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Abstract

Motivation: Protein fold recognition is a key step for template-based modeling approaches to protein structure pre-
diction. Although closely related folds can be easily identified by sequence homology search in sequence databases,
fold recognition is notoriously more difficult when it involves the identification of distantly related homologs. Recent
progress in residue–residue contact and distance prediction opens up the possibility of improving fold recognition
by using structural information contained in predicted distance and contact maps.

Results: Here we propose to use the congruence coefficient as a metric of similarity between maps. We prove that
this metric has several interesting mathematical properties which allow one to compute in polynomial time its exact
mean and variance over all possible (exponentially many) alignments between two symmetric matrices, and assess
the statistical significance of similarity between aligned maps. We perform fold recognition tests by recovering
predicted target contact/distance maps from the two most recent Critical Assessment of Structure Prediction
editions and over 27 000 non-homologous structural templates from the ECOD database. On this large benchmark,
we compare fold recognition performances of different alignment tools with their own similarity scores against
those obtained using the congruence coefficient. We show that the congruence coefficient overall improves fold rec-
ognition over other methods, proving its effectiveness as a general similarity metric for protein map comparison.

Availability and implementation: The congruence coefficient software CCpro is available as part of the SCRATCH
suite at: http://scratch.proteomics.ics.uci.edu/.

Contact: pietro.dilena@unibo.it or pfbaldi@uci.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Computational approaches for protein structure prediction generally
follow one of two broad strategies (Kryshtafovych et al., 2019;
Kuhlman and Bradley, 2019): template-free (or ab-initio) modeling
and template-based modeling, which uses known protein structures
as templates for the structural modeling of the unknown protein
structure. While closely related templates can easily be detected by
using protein sequence search methods, the detection of distantly
related templates needs more sophisticated fold recognition strat-
egies. Popular approaches make use of sequence profiles, predicted
secondary structure and solvent accessibility, and exploit diverse
computational methods, such as linear programming, dynamic pro-
gramming, hidden Markov models as well as other machine learning
methods (Jones and Thornton, 1993; Lemer et al., 1995). However,
despite considerable progress, remote homology detection remains a
challenging problem.

The most recent Critical Assessment of Structure Prediction
experiment (CASP13) held in 2018 reported a dramatic improve-
ment in protein structure prediction for both template-free
and template-based modeling (Kryshtafovych et al., 2019). This
improvement has been driven primarily by the successful applica-
tions of deep-learning approaches (Di Lena et al., 2012; Kandathil
et al., 2019) and direct coupling analysis (De Juan et al., 2013) to
predict intra-residues distances and contacts (Hou et al., 2019;
Shrestha et al., 2019; Senior et al., 2019; Xu and Wang, 2019;
Zheng et al., 2019).

The recent progress in intra-residue distance and contact predic-
tion opens up the possibility to further improve fold recognition by
database searches using predicted distance/contact maps. This
requires addressing two distinct problems: (i) developing efficient
two-dimensional alignment procedures for map comparison and (ii)
developing a good scoring function to measure the fitness between
target maps and templates.
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In this work, we deal explicitly with the second problem, and
partially with the first problem, by exploiting the congruence coeffi-
cient (Burt, 1948) as a measure of similarity between aligned maps.
The congruence coefficient bears some similarity to the Pearson’s
correlation coefficient, since its value lies in the ½�1;1� interval and
it is insensitive to multiplication (but not addition) by a constant fac-
tor. However, unlike Pearson’s correlation coefficient, its normaliza-
tion factor is invariant with respect to any alignment between two
maps, which makes it particularly suitable as an objective function
for alignment procedures.

We prove some interesting statistical properties of the congru-
ence coefficient, such as a measure of statistical significance and
polynomial-time formulas for computing both the exact mean and
variance of the coefficient over all possible (exponential number of)
alignments between two symmetric matrices. Such statistical proper-
ties are complementary. The statistical significance of the congru-
ence coefficient can be used to detect statistically significant
similarities between two aligned maps, which improves template
ranking for predicted target maps. Conversely, the mean and vari-
ance of the congruence coefficient over all possible alignments can
be used to compute the alignment Z-scores, which give indications
on the quality of the alignments.

