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Abstract

Investigating the relationships between two sets of variables helps to understand

their interactions and can be done with canonical correlation analysis (CCA). How-

ever, the correlation between the two sets can sometimes depend on a third set of

covariates, often subject-related ones such as age, gender, or other clinical measures.

In this case, applying CCA to the whole population is not optimal and methods to esti-

mate conditional CCA, given the covariates, can be useful. We propose a new method

called Random Forest with Canonical Correlation Analysis (RFCCA) to estimate the

conditional canonical correlations between two sets of variables given subject-related

covariates. The individual trees in the forest are built with a splitting rule specifically

designed to partition the data to maximize the canonical correlation heterogeneity be-

tween child nodes. We also propose a significance test to detect the global effect of the

covariates on the relationship between two sets of variables. The performance of the

proposed method and the global significance test is evaluated through simulation stud-

ies that show it provides accurate canonical correlation estimations and well-controlled

Type-1 error. We also show an application of the proposed method with EEG data.
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1 Introduction

Data from multiple sources, called multi-view data, refers to many types of data that

include complementary information from different aspects to characterize a subject. For

example, in biomedical studies, the collection of data may include subject-related covari-

ates (e.g. age, gender, medical history), DNA sequencing, transcriptomics (e.g. mRNA,

microRNA, RNA sequencing) and proteomics for a single subject (Cancer Genome Atlas

Network, 2012; ENCODE Project Consortium, 2012). As another example, in functional

neuroimaging, we may have subject-related covariates (e.g. age, gender, intracranial vol-

ume (ICV)), brain imaging data, and cognitive measurements for subjects (Fratello et al.,

2017). Integration of multiple feature sets and investigating the relationships between them

may help to understand their interactions and obtain more meaningful interpretations.

Studying the integration of multiple feature sets requires statistical and machine-learning

tools which include methods for dimension reduction, clustering, classification, and asso-

ciation studies for multi-view data integration (see Sun (2013); Meng et al. (2016); Min

et al. (2017); Li et al. (2018) for comprehensive reviews).

Canonical correlation analysis (CCA), firstly introduced in Hotelling (1936), is a mul-

tivariate statistical method that analyzes the relationship between two multivariate data

sets, X and Y . CCA searches for linear combinations of each of the two data sets, Xa

and Y b, having maximum correlation. In CCA, the components Xa and Y b are called

canonical variates and their correlations are the canonical correlations. CCA is a two-view

data integration tool. It was later generalized to data with more than two views (Ketten-

ring, 1971). There are some extensions of CCA for under-determined data sets through

regularized CCA (Vinod, 1976; Cruz-Cano and Lee, 2014), for sparse data sets through

sparse-CCA (Witten et al., 2009; Hardoon and Shawe-Taylor, 2011) and for nonlinear rela-

tionships through generalized CCA (Melzer et al., 2001), deep CCA (Andrew et al., 2013),

kernel CCA (KCCA) (Akaho, 2001) and non-parametric CCA (NCCA) (Michaeli et al.,

2016). Although very flexible, all these methods suppose that the relationship between the

two sets of variables is constant for all subjects, which is not always the case in practice.

For example, hundred of gene-environment studies have shown that gene effects on dis-

eases are modulated by environmental factors (Caspi and Moffitt, 2006; Hunter, 2005; Ma

et al., 2011). In the field of neuroscience, age and gender are known to interact with brain-

behaviour correlations (Davis et al., 2008; Li et al., 2010) and this should be accounted for

in the analyses. In this paper, we focus on CCA and specifically on extending it to account
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for a subject-related covariate effect on the correlation.

There are several ways to account for subject-related covariates in multi-view data

integration. They can be treated as one of the views (Hanna et al., 2010; Li and Jung,

2017; Moser et al., 2018; Mihalik et al., 2020) or they can be used to identify subgroups

in the data while analyzing the relationships between other views. Recently, Choi et al.

