by the model that did not include this
subset in its training data. We calculated one ROC
curve per subset. This resulted in ten ROC curves,
on which the mean ROC curve was calculated. In
the mean ROC curve each of the ten models had
an equal influence. The ROC curves of competing
tools are calculated on the same data without hav-
ing to combine multiple predictions, as these tools
and scores did not use this data for training.

For the Precision-Recall curve of EpiDope, as with
the ROC curve, each subset was predicted by
the model that did not use it in the training
set. Next, we calculate the Precision-Recall curve
on all ten subsets at once rather than calculat-
ing ten Precision-Recall curves. Calculating the
mean curve from ten Precision-Recall curves could
change the balance between the two classes and as
such bias the Precision-Recall curve. All other Pre-
cision Recall curves were calculated equally.

The ROC curves as well as the Precision-Recall
curves were calculated using scikit-learn [19].

Results & Discussion

The IEDB dataset represents large
pathogen variety

In order to achieve a bias-free prediction of epi-
topes, it is essential to have a large variety of
known epitopes from evolutionarily distinct organ-
isms in the training set. Therefore, we initially
analyzed the taxonomic origin of the protein se-
quences provided by the IEDB and visualized the
results with the online tool Pavian metagenomics

data explorer [20], see Figure 3 . Since the num-
ber of verified regions per protein varies, we ana-
lyzed them separately. Our filtered dataset con-
tains 1,798 proteins with 24,610 epitopes and non-
epitopes assigned to them.

At the protein level, the data consist of 16 different
families. The four families of Bacteria account for
20.6 %, the five families of Eukaryota for 54.2 %,
and the seven families of Viruses for 25.1 % of all
proteins in the training data. At the level of the
verified regions, we observed a slight shift, so that
Eukaryota with 61.0 % are even more pronounced
than the Bacteria with 15.7 % and the Viruses with
23.4 %. Overall, the training data display a suffi-
cient degree of taxonomic diversity.
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Figure 3: Taxonomic origin of the training data (A and B) and evaluation dataset (C and D). A shows the origin of
all 1,798 proteins in the training data, covering a wide variety of kingdoms and families. B shows the taxonomic origin
of the epitopes and non-epitopes, with 15.7 % from Bacteria, 61 % Eukaryota and 23.4 % from Viruses. Taxonomic
origin of the sequences used in the evaluation dataset: C shows the origin of all 2,267 proteins and D shows the
taxonomic origin of the epitopes and non-epitopes, with 14.9 % from Bacteria, 45.7 % from Eukaryota and 39.2 %
from Viruses.
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Evaluation of EpiDope via 10-fold
cross-validation

As described in the methods section, we evaluated
the performance of EpiDope with competing meth-
ods on the training data, using 10-fold crossvalida-
tion. Each of the ten subsets consists of proteins
that have a sequence identity below 0.5 to all pro-
teins in the other nine subsets (for details, see the
’Data preparation‘ section).

The Receiver operating characteristic (ROC)-curve
(Figure 4A) shows that EpiDope is with an AUC
of 0.67± 0.07 clearly outperforming competing
prediction approaches, all of which achieved an
AUC≤ 0.56. Despite multiple requests from us to
the developers of BepiPred2, we could not confirm
their stated AUC performance of 0.57 on our re-
duced and less redundant dataset (see Table 1).

Usually, it is not necessary to find all immunodom-
inant epitopes in a proteome. Instead, only a small
number of functioning epitopes are required, ide-
ally without having to scan a large number of re-
gions. Therefore the prediction performance in the
highest-rated regions is of particular interest. To
evaluate the performance of these regions, we used
AUC10%. The AUC10% is the AUC of the ROC
curve for a False Positive Rate (FPR)< 0.1, nor-
malized, as suggested by the BepiPred2 developers
by multiplying with 10 [9].