We test the fold recognition performances of the congruence co-
efficient by recovering predicted maps from the last two CASP edi-
tions and over 27 000 structural templates from the ECOD database
(Cheng et al., 2014) that do not share sequence similarity with the
CASP targets. In detail, for performance assessment with predicted
contact maps, we use residue–residue predictions at CASP12 and
CASP13 and three contact map alignment software: AlEigen (Di
Lena et al., 2010), EigenTHREADER (Buchan and Jones, 2017) and
Map_Align (Ovchinnikov et al., 2017). All three tools return an
alignment between two input maps together with a similarity score.
Keeping fixed the alignments, we compute the congruence coeffi-
cient between target and structural templates. Performances have
been then assessed by comparing fold recognition accuracy with the
congruence coefficient versus the original similarity score. A statis-
tical analysis of alignment quality is also provided in order to evalu-
ate to which extend alignment quality affects fold recognition
performances. Since there is no CASP category for predicted dis-
tance maps and there are no standalone tools for distance map align-
ment, we assess fold recognition accuracy by using regular protein
structure predictions at CASP and structural alignment tools CE
(Shindyalov and Bourne, 1998) and TM-align (Zhang and Skolnick,
2005). In this case, we recover predicted distance maps from predicted
structures, use the structural alignments to induce alignments between
distance maps and then compute the congruence coefficient between
the aligned maps. Performance assessment is achieved by comparison
of fold recognition accuracy with the congruence coefficient versus the
specific structural alignment similarity scores. Also in this case, align-
ment Z-scores are used to assess alignment quality and its impact on
fold recognition performances. Although fold recognition with dis-
tance maps recovered from structural predictions may appear artifi-
cial, it provides a fair evaluation of fold recognition by protein
distance maps. Overall our tests provide a benchmark to compare the
congruence coefficient to other structural alignment metrics, in both
contact-based and distance-based fold recognition.

As a general conclusion, fold recognition with predicted contact
maps is significantly improved by using the congruence coefficient
score as a fitness function. In comparison to structural alignment
metrics, the congruence coefficient shows comparable or better fold
recognition accuracy, proving its potential as general similarity met-
ric for protein map comparisons.

2 Materials and methods

2.1 Congruence coefficient
2.1.1 Definition

The congruence coefficient was first introduced in Burt (1948), with
the name of unadjusted correlation, as a measure of similarity in fac-
tor analysis.

Definition 2.1Let X;Y 2 Rm�n be two real matrices. The congruence co-

efficient between X, Y is defined by:

rcðX;YÞ ¼
trðXYTÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

trðXXTÞtrðYYTÞ
p : (1)

The rc score is between �1 and þ1, with rc ¼ 1 representing the highest

degree of similarity. Although the congruence coefficient appears quite

similar to the Pearson’s correlation coefficient, the latter measures the

deviations from the mean whereas the congruence coefficient measures

the deviations from zero. Like the correlation coefficient, the congruence

coefficient is insensitive to the multiplication of the matrices X, Y by

constant factors different from zero. Unlike the correlation coefficient, it

is sensitive to the addition of constant factors.

Although the rc coefficient can be computed for non-square matrices,

here we focus on protein contact and distance maps, which are both rep-

resented by square (symmetric) matrices. Typically, contact and distance

maps of different proteins have different sizes determined by the protein

sequence lengths, thus the rc coefficient between two contact/distance

maps can be computed only if an alignment between the two matrices is

provided. Aligned matrices can be simply obtained by introducing rows

and (respective) columns of zeroes in the original symmetric matrices,

which correspond to gaps in the alignments. Since zero (gap) rows/col-

umns do not contribute in the trace of the products in Equation (1), an

equivalent and simpler formulation of the congruence coefficient with

respect to some alignment can be obtained by leaving unchanged the X

matrix and by removing all rows/columns in the Y matrix that match a

gap row/column in the aligned X matrix (Section 3 in Supplementary

Material). In this way, we can just recode the Y matrix as follows.

Definition 2.2A partial function a : f1; ::;mg ! f1; ::; ng is an alignment

if 8i 6¼ j such that aðiÞ 6¼ ? and aðjÞ 6¼ ? then:

aðiÞ < aðjÞ 6¼ i < j;

where aðiÞ ¼ ? means that a is not defined on i. Given a matrix Y 2
Rn�n and an alignment a : f1; ::;mg ! f1; ::; ng, we define the new ma-

trix Ya 2 Rm�m by:

Ya
ij ¼

YaðiÞaðjÞ if aðiÞ 6¼ ? and aðjÞ 6¼ ?
0 otherwise

:

�

Now, let X 2 Rm�m;Y 2 Rn�n be two symmetric matrices and a :

f1; ::;mg ! f1; ::; ng an alignment. We define (Section 3 in

Supplementary Material) the congruence coefficient with respect to the

alignment a by

ra
cðX;YÞ ¼

trðXYaÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
trðXXÞtrðYYÞ

p : (2)

Note that, the normalization factor in Equation (2) is invariant with
respect to any possible alignment a. Such property does not hold for
Pearson’s correlation which measures the deviation from the mean
value and is thus affected by the number of zero rows and columns
introduced in the alignment. The alignment that maximizes the rc

coefficient in Equation (2) is thus simply the alignment that maxi-
mizes the trace of the product between the two aligned matrices.