(2020) proposed a recursive partitioning approach, namely correlation tree, to identify

homogeneous correlated subgroups within data. In their work, the data consists of a set of

subject-related covariates Z (e.g. age, gender, education) and two univariate continuous

variables X and Y which are assumed to be correlated. The correlation tree method grows

a decision tree with covariates to identify subgroups of subjects with different correlations

between the two univariate variables. A simple illustration of this approach is shown in

Figure 1 with a single split of the decision tree. In this example, the overall correlation

between X and Y is ρ = 0.329. However, this hides the fact that the subgroup with Z1 >

0.011 has a much higher correlation of ρR = 0.741 while the other subgroup Z1 ≤ 0.011

has almost no correlation (ρL = 0.018). Such a situation can be modeled in practice with a

regression model including an interaction effect between X and Z, but the situation is not

as straightforward when both Y and X are multivariate and when the interaction pattern

with Z is complex enough to not be captured efficiently by a single tree. Therefore, the goal

of this paper is to propose a novel way to estimate the canonical correlations between two

sets of multivariate variables X and Y , depending on Z, using a random forests framework.

Random forest is an ensemble method which contains many decision trees. It is a

powerful prediction method due to its ability to limit over-fitting. Moreover, random

forests can be seen as a way to find nearest neighbor observations that are close to the one

we want to predict (Hothorn et al., 2004; Lin and Jeon, 2006; Moradian et al., 2017, 2019;

Roy and Larocque, 2020; Tabib and Larocque, 2020). Each tree in the proposed random

forest framework is built with a new splitting rule designed to produce child nodes with

maximum difference in the canonical correlation between X and Y . For a new observation

with subject-related covariate values z∗, the proposed random forest provides a set of

similar observations from the training data set that will be used to compute a canonical

correlation estimate given z∗. Moreover, we propose a significance test to detect the global

effect of Z on the relationship between X and Y .

This paper is organized as follows. In Section 2, we describe the proposed method,

global significance test and variable importance measure. In Section 3, simulation study

results for accuracy evaluation and global effect of covariates are presented to show the
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Figure 1: Example of a dataset (X,Y ) where the correlation between X and Y depends
on a covariate Z1. This can be captured by a single split of the decision tree.

performance of the method. A real data example is provided in Section 4, followed by

concluding remarks in Section 5.

2 Proposed method

In this section, we describe the proposed method in detail.

2.1 Canonical correlation analysis (CCA)

Canonical correlation analysis (CCA), firstly introduced in Hotelling (1936), seeks vectors

of a ∈ Rp and b ∈ Rq, given two mean centered multivariate data sets X ∈ Rn×p and

Y ∈ Rn×q, such that Xa and Y b are maximally linearly correlated. We can formulate the

problem as finding the coefficients (a∗, b∗) such that:

(a∗, b∗) = argmax
a,b

corr(Xa, Y b), (1)

where

corr(Xa, Y b) =
aTΣXY b√

aTΣXXa
√
bTΣY Y b

,
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where ΣXX and ΣY Y are the covariance matrices of X and Y , respectively, and ΣXY is the

cross-covariance matrix. Since rescaling a and b does not affect corr(Xa, Y b), we can add

the constraints aTΣXXa = 1, bTΣY Y b = 1 to the maximization problem (1). There are

several ways to solve the CCA problem, such as solving standard or generalized eigenvalue

problems (Hotelling, 1936; Hardoon et al., 2004; Bach and Jordan, 2002), using alternating

least squares regression (Branco et al., 2005; Wilms and Croux, 2015) and using singular

value decomposition (Healy, 1957; Ewerbring et al., 1990).

2.2 Tree growing process

We use an unsupervised random forest based on the set of covariates Z to find subgroups

of observations with similar canonical correlations between X and Y . This random forest

consists of many unsupervised decision trees with a specialized splitting criterion. The

tree growing process follows the CART approach (Breiman et al., 1984). The basic idea of

tree growing with CART is to select the best split at each parent node among all possible

splits to obtain the purest child nodes. Assume we want to split a parent node with nP

observations into two child nodes, namely left and right nodes. To split a node, all possible

splits are evaluated with the selected splitting criterion. A split value for each split point

is calculated by using the observations in the parent node. Then, the best split is selected

among all possible splits. The CART algorithm evaluates all possible splits to decide the

split variable and split point. In random forests, instead of evaluating all possible splits, the

best split search is limited to a randomly selected subset of covariates. Splitting continues

until all nodes become terminal nodes.

Since the goal is to find subgroups of subjects with distinct canonical correlations, we

propose a splitting rule that will seek to increase the canonical correlation heterogeneity

as fast as possible (Athey et al., 2019; Moradian et al., 2017; Tabib and Larocque, 2020).