Table 2: Comparison of the AUC and AUC10% of the
ROC curve calculated for multiple tools, on the training
data. AUC shows the value on the complete ROC curve
while AUC10% is the area for a False Positive Rate
(FPR)< 0.1 corrected by multiplying with 10. EpiDope
is compared using 10-fold cross validation.

training data

Tool AUC AUC10%

EpiDope 0.670 0.151
Betaturn 0.562 0.070
Accessibility 0.548 0.058
Antigenicity 0.443 0.034
Hydrophilicity 0.521 0.053
IUPred 0.489 0.060
Bepipred2 0.490 0.038

random 0.500 0.050

EpiDope reaches a high AUC10% of 0.151, com-
pared to the second best method (Betaturn) with
an AUC10% of 0.070 (see Table 2). Note that
Jespersen et al. state an AUC10% of 0.08 for
BepiPred2 [9] on the original unreduced dataset.
The performance of EpiDope relies on the high pre-
cision of the top predictions, notable also in the
Precision-Recall curve, see Figure 4B.

Evaluation on new data

We created a new dataset that contains all verified
regions that were not included in the BepiPred2

dataset (as of 27.11.2019). All areas that were
tested positive by at least two assays were stored
as epitopes, whereas all areas tested in at least two
assays and not tested positive in any assay were
stored as non-epitopes. These are the same con-
ditions that were used to create the BepiPred2

dataset [9]. Thus this dataset is entirely indepen-
dent of our training dataset. This second dataset is
from now on called evaluation dataset. The evalua-
tion dataset was not pre-processed like the previous
dataset (see Figure 1), to preserve a high amount
of samples.

In comparison with the training data the evalua-
tion dataset is of comparable size (see Figure 3B
and 3D), with the training data having over 24,600
verified regions and the evaluation dataset hav-
ing over 16,900 verified regions. The evaluation
dataset has a lower proportion of eukaryotic veri-
fied regions (45.7%) and a higher proportion of vi-
ral verified regions (33.1%) compared the training
data (eukaryotic 61.0%, viral 23.4%). From the
16 most common families (Figure 3D), five were
not present in the training data. Theses fami-
lies are Chlamydiae, Alveolata, Hepeviridae, Ortho-
hepadnavirus, and Virgaviridae, representing 5.6 %,
5.25 %, 1.66 %, 1 % and 0.91 % of the evaluation
dataset. The family of Herpesviridae is in the
evaluation dataset over six times more common,
with 17.75 % as compared to the training dataset
(2.92 %).

Furthermore, the ratio of epitope regions vs. non-
epitope regions changed dramatically, from 35 %
epitopes in the training dataset to 58 % in the eval-
uation dataset.

As with the training dataset, we calculated the pre-
dictions of several tools (see ’Evaluation of epitope
prediction approaches‘ section for further details)
for the verified regions. We calculated the ROC
curve and the Precision-Recall curve (see Figure
4C/D) and evaluated the AUC and AUC10% of
EpiDope and the competing tools (see Table 3).

The ROC-curve (see Figure 4C) shows that
EpiDope is, with an AUC of 0.60, surpassing com-
peting prediction approaches. We can observe a
distinctly different result for nearly all tools in com-
parison with the evaluation on the training data.
The AUC of EpiDope decreased by 0.065, which is
within the calculated standard deviation of 0.071.

The analysis of the origin of the validation sites and
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Figure 4: A shows the comparison of the ROC curves between the evaluated tools based on the training dataset.
For the mean EpiDope ROC curve, every subset of the 10-fold cross-validation was predicted by the model that
did not include this subset in its training data. This resulted in ten ROC curves for which the mean ROC curve
was calculated (displayed in green) and the standard deviation area (grey). The other ROC curves were calculated
on the same data without having to combine multiple predictions, as these tools and scores did not use this data
for training. In B, the precision-recall curve shows the trade-off between the number of false positive predictions
compared to the number of false negative predictions. This is important as the number of epitopes and non-epitopes
are not balanced in the dataset. C shows the ROC curves for the evaluation dataset, which consists of all currently
(as of 27.11.2019) well verified regions that are not present in the training data. D shows the precision-recall curve
on the evaluation dataset.
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proteins used in this evaluation dataset shows five
new families, while at the same time the distribu-
tion according to kingdom changes. This reduces
the similarity with the training dataset. A lower
similarity with the training data leads to some-
what limited comparability with the evaluation on
the training data. At the same time, however, it
indicates how well the model has generalized the
epitope prediction task to the more diverse data.

The AUC10% indicates the usability of all methods
for practical applications. EpiDope outperforms
all competing methods with an AUC10% of 0.089
(see Table 3). The second best method betaturn

reaches an AUC10% of 0.069. These results indi-
cate that EpiDope can predict even data that is
relatively distinct from the training data and has a
higher usability than competing methods.