2.1.2 Statistical properties of the congruence coefficient

Here we show that the congruence coefficient has several desirable
mathematical properties: its statistical significance can be rigorously
assessed, and its mean and variance can be estimated in polynomial
time. The details of our proofs are given in the Supplementary
Material.
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Statistical hypothesis testing of the congruence coefficient be-
tween two aligned maps, under the null hypothesis that the coeffi-
cient is zero, can be reframed as a statistical hypothesis testing on
the angle between two unitary vectors on some N-dimensional unit
sphere, under the null hypothesis that the two vectors are orthogon-
al. The dimension N depends on the size and topology of the two in-
put matrices. The P-value can be then computed as the ratio
between the volume of the N-dimensional unit sphere and the vol-
ume of the hyper-spherical cap (Li, 2011) identified by the angle be-
tween the two unitary vectors. In summary, let X 2 Rm�m and
Y 2 Rn�n be two symmetric matrices with zero main diagonal, and
a : f1; ::;mg ! f1; ::; ng an alignment. Then (Section 6 in
Supplementary Material) the right-tailed P-value of the congruence
coefficient ra

cðX;YÞ is given by:

Prðrc > pjXÞ ¼

1

2
I1�p2

N þ 1

2
;
1

2

� �
p � 0

1� 1

2
I1�p2

N þ 1

2
;
1

2

� �
p < 0

;

8>>><
>>>:

(3)

where I is the regularized incomplete beta function, p ¼ ra
cðX;YÞ,

and the degree of freedom N is the number of non-zero elements in
the upper (or lower) triangular portion of X. Given any symmetric
matrix X 2 Rm�m, Equation (3) gives the probability of uniformly
sampling a random symmetric matrix Y 0 2 Rm�m (with zero main
diagonal), such that ra

cðX;Y 0Þ > ra
cðX;YÞ. We can symmetrically use

Equation (3) with known Y, where the degree of freedom N is the
number of non-zero elements in the upper triangular portion of Y.
The condition of having zero main diagonal is necessary, and trivial-
ly satisfied by distance maps, as well as contact maps (contacts be-
tween adjacent residues are typically ignored). In database searches,
we use Equation (3) to assess whether two aligned matrices are sig-
nificantly similar. That is, given a target matrix X, a template matrix
Y and an alignment a between X and Y, we ignore template Y if
Prðrc > ra

cðX;YÞjXÞ � t or Prðrc > ra
cðX;YÞjYÞ � t, where t is the

Bonferroni-corrected P-value cutoff 0.05.
The exact mean and variance of the rc score under all possible

alignments can be used to test the quality of a given alignment be-
tween two maps (i.e. Z-score). Given two symmetric matrices X 2
Rm�m and Y 2 Rn�n, the expected value of the congruence coeffi-
cient between X and Y with respect to all possible alignments a is
given by (Section 4.2 in Supplementary Material):

E½ra
cðX;YÞ� ¼

trðXE½Ya�Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
trðXXÞtrðYYÞ

p ; (4)

where E½Ya� 2 Rm�m is the expectation matrix, that averages all
Ya 2 Rm�m matrices. The expectation matrix can be computed
from Y and m, without the need of X. Equivalently, the variance of
the congruence coefficient between X and Y with respect to all pos-
sible alignments a is given by (Section 4.3 in Supplementary
Material):

Var½ra
cðX;YÞ� ¼

trððX�XÞVar½Ya�Þ
trðXXÞtrðYYÞ ; (5)

where � is the Kronecker product and: Var½Ya� ¼ E½Ya � Ya� �
E½Ya� � E½Ya� 2 Rm2�m2

is the variance–covariance matrix of ran-
dom matrices Ya 2 Rm�m. The variance–covariance matrix can also
be computed using only Y and m. The computational time for the
expectation matrix in Equation (4) is quadratic in the product of the
lenghts mn, which is reasonably fast for native contact/distance
maps. Instead, the computational time for the variance–covariance
matrix in (5) is quartic in mn, which is challenging for large matri-
ces. However, an ad hoc sampling of alignments (i.e. proportional
to the fraction of alignments of a given size) provides an almost
exact estimation of the variance (Section 7.3 in Supplementary
Material).

In addition, following the combinatorial approach described in
Kazi-Aouala et al. (1995), we can derive closed expressions for the
expectation and variance of the congruence coefficient between two
symmetric maps X and Y over all possible permutations of Y, and

with respect to all possible alignments between X and Y (Section 5
in Supplementary Material). We tried to exploit permutation statis-
tics as a fast approach for approximating variance calculations over
all possible alignments. However, tests on real protein contact/dis-
tance maps show that both expectation and variance over permuta-
tions poorly approximate expectation and variance over all possible
alignments (Section 7.3 in Supplementary Material). Thus the for-
mula obtained does not seem to have an immediate application in
protein map comparison, although they have intrinsic theoretical
interest and may be useful in other contexts.

2.2 Template and benchmark data
Benchmark datasets were obtained from the CASP repository
(Section 7.1 in Supplementary Material). For contact-based fold rec-
ognition assessment, we selected all residue–residue contact predic-
tions submitted to the CASP12 and CASP13 experiments. For
distance-based fold recognition assessment, we decided to simulate
predicted distance maps by recovering them from the structural pre-
dictions at CASP12 and CASP13. This was necessary since distance
map predictions were used as an intermediary step, rather than as a
standalone problem, and such predictions were not available. We
considered only the CASP targets for which the experimentally
determined structure was available in the Protein Data Bank (PDB)
and the fold annotation was available in the Evolutionary
Classification Of protein Domains (ECOD) classification (Cheng
et al., 2014).