Define ρL and ρR as the canonical correlation estimations of the left and right nodes,

respectively. The proposed splitting criterion is

√
nLnR ∗ |ρL − ρR|, (2)

where nL and nR are the left and right node sizes, respectively. The best split among all

possible splits is the one that maximizes (2). Choi et al. (2020) propose a similar criterion

without the
√
nLnR term among one of three possible splitting criteria for their correlation

tree method.
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2.3 Random forest and estimation of canonical correlation for new ob-

servations

The previous section describes the splitting criterion and tree growing process for a single

tree. The final canonical correlations are estimated with a random forest. Random forest

(Breiman, 2001) is a data-driven weight generator. For example, for a continuous outcome,

we can represent random forest predictions for a new observation as a weighted average

of the true responses such as ônew =
∑N

i=1 ŵi(c
new)oi, where ŵi are the predicted weights

from the random forest, cnew are the covariates of the new observation, and oi are the

observed outcomes (Hothorn et al., 2004; Lin and Jeon, 2006).

A slightly different representation of these weights was presented in Moradian et al.

(2017) and later used in Moradian et al. (2019), Roy and Larocque (2020) and Tabib and

Larocque (2020). For a new observation, we form a set of observations which includes the

training observations that are in the same terminal nodes as the new observation. Roy

and Larocque (2020) called this set of observations the Bag of Observations for Prediction

(BOP). We can define BOP for a new observation cnew as

BOP (cnew) =

B⋃
b=1

Snewb ,

where Snewb is the set of training observations that are in the same node as cnew in the bth

tree. Any desired measure can be obtained by using the constructed BOP. In this paper,

we use the BOP idea to estimate the canonical correlations for the new observations. Once

we train the random forest, we can estimate the correlation for any new observation. In our

problem, for a new observation with covariates znew, we firstly form BOP (znew). Then,

we apply canonical correlation analysis for X and Y with the observations in BOP (znew),

to compute the canonical correlation estimation ρ̂(znew).

We can estimate CCA components only if the sample size, n, is larger than (p + q).

In fact, if n < (p + q), the first (p + q − n) canonical correlations will be exactly one and

uninformative (Pezeshki et al., 2004). When n > (p + q), although we can estimate the

CCA correlations, overfitting can still be a problem. As the sample size in proportion to

(p+ q) increases, the likelihood of overfitting decreases. During the tree building process,

the number of observations in the nodes are getting smaller as we move down in the tree.

When the sample size of a node in proportion to a fixed total number of X and Y variables

is close to one, we are more likely to overfit. Therefore, we need to control the minimum
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sample size in the nodes and we do it using the nodesize feature of random forests.

2.4 Global significance test

For each tree grown in the forest, the proposed method uses the covariate space to iden-

tify groups of observations with similar canonical correlations. By doing so, we might

be tempted to assume that the set of covariates is indeed relevant to distinguish between

canonical correlations. However, this might not be the case and we propose a hypothesis

test to evaluate the global effect of the covariates on the canonical correlation. The uncon-

ditional canonical correlation between X and Y can be found by computing CCA using the

whole sample. If there is a global effect of Z on such correlations, the estimated conditional

canonical correlations with the proposed method should be significantly different from the

unconditional canonical correlation. We perform the following statistical significance test

for the null hypothesis

H0 : ρ(X,Y |Z) = ρCCA(X,Y ), (3)

where ρ(X,Y |Z) is the conditional canonical correlation between X and Y given Z, and

ρCCA(X,Y ) is the unconditional CCA correlation in the population.

Before describing the global significance test, we will describe how to estimate canon-

ical correlations for the training data using out-of-bag (OOB) observations. We train a

random forest with B trees using the training observations. Each tree b = {1, ..., B} is built

with the selected random bootstrap sample, i.e. inbag observations (IBb), that contains

approximately 63% distinct observations from the original sample. The remaining training

observations are the OOB observations for that tree, namely OOBb, and they are not used

for building the bth tree. After training a random forest with B trees, we have (IBb,OOBb)

sets for each tree. The estimation of canonical correlation with OOB observations is de-

scribed in Algorithm 1 for a training set with a sample of size n. Basically, for a given

training observation, the canonical correlation is estimated with the BOP, but using only

the trees for which that observation is OOB.

