
Sequence analysis

GalaxyCloudRunner: enhancing scalable computing

for Galaxy

Nuwan Goonasekera1,*, Alexandru Mahmoud2, John Chilton3 and Enis Afgan 2,*

1Melbourne Bioinformatics, Faculty of Medicine, Dentistry & Health Sciences, University of Melbourne, Melbourne, VIC 3010,

Australia, 2Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA and 3Department of Biochemistry and

Molecular Biology, Penn State University, State College, PA 16801, USA

*To whom correspondence should be addressed.

Associate Editor: Martelli Pier Luigi

Received on May 20, 2020; revised on August 18, 2020; editorial decision on August 19, 2020; accepted on October 11, 2020

Abstract

Summary: The existence of more than 100 public Galaxy servers with service quotas is indicative of the need for an
increased availability of compute resources for Galaxy to use. The GalaxyCloudRunner enables a Galaxy server to
easily expand its available compute capacity by sending user jobs to cloud resources. User jobs are routed to the
acquired resources based on a set of configurable rules and the resources can be dynamically acquired from any of
four popular cloud providers (AWS, Azure, GCP or OpenStack) in an automated fashion.

Availability and implementation: GalaxyCloudRunner is implemented in Python and leverages Docker containers.
The source code is MIT licensed and available at https://github.com/cloudve/galaxycloudrunner. The documentation
is available at http://gcr.cloudve.org/.

Contact: ngoonasekera@unimelb.edu.au or enis.afgan@jhu.edu

1 Introduction

Galaxy (Afgan et al., 2018b) is a popular data analysis and tool inte-
gration platform used in a variety of research scenarios, with public
Galaxy servers, such as the usegalaxy.* federation (Afgan et al.,
2018b), offering free resources for scientific analyses. However,
batches of genomic sequencing data, workshop training events or
specific resource requirements (e.g. large memory) are examples of
scenarios where additional compute resources can deliver more re-
sponsive and suitable environments for users. For such scenarios,
public servers are challenging to use due to the limited processing
capacity often leading to prolonged job wait times (Tyryshkina et
al., 2019). Setting up and maintaining suitable and sizable resources
locally present challenges such as acquiring the necessary infrastruc-
ture, which may often be underutilized.

Cloud computing offers opportunities to acquire suitable resour-
ces on demand (Langmead and Nellore, 2018). Launch-your-own
Galaxy on the cloud is a model that has been supported in a variety
of scenarios (Afgan et al., 2015b; Peters et al., 2019; Tangaro et al.,
2020). However, enabling a Galaxy instance to easily acquire resour-
ces from the cloud on an as-needed basis has not been supported. The
Galaxy application performs a large number of steps when executing
jobs. These include ensuring the availability of necessary tools, for-
matting job submission scripts, staging job input data, submitting and
monitoring jobs and retrieving outputs. Ensuring these steps are prop-
erly configured imposes significant complexity on the system adminis-
trator when trying to leverage cloud resources (Afgan et al., 2015a).

To this end, GalaxyCloudRunner automates the necessary steps
for Galaxy to provision, connect and route jobs to remote machines.
Based on configurable and extensible rules, a Galaxy administrator
can enable cloud bursting for their Galaxy instance, as well as have
control over which jobs are sent to remote resources, how many and
which machines are made available, and to mix and match which
clouds they are running on. Meanwhile, the end-user seamlessly uses
Galaxy while benefiting from the increased compute capacity.

2 Implementation

The The GalaxyCloudRunner is implemented as a Galaxy plugin and
comes built into Galaxy versions �19.01. By leveraging Pulsar,
Galaxy’s remote job runner and CloudLaunch (Afgan et al., 2019), a
cloud resource launcher, GalaxyCloudRunner assembles all the neces-
sary components to enable cloud-busting, while providing configurable
dynamic job routing rules. Together, GalaxyCloudRunner, Pulsar and
CloudLaunch allow for the dynamic creation of virtual machines
(VMs) on any of popular cloud providers, namely Amazon Web
Services, Google Cloud Platform, Microsoft Azure and OpenStack.
The provisioned VMs are automatically configured to accept jobs from
a Galaxy instance, with user jobs being routed following desired rules.

GalaxyCloudRunner operates in two distinct steps: (i) a Galaxy
administrator enables GalaxyCloudRunner as a job destination
by editing a single Galaxy configuration file, which defines job
rules (more below) and a connection to CloudLaunch, and (ii) the
administrator launches VMs via CloudLaunch, which can be done

VC The Author(s) 2020. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 1763

Bioinformatics, 37(12), 2021, 1763–1765

doi: 10.1093/bioinformatics/btaa860

Advance Access Publication Date: 26 October 2020

Applications Note

http://orcid.org/0000-0003-0922-6711
https://github.com/cloudve/galaxycloudrunner
http://gcr.cloudve.org/
https://academic.oup.com/


manually via a graphical web interface or programmatically. A pub-
lic instance of CloudLaunch is available at https://launch.usegalaxy.
org/ while a private one can be installed using a Helm chart or by
hand, with documentation available at https://cloudlaunch.readthe
docs.org. Galaxy will continuously query CloudLaunch for available
machines. Each time, CloudLaunch will return the list of available
Pulsar servers along with tokens that Galaxy can use to authenticate
with each Pulsar server. This allows the administrator to dynamical-
ly add or remove machines as desired, which can be scripted for a
hands-off solution. Based on the availability of machines and fol-
lowing the defined set of rules, Galaxy will route jobs to them.