Template data were obtained from the ECOD database (Section
7.1 in Supplementary Material). ECOD protein domains are classi-
fied with respect to four groups: the F-group (Family level) groups
domains with significant sequence similarity; the T-group (Topology
level) groups domains with similar topological connections; the H-
group (Homology level) groups domain that are considered homolo-
gous based on different attributes (e.g. functional similarity, litera-
ture); and the X-group (Possible Homology level) groups domains
that are potentially homologous although there is not yet adeguate
evidence to support their homology relationship. We downloaded
the ECOD pre-filtered subset at 40% sequence identity. In order to
prevent any sequence homology bias in our tests, we removed from
the ECOD dataset all protein domains found by hmmsearch (Eddy,
2011) and HHsearch (Steinegger et al., 2019) scans of the CASP12
and CASP13 targets against the ECOD database. Such scans
filtered-out all the ECOD domains at the Family level of similarity
with the CASP targets. In order to identify a subset of hard targets,
we matched the FM (free modeling) domains of the CASP targets
with the domains identified in ECOD. Native contact and distance
maps were extracted from the ECOD pdb domain files.

The exact number of ECOD templates used in our experiments,
as well as the targets and FM targets in the two CASP benchmark
datasets, are shown in Table 1.

2.3 Benchmark tools
2.3.1 Contact maps

We considered three contact map alignment tools for performance
comparison (Section 7.2 in Supplementary Material): AlEigen (Di
Lena et al., 2010), EigenTHREADER (Buchan and Jones, 2017)
and Map_Align (Ovchinnikov et al., 2017). We used the three tools
to first align target and template maps and then to rank the

Table 1. Benchmark dataset

Dataset #Targets

(#FM)

#RR

Pred

#REG

Pred

#ECOD

templates

CASP12 34 (12) 1109 2567 27 077

CASP13 23 (8) 956 1842 27 112

Note: Benchmark set statistics. #Targets: number of CASP targets with

fold annotation; #FM: number of targets containing FM domains; RR Pred:

residue–residue contact predictions; REG Pred: regular structure predictions;

#ECOD templates: number of sequence homology-free ECOD templates.
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templates: (i) using the tool-specific scores and (ii) using the con-
gruence coefficient with respect to the alignments returned by the
tools.

2.3.2 Distance maps

Unlike contact map alignment, the standalone distance map align-
ment problem has received little or no attention in the literature. For
this reason, for performance comparison, we decided to use two
popular structural alignments tools (Section 7.2 in Supplementary
Material), CE (Shindyalov and Bourne, 1998) and TM-align (Zhang
and Skolnick, 2005), and recover the distance map alignments from
the structural alignments computed by both tools. Also in this case
we rank the templates: (i) using the tool-specific scores and (ii) using
the congruence coefficient with respect to the alignments returned
by the tools.

Our choice of alignment tools has been driven mainly by speed
considerations due to the very large number of comparison per-
formed in our tests: a total of 57M contact map comparisons, and
122M structure comparisons, per method (see Table 1). The average
running times of the benchmarked methods are summarized in
Table 2.

3 Results

3.1 Fold recognition with predicted contacts
For performance comparison, we search all residue–residue contact
predictions submitted at CASP for a single target against the ECOD
templates. This implies a maximum number of 38 predictions per
target at CASP12 and 46 at CASP13, corresponding to the number
of residue–residue prediction groups in the two CASP editions.
More precisely, for a given CASP target, the ECOD database scan

returns a list of mappings of the form:

<CASP prediction ID, ECOD template ID, similarity score >,

where the similarity score is specific to the alignment method used
for the search. Such list of mappings is sorted according to the simi-
larity score in order to obtain a similarity ranking of the ECOD tem-
plates against the CASP target. Each ECOD template is ranked
according to the first position in which it appears in the sorted list.
Such multiple map approach for fold recognition has been chosen in
order to avoid having to make an a priori selection of the best pre-
dictor(s), or best contact prediction(s), information that is not avail-
able in a realistic blind test. True positive rate (TPR) fold
recognition performances are assessed by selecting the top-1, top-5,
top-10 and top-20 templates identified by the search with multiple
predicted maps. For each top-k set, the TPR score is computed by
counting the fraction of targets for which at least one template with
similar fold is in the top-k hits. We assess the TPR performances sep-
arately for the three ECOD classes: Topology Level (T), Homology
Level (H) and Possible Homology Level (X). This implies that, for
example, for TPR assessment at the Topology Level we consider
only the CASP targets that have been annotated at the Topology
Level in ECOD. The TPR performances on the CASP12 and
CASP13 benchmark datasets, for the three map alignment tools
AlEigen, EigenTHREADER and Map_Align are summarized in
Table 3. The table compares the performances of the three tools
with their specific scoring schemes against those obtained using the
congruence coefficient, indicated by AlEigenþ rc,
EigenTHREADERþ rc and Map_Alignþ rc, respectively.