The proposed global significance test is described in Algorithm 2. Firstly, we apply

CCA to all X and Y to compute the unconditional canonical correlation, which is the root

node correlation, say ρroot. Then, we apply the proposed method for X,Y ,Z and estimate

the canonical correlations for each training observation, ρ̂(zi), by using OOB observations

as described in Algorithm 1. Finally, we compute the global test statistic with

7



Algorithm 1 Estimation of canonical correlation for a training observation zi with OOB
observations

1: for i=1,...,n do
2: for b=1,...,B do
3: if zi ∈ OOBb then
4: Find the terminal node of zi at tree b, say d
5: BOPoob(zi) = BOPoob(zi)∪IBb

d(zi) (where IBb
d(zi) is the inbag observations

that are in the same terminal node d as zi)
6: end if
7: end for
8: Apply CCA for X and Y with the observations in BOPoob(zi) to find the estimated

canonical correlation ρ̂(zi)
9: end for

T =
1

n

n∑
i=1

(
ρ̂(zi)− ρroot

)2
. (4)

The global test statistic is the mean squared difference between the unconditional

canonical correlation between X and Y , and the estimated canonical correlations with

the proposed method. It measures how far the estimated canonical correlations are spread

out from the unconditional canonical correlation between X and Y . The larger T is, the

more evidence against H0 we have. We perform a permutation test under the null hypoth-

esis (3) by randomly permuting rows of Z. For each permuted Z, we compute the global

test statistic (4) and estimate a p-value with

p =
1

R

R∑
r=1

I(T ′r > T ), (5)

where T ′r is the test statistic for the rth permuted Z and R is the total number of permu-

tations. If the p-value is less than the pre-specified significance level α, we reject the null

hypothesis (3).
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Algorithm 2 Global permutation test for covariates’ effects

1: Compute CCA for X and Y in the root node, say ρroot
2: Train RF with X, Y , Z
3: Compute estimated canonical correlations with Algorithm 1, say ρ̂(zi)

4: Compute test statistic with T = 1
n

∑n
i=1

(
ρ̂(zi)− ρroot

)2
5: for r = 1 : R do
6: Permute rows of Z, say Zr
7: Train RF with X, Y , Zr
8: Compute estimated canonical correlations with Algorithm 1, say ρ̂′r(zi)

9: Compute test statistic with T ′r = 1
n

∑n
i=1

(
ρ̂′r(zi)− ρroot

)2
10: end for
11: Approximate the permutation p-value with (5)
12: Reject the null hypothesis when p < α. Otherwise, do not reject the null hypothesis.

2.5 Variable importance

Random forests use OOB samples to construct variable importance (VIMP) measures by

evaluating the average change in prediction accuracy. However, we do not have a true

response variable since the problem is unsupervised by nature. Therefore, we use the

predicted values to compute any VIMP measures we want from existing packages. The

idea is that we are measuring the importance of the variables by using a regression forest

to reproduce the canonical correlation estimations we obtained from our method. Hence,

the VIMP measures reflect the predictive power of the variables on the estimated canonical

correlations. Therefore, higher value of VIMP measure implies higher importance for the

estimation of canonical correlations. We propose a two-step process to estimate VIMP

measures; see Section 3.1 of the Supplementary Material for details.

2.6 Implementation

We utilised the custom splitting feature of the randomForestSRC package (Ishwaran and

Kogalur, 2020) to implement our splitting criterion in the tree building process. We have

developed an R package called RFCCA. The package is available on CRAN, https://CRAN.R-

project.org/package=RFCCA.
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3 Simulations

Evaluating the performance of the proposed method with a real data set is not possible

since the true relationships between X and Y with varying Z are typically unknown. Hence,

we perform a simulation study with a known data generation process (DGP) to show the

performance of our method. We first describe the DGP used in the simulation study. Next,

we construct scenarios to validate the proposed global significance test. Since we know the

true correlations, we can evaluate the accuracy of the correlation estimations. We can

also evaluate the estimated importance ranking of the covariates since we know the set of

covariates that are effectively related to the relationship between X and Y , and the ones

that are redundant.

3.1 DGP

Assume we want to generate a data set with X ∈ Rn×p, Y ∈ Rn×q and Z ∈ Rn×r where n is

the sample size. We firstly generate the covariates Z according to a standard multivariate

normal distribution with an equicorrelated covariance matrix, that is from N(0,ΣZ) where

ΣZ = (1−ρz)Ir+ρzJr, Ir and Jr are r×r identity matrix and matrix of ones, respectively.