The GalaxyCloudRunner implements a number of job rules,
which can be chained or extended for custom routing capabilities.
The default rule (galaxycloudrunner) has Galaxy querying
CloudLaunch for any VMs available to receive jobs, which are then
dispatched in round-robin fashion. Additional rules are available to
limit sending jobs to the galaxycloudrunner only when the main job
queue has a backlog. Such rules allow the utilization of local resour-
ces first, and only bursting to the cloud when necessary. A rule also
exists to route jobs based on input size, such as checking if inputs
are too large for local machines, or conversely routing numerous
small jobs to the cloud that do not require large data transfers.
These existing rules can be chained together to enable behavior such
as sending all jobs smaller than 1GB to remote resources when the
local queue has a backlog greater than five for example. Additional
rules can be developed by administrators to implement any desired
logic for job routing.

When an administrator launches a VM via CloudLaunch,
CloudLaunch ensures a suitable runtime environment exists on the
remote machine by automatically starting Pulsar and configuring
Galaxy CVMFS, a read-only filesystem repository managed by the
Galaxy project and containing a large number of pre-installed tools
and reference data (Afgan et al., 2018a). The Pulsar server uses
Slurm as a job manager, and will queue jobs if the machine lacks suf-
ficient processing capabilities for the current load. At job submission,
Pulsar stages input data and retrieves tool binaries from the CVMFS
repository. If a tool is unavailable on CVMFS, Pulsar will attempt to
install it via Bioconda recipes (Grüning et al., 2018). Once a job com-
pletes, results are automatically transferred back to Galaxy (Fig. 1).

3 Discussion and conclusions

The GalaxyCloudRunner offers a straightforward method for acquir-
ing additional compute capacity for any Galaxy server, does so with
minimal overhead and grants control over resources to the administra-
tor. Although GalaxyCloudRunner is not currently used in production,
suitable use cases include peak usage periods (e.g. training workshops),
specific resource requirements (e.g. large memory), software licensing
considerations (e.g. software available exclusively as cloud appliances)
and the availability of resources from national cloud infrastructure
[e.g. NSF Jetstream (Hancock et al., 2019)]. However, burst mode
does not come without limitations. Continuously transferring large
datasets from commercial cloud providers may incur sizable costs
and/or take considerable time. Furthermore, not all Galaxy tools are

Fig. 1. The sequence of events that occurs when bursting Galaxy jobs to the cloud via GalaxyCloudRunner (GCR). An admin enables GCR and creates any number of virtual

machines at will that Galaxy will utilize based on the defined job rules. End-users use Galaxy without changing their routine

1764 N.Goonasekera et al.

https://launch.usegalaxy.org/
https://launch.usegalaxy.org/
https://cloudlaunch.readthedocs.org
https://cloudlaunch.readthedocs.org


compatible with remote execution (e.g. uploading data, data managers
for reference genomes), requiring administrative care to restrict job
routing in those cases. Nevertheless, the GalaxyCloudRunner is a
powerful tool that can be readily used to explore novel usage scenarios
for Galaxy servers. For example, Galaxy administrators could develop
custom job rules to route jobs only for specific users’ to VMs to accom-
modate interactive workshops that use dedicated resources or allow
users to supply their own resources.

Funding

This work was supported in part by the National Institutes of Health

[5U41HG006620-07].

Conflict of Interest: Goonasekera, Chilton and Afgan are founders of and

hold equity in GalaxyWorks, LLC. The results of the study discussed in this

publication could affect the value of GalaxyWorks, LLC. The University of

Melbourne, Penn State University and Johns Hopkins University have been

apprised of the potential conflict of interest.

References

Afgan,E. et al. (2018a) The Galaxy platform for accessible, reproducible and

collaborative biomedical analyses: 2018 update. Nucleic Acids Res., 46,

W537–W544.

Afgan, E. et al. (2018b) Federated Galaxy: Biomedical Computing at the

Frontier, 2018. IEEE 11th International Conference on Cloud Computing

(CLOUD), San Francisco, CA. 2018, pp. 871–874.

Afgan,E. et al.; The Galaxy Team. (2015a) Enabling cloud bursting

for life sciences within Galaxy. Concurr. Comput. Pract. Exp., 27,

4330–4343.

Afgan,E. et al. (2015b) Genomics virtual laboratory: a practical bioinformat-

ics workbench for the cloud. PLoS One, 10, e0140829.

Afgan,E. et al. (2019) CloudLaunch: discover and deploy cloud applications.

Fut. Gener. Comput. Syst., 94, 802–810.

Grüning,B. et al.; The Bioconda Team. (2018) Bioconda: sustainable and com-

prehensive software distribution for the life sciences. Nat. Methods, 15,

475–476.

Hancock,D.Y. et al. (2019) Jetstream—Early operations performance, adop-

tion, and impacts. Concurr. Comput. Pract. Exp., 31, e4683.

Langmead,B. and Nellore,A. (2018) Cloud computing for genomic data ana-

lysis and collaboration. Nat. Rev. Genet., 19, 208–219.

Peters,K. et al. (2019) PhenoMeNal: processing and analysis of metabolomics

data in the cloud. GigaScience, 8, 1–12.

Tangaro,M.A. et al. (2020) Laniakea: an open solution to provide Galaxy

“on-demand” instances over heterogeneous cloud infrastructures.

GigaScience, 9, 1–12.

Tyryshkina,A. et al. (2019) Predicting runtimes of bioinformatics tools based

on historical data: five years of Galaxy usage. Bioinformatics, 35,

3453–3460.

GalaxyCloudRunner 1765