Fold recognition performances with predicted contact maps are
influenced by three main factors: (i) contact map prediction accur-
acy; (ii) accurate alignments between target and templates; and (iii)
proper scoring of the fitness between target and templates. The in-
fluence of a good scoring function is particularly evident for fold
recognition performances in the CASP12 benchmark set (see
Table 3), where the fold recognition precision is dramatically
improved by the usage of the congruence coefficient for fitness rank-
ing. We remark that for the computation of the rc coefficient we use
the alignments returned by the three packages, thus the low TPR
performances of the three tools with their specific fitness functions
are not an immediate consequence of poor contact map predictions
or poor alignments. The improvement in fold recognition accuracy
with rc scoring can be observed also on the CASP13 benchmark set
(see Table 3). In this case, the improvement is still significant, al-
though less pronounced, since all the three methods show overall
better performances with their own scoring functions in comparison
to those achieved for CASP12. To a large extent, this can be imputed
to better contact predictions for CASP13, which compensate for the

Table 2. Average running time per prediction

Method Average time CASP12 Average time CASP13

EigenTHREADER 41 min 52 min

AlEigen 2.8 h 3.9 h

Map_Align 6 days 8.7 days

CE 4.7 days 4.9 days

TM-align 2.2 h 2.2 h

Table 3. Fold recognition performances with predicted contacts

Method Benchmark set Top-1 hit Top-5 hits Top-10 hits Top-20 hits

T H X T H X T H X T H X

AlEigen CASP12 0.07 0.07 0.06 0.07 0.07 0.09 0.07 0.10 0.12 0.07 0.10 0.15

AlEigenþ rc 0.18 0.27 0.29 0.25 0.30 0.35 0.25 0.33 0.44 0.39 0.43 0.53

EigenTHREADER 0.00 0.00 0.00 0.00 0.00 0.09 0.04 0.03 0.09 0.11 0.10 0.15

EigenTHREADERþ rc 0.21 0.27 0.29 0.39 0.40 0.50 0.46 0.50 0.62 0.50 0.53 0.62

Map_Align 0.07 0.07 0.06 0.07 0.07 0.06 0.07 0.10 0.12 0.11 0.10 0.15

Map_Alignþ rc 0.43 0.43 0.50 0.46 0.50 0.56 0.50 0.53 0.65 0.64 0.67 0.71

AlEigen CASP13 0.11 0.20 0.26 0.17 0.25 0.35 0.22 0.30 0.43 0.22 0.30 0.43

AlEigenþ rc 0.28 0.30 0.43 0.33 0.35 0.61 0.50 0.50 0.65 0.56 0.55 0.70

EigenTHREADER 0.11 0.10 0.13 0.11 0.20 0.26 0.17 0.20 0.30 0.22 0.25 0.35

EigenTHREADERþ rc 0.33 0.35 0.52 0.50 0.60 0.70 0.61 0.65 0.74 0.61 0.65 0.78

Map_Align 0.28 0.35 0.48 0.28 0.35 0.48 0.33 0.40 0.52 0.44 0.45 0.57

Map_Alignþ rc 0.39 0.40 0.48 0.56 0.60 0.65 0.61 0.65 0.74 0.72 0.75 0.78

Note: TPR fold recognition performances on CASP12 and CASP13 benchmark sets. Comparison of TPR performance achieved by AlEigen, EigenTHREADER

and Map_Align with their own scoring system against those obtained by using statistically significant congruence coefficient, AlEigenþ rc, EigenTHREADERþ rc

and Map_Alignþ rc, respectively. The TPR performances are assessed with respect to the top-1, top-5, top-10 and top-20 ranked hits. ECOD hierarchy: (T)

Topology Level (28 targets in CASP12, 18 targets in CASP13), (H) Homology Level (30 targets in CASP12, 20 targets in CASP13), (X) Possible Homology Level

(34 targets in CASP12, 23 targets in CASP13). Best TPR performances per column on CASP12 and CASP13 benchmark sets are highlighted in bold.
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lack of a good scoring function. In fact, if we restrict our tests to
contact predictions submitted only by the top-ranked predictors
(using the official CASP rankings), we notice a general improvement
in fold recognition accuracy for all methods (Section 7.4.1 in
Supplementary Material). Interestingly, the improvement is almost
negligible or absent for rc ranking performances, which indicates
that the congruence coefficient can filter out most of the noisy simi-
larities. This is partially a consequence of the statistically significant
P-value cutoff applied to the rankings (Section 7.4.4 in
Supplementary Material).