Then, the true correlation between Xa and Y b for each observation i, ρ(zi), is generated

with the following logit model

ρ(zi) =
1

1 + exp(−(β0 +
∑r

l=1 βlzil + z2i1))
,

where β0 is the intercept parameter and βl are the weights for the Z variables. In the

simulations, we set all βl to be 1/r.

Next, we generate the X and Y coefficients for CCA, a and b in (1) respectively, with

the following two linear equations:

aij = max{0, (1− sx × ρ(zi)× j)} ∀j = {1, 2, ..., p},

bik = max{0, (1− sy × ρ(zi)× k)} ∀k = {1, 2, ..., q},

where sx and sy are some slope parameters to be defined. Note that according to these

equations, the X and Y variables have a descending order of relative importance. Also, we

may set some coefficients to be 0 with an appropriate choice of sx and sy, in order to have

redundant covariates that are not directly related to the canonical correlations.
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Finally, for each observation i, we generate the X and Y variables with a multivariate

normal distribution N(0,Σi), where Σi =

(
ΣX Σi

XY

Σi
Y X ΣY

)
, ΣX = (1− ρx)Ip + ρxJp, ΣY =

(1−ρy)Iq+ρyJq and Σi
XY = ρ(zi)ΣXaib

T
i ΣY . See Section 4 of the Supplementary Material

for examples of sample distributions with different parameter settings.

3.2 Simulation design

3.2.1 Evaluation of the power of the global significance test

In order to evaluate the effect of Z, we consider four scenarios where two of them are

under the null hypothesis (3) and the other two are under the alternative hypothesis. For

all scenarios, we generate X and Y with two levels of CCA correlation defined to be low

(0.3) and high (0.6). For the first scenario (case 1 under H0), these levels represent the

population correlation. For the other three scenarios, they represent the mean sample

correlation. We generate the data sets for these scenarios as follows:

1. H0 (case 1): We generate 5 X, 5 Y with a constant population canonical correlation

and 10 Z variables which are all independent and following a standard normal dis-

tribution. In this case, the correlation between X and Y is independent of Z and we

are therefore under the null hypothesis.

2. H0 (case 2): We first generate 5 X, 5 Y and 5 Z with the proposed DGP. Then, we

replace the Z set with 10 independent Z variables generated with a standard normal

distribution. In this case, the correlation between X and Y varies with some of the Z

variables but those Z variables are not available in the training set. Hence, although

the correlation between X and Y is a function of covariates, these covariates are not

part of the training set. Therefore, we are again under the null hypothesis.

3. H1 (without noise): We generate 5 X, 5 Y and 5 Z with the proposed DGP, and the

covariates are available in the training set. In this case, the correlation between X

and Y varies with all Z variables.

4. H1 (with noise): We generate 5 X, 5 Y and 5 Z with the proposed DGP and we add

5 independent Z variables to the covariates’ training set. In this case, the correlation

between X and Y varies with some of the Z variables.
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Parameters Low CCA correlation High CCA correlation

(p, q) (1,1), (5,5), (10,10) (1,1), (5,5), (10,10)
(r, rnoise) (1,5), (5,5), (10,5) (1,5), (5,5), (10,5)

(ρx, ρy, ρz) (0.3, 0.3, 0.1) (0.3, 0.3, 0.1)
(β0, βl) (-2,1r ) (-0.3,1r )
(sx, sy) (0.7, 0.4) (0.4, 0.3)

Table 1: DGP parameter settings for accuracy evaluation simulations. We consider two
levels of average CCA correlation: low (0.3) and high (0.6).

Each of the scenarios above are repeated under the low and high correlation set-

tings, which leads to a total of 8 scenarios to investigate. We also investigate how the

performance of the proposed method varies with the training sample sizes, and we use

ntrain = {200, 300, 500, 1000, 1500}. The number of permutations in the permutation test

is set to 500 and each scenario is repeated 500 times. Type-1 error is estimated as the

proportion of rejection in the scenarios simulated under H0. Similarly, we estimate power

as the proportion of rejection in the scenarios simulated under H1.

For each replication of the simulation, we obtain an estimated p-value from the per-

mutation test. If the p-value is less than the significance level α = 0.05, we reject the null

hypothesis. The proportion of rejection is then calculated over the 500 replications.

3.2.2 Accuracy evaluation

We perform a simulation study to evaluate the accuracy of the method for estimating the

canonical correlation. Table 1 presents the DGP parameter settings for these simulations.