Table 3: Comparison of the AUC and AUC10% of
the ROC curve calculated for multiple tools on the
evaluation dataset. AUC shows the value on the
complete ROC curve, while AUC10% is the area for a
false-positive rate (FPR)< 0.1 corrected by multiplying
with 10.

evaluation dataset

Tool AUC AUC10%

EpiDope 0.605 0.089
Betaturn 0.589 0.069
Accessibility 0.563 0.058
Antigenicity 0.436 0.021
Hydrophilicity 0.550 0.048
IUPred 0.550 0.040
Bepipred2 0.465 0.048

random 0.500 0.050

EpiDope output and visualization

EpiDope produces multiple outputs. As an easily
readable and interpretable format, EpiDope visual-
izes its results in an interactive html plot using the
Python bokeh package [21]. This allows large pro-
teins to be displayed without impairing readability.
For an example output plot see Figure 5. By de-
fault, EpiDope highlights regions of at least eight
consecutive amino acids that have predicted values
above the threshold of 0.818. This threshold cor-
responds to a 15 % recall rate with a precision of
0.635 on the training data. Furthermore the user
can provide amino acid sequences (text file with
one sequence per line) that are either classified as
epitopes or non-epitopes to highlight them in the
html plot as blue or red regions, respectively.

Additionally, EpiDope produces simple computer
parsable output. The file epidope scores.csv

lists the predicted score per amino acid, pre-
dicted epitopes.csv lists all regions with a score
higher than the defined threshold and pre-
dicted epitopes sliced.faa is a multi-fasta file of po-
tential epitopes with a user defined size and over-
lap, that can be used to scan for epitopes in wet
lab experiments.

Conclusion

In this study, we have developed the linear B-
cell epitope prediction tool EpiDope (Epitope Deep
learning predictor).

While only requiring a protein’s amino acid se-
quence, EpiDope has been shown to be the best-
performing among currently available B-cell epi-
tope prediction tools. EpiDope is based on a
Deep Neural Network. We trained EpiDope on
almost 25,000 experimentally verified epitope and
non-epitope regions. We have used two different
datasets to compare the performance of EpiDope

with numerous different tools, including the cur-
rently probably most used tool, BepiPred2. For
the training data, we performed 10-fold cross-
validation to ensure the reliability of the bench-
marks. In addition, all proteins of a subset have
a sequence identity of less than 50 % to the pro-
teins in the other nine subsets. This ensures
that all ten subsets are independent of each other.
The second dataset (evaluation dataset) consists
of almost 17,000 new verified epitopes and non-
epitopes, which therefore have not been present in
the training dataset. On both datasets EpiDope

outperformed all competing methods. Especially
for the AUC10%, which represents the performance
on the practically relevant top predictions. The
AUC10% was corrected by multiplying with 10
(as described in BepiPred2 [9]) and varies between
0.151 and 0.089.

The training data contains many short validated
regions for which a high false-negative rate is ex-
pected [22]. Those false-negative cases result in a
more conservative prediction for epitopes. How-
ever, the effect in real-world applications is mini-
mal, as only a high true-positive and a low false-
positive rate are important to reduce the lab work.
These cases are best represented by AUC10%.

The high predictive power of EpiDope enables a
much more precise search for epitopes and, thus,
faster and more cost-effective development of med-
ical treatments or diagnostic methods.

For even easier usability for a broad research com-
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Figure 5: Graphical output of EpiDope as an interactive html plot for the apical membrane antigen 1 of Plasmodium
falciparum. The black line displays the predicted values of EpiDope per position (amino acid). A higher value means
that EpiDope certifies this region a higher chance of being an epitope. The red line is the default threshold for the
predicted epitopes. The green regions are the predicted parts that are above the threshold for at least 8 consecutive
amino acids. The blue and green regions are user provided regions that are known to be epitopes and non-epitopes,
respectively.

munity, we plan to establish an EpiDope Online
version. Until then EpiDope can be downloaded
from GitHub (github.com/mcollatz/EpiDope)or in-
stalled via Conda. The training datasets are avail-
able in the open science framework (osf.io/krw2j).
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