For each CASP target in our benchmark set there is a highly vari-
able number of related (i.e. similar) templates in ECOD. In particu-
lar, the number of related templates per target varies from 2 to 3373
for CASP12 targets, and from 46 to 1444 for CASP13 targets. In
Table 3, we assess fold recognition performances by considering
only the top-scored templates, but this does not tell us how all the
templates related to a given target are ranked during a search. In
Figure 1, we show the ranking distributions of all the templates
related to the CASP12 and CASP13 targets. The probability density
functions in Figure 1 are estimated from the observed rankings in
our tests for both CASP12 and CASP13 targets, using the density
function available in R. In order to detect whether there is a statistic-
ally significant difference in template rankings with or without the
congruence coefficient, we use the Wilcoxon paired signed-rank test
to compare the template ranks obtained with an alignment tool’s
own scoring function against the ranks obtained with the congru-
ence coefficient. In all three cases (i.e. AlEigenþ rc versus AlEigen,
EigenTHREADERþ rc versus EigenTHREADER and
Map_Alignþ rc versus Map_Align) the Wilcoxon’s test detects that
the median rank obtained with the congruence coefficient is signifi-
cantly shifted to the left (i.e. lower ranks) with P-value <2.2e�16.
In fact, by observing Figure 1, it is clear that the congruence coeffi-
cient shifts the ranking distribution of related templates closer to-
ward 1, uniformly for all methods. However, in Figure 1 we can see
that the peak of the rc-related distributions is around ranking pos-
ition 607, which is still quite far from the top-20 interval considered
in Table 3. To this extent, it is interesting to ask how much fold rec-
ognition performances are affected by inaccurate contact predic-
tions. In order to answer this question, we tested fold recognition
accuracy by using only the top-ranked contact predictions per tar-
get, using the official CASP rankings (Section 8 in Supplementary
Material). Consistently with the observations reported by restricting
to top-ranked predictors, we notice an overall improvement in fold

recognition performances, particularly for the three alignment meth-
ods with their own scoring functions. More generally, we can ob-
serve an overall good correlation between prediction accuracy and
template rankings (Section 8 in Supplementary Material). However,
while highly accurate predictions generally enhance fold recogni-
tion, there are also several cases of inaccurate predictions (according
to CASP evaluation) that still provide good fold recognition per-
formances (Section 8 in Supplementary Material).

A more stringent analysis of the fold recognition performances
can be done on CASP targets that contain at least one FM domain.
There the fold recognition performances are assessed only for the
FM domains of such targets. The TPR performances are summar-
ized in Table 4. To improve readability, we show only the results for
the top-20 recovered templates (complete results in Section 7.4.1 in
Supplementary Material). With Map_Alignþ rc we can exceed 40%
fold recognition accuracy on FM targets at the Topology level for
both CASP12 and CASP13. While leaving room for improvements,
such performance is still interesting. Recall that for both CASP12
and CASP13, the ECOD database was pre-filtered by removing all
domains that share a significant sequence similarity with the CASP
targets. Hence, although we do not have many FM targets in our
benchmark sets, the results in Table 4 suggest that contact predic-
tion is at a sufficiently high level of accuracy to improve fold recog-
nition for distantly related homologs.

Finally, we look at the quality of the alignments provided by the
three methods. We measure the alignment quality through the Z-
score of the congruence coefficient between two aligned maps,
where the mean and standard deviation are computed over all pos-
sible alignments between the two maps. The alignment quality
measure is independent of the similarity between the two maps
being aligned: optimal alignments can be computed for two unre-
lated maps and poor alignments can be computed for similar maps,
which may affect fold recognition performances. In Figure 2, we
plot the Z-score distribution of all the alignments between CASP12/
CASP13 targets and templates maps. The Z-scores are computed
using the true mean of the congruence coefficient over all possible
alignments, and the sampled standard deviations (Section 7.3 in
Supplementary Material). The Z-score distributions are computed
separately for all the alignments between a target map and all its
related templates in ECOD, and between a target map and all unre-
lated templates. First of all, in Figure 2 we can notice that, independ-
ently of the chosen method, the alignment Z-score distribution is
similar for related and unrelated templates. This indicates that the
alignment quality of each method is independent of the similarity
between the two input maps, i.e. on average one cannot expect to
see better alignments for related maps than for unrelated maps.

Fig. 1. Estimated ranking distribution of templates searched with predicted contacts.

Comparison of the ranking distribution for templates related to the target proteins

in CASP12 and CASP13. Probability density function estimated from observed

rankings in CASP12 and CASP13 benchmark sets. The Wilcoxon paired signed-

rank test detects a statistically significant shift (P-value < 2.2e�16) to the left of the

median rank obtained with the congruence coefficient for all three comparisons

AlEigenþ rc versus AlEigen, EigenTHREADERþ rc versus EigenTHREADER and

Map_Alignþ rc versus Map_Align

Table 4. Fold recognition performances with predicted contacts on FM

targets (top-20 hits)

Method CASP12 CASP13

T H X T H X

AlEigen 0.14 0.12 0.08 0.17 0.29 0.25

AlEigenþ rc 0.29 0.38 0.42 0.50 0.43 0.62

EigenTHREADER 0.00 0.00 0.17 0.17 0.14 0.12

Eigen

THREADERþ rc

0.29 0.38 0.42 0.50 0.43 0.62

Map_Align 0.14 0.12 0.08 0.17 0.29 0.25

Map_Alignþ rc 0.43 0.50 0.42 0.50 0.57 0.50

Note: Comparison of TPR performance achieved on FM targets by

AlEigen, EigenTHREADER and Map_Align with their own scoring system

against those obtained by using statistically significant congruence coefficient,

AlEigenþ rc, EigenTHREADERþ rc and Map_Alignþ rc, respectively.