We generate Z with (r, rnoise) = {(1, 5), (5, 5), (10, 5)} where r and rnoise are the number

of important and noise Z variables, respectively. We generate X and Y with (p, q) =

{(1, 1), (5, 5), (10, 10)} where p and q are the number of X and Y variables, respectively.

We use training sample sizes of ntrain = {100, 200, 300, 500, 1000, 5000}. Also, we consider

six values for parameter nodesize that controls the size of the trees: nodesize = {2×(p+

q), 3× (p+ q), 4× (p+ q), 6× (p+ q), 8× (p+ q), 10× (p+ q)}. Overall, these combinations

produce 648 settings (2 mean CCA correlation levels × 3 Z dimensionality × 3 X and Y

dimensionality × 6 training sample sizes × 6 nodesize levels). Each setting is repeated

100 times for a total of 64,800 runs. In each run, we generate an independent test set of

new observations with ntest = 1000.
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We evaluate the performance with the mean absolute errors (MAE), given by

MAE =
1

ntest

ntest∑
i=1

|ρ̂(zi)− ρ(zi)|, (6)

where ρ̂(zi) is the estimated canonical correlation and ρ(zi) is the true correlation for the ith

test observation with covariates zi. Smaller values of the MAE show better performance.

We use ordinary CCA, without covariates, as a simple benchmark method. In this case,

we let ρtrain be the training sample estimated canonical correlation with CCA. This value

is used as the correlation estimation for all new observations from the test set.

3.3 Results

3.3.1 Global significance test

Figure 2 illustrates the estimated Type-1 error for different training sample sizes for both

H0 case 1 and 2. In the first and second columns, we have results for the low and high

correlated data sets, respectively. In H0 scenarios, we expect the Type-1 error to be close

to the significance level (α = 0.05). As can be seen from plots, the Type-1 error is well

controlled in both cases. Figure 3 illustrates the power of the test. In all scenarios and as

expected, the power is increasing with the sample size. However, adding noise covariates

slightly decreases the power when the sample size is small. As the sample size increases,

the power is not affected by the presence of noise covariates.

3.3.2 Accuracy evaluation

We provide a summary of the results in Figures 4 and 5 which present the average MAE

over the 100 repetitions when nodesize = 3 × (p + q) for the low and high correlation

settings, respectively. The plots illustrate the change in MAE with increasing training

sample size for different r and (p, q) settings. In our simulations, selecting nodesize

as 3 × (p + q) leads to globally smaller or very similar MAE results (see Section 5 of

the Supplementary Material for the performance comparison results for the six levels of

nodesize). As can be seen from both figures, the proposed method and the benchmark

have a similar performance, with a slight advantage for the proposed method in some cases

when n = 100. When the sample size increases, the MAE of both methods decrease but

markedly faster for the proposed method. Hence, in the settings considered, a small sample
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Figure 2: Global significance test results for H0 cases. In case 1 the correlation between X
and Y is not varying with Z and in case 2 the correlation between X and Y is varying with
some of the Z variables but those Z variables are not used in the training set. Left and
right plots are for low and high correlated data sets, respectively. Dashed line represents
the significance level of α = 0.05.
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Figure 3: Global significance test results for H1 scenarios. In without noise case, we have
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case we have additional noise covariates. Left and right plots are for low and high correlated
data sets, respectively. Dashed line represents the significance level of α = 0.05.
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size of 100 is not sufficient for the proposed method to improve over the ordinary CCA. But

when the sample size increases, the proposed method successfully exploits the covariates

to provide more accurate estimations of the canonical correlation, the relative gain being

more important in the high correlation settings.

In randomForestSRC, the default sampling for random forest training is sampling with-

out replacement (sub-sampling), unlike the original random forest algorithm that uses

bootstrapping. We investigate the effect of sampling on the performance of the proposed

method on the scenarios with ntrain = 1000. Also, we analyze the effect of sampling on

the selection of the nodesize parameter. The performance comparison results are pre-

sented in Section 5.3 of the Supplementary Material. In most of the settings, there is no

significant difference in performance between sub-sampling and bootstrapping. However,

in some cases, sub-sampling has slightly better accuracy than bootstrapping. Hence, we

use sub-sampling in our simulations.