ECOD hierarchy: (T) Topology Level (7 targets in CASP12, 6 targets in

CASP13), (H) Homology Level (8 targets in CASP12, 7 target in CASP13),

(X) Possible Homology Level (12 targets in CASP12, 8 targets in CASP13).

Best TPR performances per column are highlighted in bold.
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Overall, Map_Align provides better alignments than the two other
methods. This is consistent with the performances reported in
Table 3, where Map_Align, especially with the correlation coeffi-
cient as its scoring function, achieves overall best fold recognition
accuracy. In contrast, EigenTHREADER provides on average lower
quality alignments. In particular, in a non-trivial number of cases
the rc scores with respect to the alignments computed by
EigenTHREADER are lower that the expected mean. However,
EigenTHREADER’s fold recognition performances are no dramatic-
ally affected when coupled with the congruence coefficient. This is
further evidence that the congruence coefficient provides an effective
measure of map similarity.

EigenTHREADER’s fold recognition performances in Table 3
are somewhat disappointing in comparison to those reported in
Buchan and Jones (2017). This may be due to the specific character-
istics of the CASP benchmark dataset, which contains several in-
accurate predictions of multi-domain proteins. In contrast, the
EigenTHREADER’s original benchmark dataset contains highly ac-
curate predictions of single-domain proteins. Furthermore, the
EigenTHREADER’s scoring function has been fitted on single-
domain proteins only. In order to further test the congruence coeffi-
cient, we assessed fold recognition performances on the
EigenTHREADER’s dataset (Section 7.4.3 in Supplementary
Material), consisting of 150 single-domain proteins with their

associated contacts predicted (with high accuracy) by MetaPSICOV
(Jones et al., 2015) and 13k fold library domains recovered from
SCOP (Structural Classification of Proteins) 1.75 (Andreeva et al.,
2020). Overall, these comparison tests confirm what was already
reported in Buchan and Jones (2017): when homology is present in

the fold library, sequence-based methods (in particular HHsearch)
outperform contact-based fold recognition tools. Conversely, in a
low homology setting, map alignment tools outperform sequence-

based fold recognition methods. Consistently with the results of our
tests on the CASP benchmark dataset, when homology is present,

the congruence coefficient provides little or no improvement
(Section 7.4.3 in Supplementary Material). However, when low or
no homology is present in the fold library, the congruence coefficient

fitness function helps to improve fold recognition performances on
the EigenTHREADER’s benchmark dataset for all the map align-

ment tools.

3.2 Fold recognition with predicted distances
For distance maps, we run tests similar to those performed with con-
tact maps. Here we use two structural alignment tools, CE and TM-

align. Also here we compare the fold recognition capabilities of CE
and TM-align with their own scoring schemes, CE’s Z-score and

TM-score, respectively, against those obtained by using the congru-
ence coefficient, CEþ rc and TM-alignþ rc, respectively. The goal of
these tests is to show whether the congruence coefficient is suitable

also for distance map comparisons and thus for distance map-based
fold recognition. Furthermore, this provides a preliminary compari-

son between contact-based versus distance-based fold recognition.

Table 5. Fold recognition performances with predicted distances/structures

Method Benchmark set Top-1 hit Top-5 hits Top-10 hits Top-20 hits

T H X T H X T H X T H X

CE CASP12 0.29 0.37 0.35 0.43 0.53 0.56 0.43 0.53 0.56 0.46 0.53 0.56

CEþ rc 0.36 0.40 0.35 0.43 0.47 0.50 0.54 0.57 0.56 0.54 0.57 0.56

TM-align 0.21 0.33 0.35 0.39 0.43 0.53 0.54 0.57 0.59 0.61 0.60 0.62

TM-alignþ rc 0.36 0.40 0.35 0.43 0.50 0.47 0.50 0.53 0.53 0.54 0.60 0.59

CE CASP13 0.33 0.40 0.43 0.39 0.50 0.57 0.44 0.55 0.65 0.50 0.55 0.65

CEþ rc 0.39 0.45 0.48 0.56 0.60 0.61 0.61 0.65 0.70 0.61 0.65 0.74

TM-align 0.50 0.55 0.61 0.50 0.60 0.70 0.56 0.65 0.74 0.56 0.65 0.74

TM-alignþ rc 0.39 0.45 0.48 0.56 0.60 0.61 0.56 0.60 0.65 0.61 0.65 0.70

Note: TPR fold recognition performances on CASP12 and CASP13 benchmark sets. Comparison of TPR performance achieved by CE and TM-align with their

own scoring system against those obtained by using statistically significant congruence coefficient, CEþ rc and TM-alignþ rc, respectively. The TPR performances

are assessed with respect to the top-1, top-5, top-10 and top-20 ranked hits. ECOD hierarchy: (T) Topology Level (28 targets in CASP12, 18 targets in CASP13),

(H) Homology Level (30 targets in CASP12, 20 targets in CASP13), (X) Possible Homology Level (34 targets in CASP12, 23 targets in CASP13). Best TPR per-

formances per column on CASP12 and CASP13 benchmark sets are highlighted in bold.

Table 6. Fold recognition performances with predicted distances/struc-

tures on FM targets (top-20 hits)

Method CASP12 CASP13

T H X T H X

CE 0.00 0.12 0.17 0.33 0.43 0.50

CEþ rc 0.29 0.38 0.42 0.33 0.43 0.50

TM-align 0.29 0.38 0.33 0.33 0.43 0.50

TM-alignþ rc 0.29 0.38 0.33 0.33 0.43 0.50

Note: Comparison of TPR performance achieved on FM targets by CE and

TM-align with their own scoring system against those obtained by using stat-

istically significant congruence coefficient, CEþ rc and TM-alignþ rc, respect-

ively. ECOD hierarchy: (T) Topology Level (7 targets in CASP12, 6 targets in

CASP13), (H) Homology Level (8 targets in CASP12, 7 target in CASP13),

(X) Possible Homology Level (12 targets in CASP12, 8 targets in CASP13).

Fig. 2. Estimated Z-score distribution of contact map alignments for templates

related and unrelated to the target proteins in CASP12 and CASP13. The alignment

Z-score distribution is similar for related and unrelated templates for every align-

ment method. Map_Align provides the most accurate alignments,

EigenTHREADER the lower quality alignments
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The TPR performances on the CASP12 and CASP13 sets are
summarized in Table 5, while performances on the FM targets are in
Table 6 (Section 7.4.2 in Supplementary Material for the complete
table). Unlike the contact results, in these tests fold recognition
capabilities are mainly affected by the quality of the predicted struc-
tures. In particular, the overall fold recognition performance for
CASP13 is better than for CASP12, a direct consequence of the
improvements in protein structure prediction reported at CASP13.
Furthermore, the restriction to structural predictions by the top-
performing methods overall does improve fold recognition on
CASP12, and for some methods also on CASP13 (Section 7.4.2 in
Supplementary Material). We observe exactly the same trend if we
restrict to top predictions (Section 8 in Supplementary Material).
Furthermore, and consistently with our observations for contact-
based fold recognition, although better predictions improve fold rec-
ognition accuracy there are several cases of inaccurate structural
predictions—as evaluated in CASP—that still yield good fold recog-
nition performances (Section 8 in Supplementary Material).

In terms of fold recognition performances, the congruence coeffi-
cient is comparable to TM-score and CE’s Z-score, two metrics
adopted by CASP. In some cases, the congruence coefficient achieves
slightly better accuracy. However, we do not observe significantly
strong differences between the TM-Align versus CE and TM-score/
Z-score versus congruence coefficient, since no approach is overall
better than another in all cases. This is consistent with what we
observe in Figure 3, which shows that the ranking distributions
of related templates are practically undistinguishable among all
benchmarked approaches. However, the Wilcoxon paired signed-
rank test detects a positive shift of the median rank toward the left
for the comparison CEþ rc versus CE with P-value ¼ 7.106e�05
and with P-value <2.2e�16 for the TM-alignþ rc versus TM-align
comparison.

In Figure 4, we show the Z-scores distributions of the alignments
provided by CE and TM-align. Unlike map alignment tools, struc-
tural alignment tools tend to compute slightly better alignments
between a target and its related templates than against unrelated
templates. However, not surprisingly, in most of the cases the rc

coefficients related to such alignments are lower than the expected
coefficient over all possible alignments. This is because CE and TM-
align perform local alignments, while the maximum rc score be-
tween two maps is achieved by performing a global alignment.
Specific distance map alignment tools may provide better global
alignments and may further improve fold recognition with predicted
distances. Although most of the local alignments computed by CE

and TM-align are not optimal global alignments, the rc P-value is
generally statistically significant, due to the large degree of freedom
associated with distance maps. Thus, unlike the case of contact-

based searches, the P-value cutoff for distance maps does not seem
to improve database searches.

Finally, distance-based fold recognition does not outperform
contact-based fold recognition. If anything, the converse is true
when looking at Tables 4 and 6 summarizing fold recognition per-

formances on FM targets. While the limited number of targets in our
benchmark sets does not allow one to draw strong conclusions,

these tests at least confirm that contact map comparison is a valu-
able approach for detecting protein structure similarities.

4 Conclusion

We exploited the congruence coefficient as a measure for detecting

map similarities. We proved that the congruence coefficient has sev-
eral important mathematical properties allowing one to rigorously

assess its statistical significance and efficiently compute its average
and standard deviation. We compared contact map-based and dis-
tance map-based fold recognition performances of the congruence

coefficient against those of contact map alignment and structural
alignment tools. Overall, the congruence coefficient score improves

the fold recognition accuracy, particularly for contact-based fold
recognition, proving its effectiveness as a general similarity metric
for protein map comparisons. Furthermore, contact-based fold rec-

ognition accuracy is comparable or better than distance/structure-
based fold recognition, suggesting its potential as a general approach

for improving the detection of protein structure similarities.
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