3.3.3 Variable importance

For the variable importance, we evaluate if the estimated VIMP measures tend to rank

the important variables first. In all scenarios for performance evaluation, we include noise

covariates. Figures presenting the average rank, from the estimated VIMP measures, for

the important variables group and noise variables group, for both low and high correlated

data sets can be found in Section 3.2 of the Supplementary Material. The most important

variable (the one with the highest VIMP measure) has rank 1. As ranks increases, variable

importance decreases. In almost all settings, the important variables have smaller average

ranks than noise variables. Only in a few settings when ntrain = 100, we have close average

ranks for the important and noise variables.

4 Real data example

Electroencephalogram (EEG) measures neuronal activity. Electrodes are distributed on

the scalp to record ongoing electrical fields coming from assembles of pyramidal neurons

situated in the cortex. The signal is composed of continuous variation in rhythms that

can be spectrally decomposed over time through time and frequency analyses. Oscillations

at different frequency bands have been found to be interdependent (Samiee and Baillet,

2017). Only a handful of studies have assessed the effect of age on cross-frequency inter-
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dependencies. Its relationship with the intellectual level is still unknown.

In this study, 241 participants between 3 and 64 years old (113 male/128 female) and

with performance IQ (pIQ) within [56, 129] and verbal IQ (vIQ) within [50, 127] were

submitted to broadband noises of 50ms at 1Hz while the EEG signal was recorded using

the 128 electrode EGI system (auditory evoked potentials, AEPs) (see Lippé et al. (2009)

for paradigm details). 99 participants presented a copy number variation (CNV). The data

collection and preprocessing steps are described in the Supplementary Material (Section

6). After applying the time-frequency (TF) and inter-trial coherence (ITC) analyses, we

have two variables of interest, power, and phase-locking value (PLV) for each window.

The time and frequency windows of interest are selected to assess low and high-frequency

dependencies. In particular, the three windows for PLV are in theta waves with 3–5 Hz

(100–300 ms), 3–10 Hz (4–400 ms), and 3–10 Hz (100–300 ms), and the window for power

is in gamma wave with 30–50 Hz (50–150 ms).

When recording auditory evoked potential, the electrodes capture information coming

from the auditory cortex in the signal at the scalp level over the mid-frontal region (Albrecht

et al., 2000). We want to analyze the association between the PLV variables in theta

waves (X, p = 3) and power in gamma wave (Y , q = 1) in the mid-frontal (MF) region

which is composed of Fz-Fcz in addition to four surrounding electrodes. We apply the

proposed method with the subject-related covariates age, sex, pIQ, vIQ (Z, r = 4) to

investigate the correlation between PLV and power for the sample with n = 241. We first

perform the global significance test to evaluate the global effect of the covariates. Using 500

permutations, the estimated p-value with (5) is 0.004 and we reject the null hypothesis (3),

indicating that the canonical correlation varies significantly with the covariates. Next, we

apply the proposed method to the data and obtain the canonical correlation estimations.

Figure 6 presents the VIMP showing that age is the most important variable followed

by pIQ, vIQ and sex. Then, we use the Boruta approach (Kursa and Rudnicki, 2010),

which is a permutation test based variable selection algorithm, to evaluate the statistical

significance of variable importances. The main idea of this method is to compare the

variable importance of the original variables with those of randomly permuted copies using

statistical testing and several runs of random forests. All four covariates are selected as

important variables within the significance level α = 0.01.

We also use SHAP values (Lundberg and Lee, 2017) to gain additional insights. SHAP

values are the contributions of each variable to the difference between the actual prediction

and the expected model prediction. The sum of the contributions for each variable (SHAP
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values) is equal to the prediction. SHAP values show how much each variable contributes,

either positively or negatively, to the individual predictions. Since the problem is unsuper-

vised, as in the VIMP computation, we use the predicted correlations to compute the SHAP

values, using Lundberg et al. (2020). Figure 7 presents the summary plot. The covariates

are ordered in the y-axis of the plot according to their global importance showing that we

obtain the same ranking as with the VIMP and thus that age is again the most important

variable. The insights from this exploratory analysis fall into the expectations. Age, or

brain maturation, is accompanied by important neurofunctional modifications that are re-

flected in the strength of the theta phase coherence and gamma power co-variations. The

demonstration of a positive correlation and a strong contribution to the model in children

and adolescents (3 to 20 years of age) is concordant with current brain development liter-

ature (Cho et al., 2015). Intellectual quotient, the hallmark of cognitive abilities, is found

to be the second most contributive variable to the theta-gamma co-variation. Current lit-

erature focused on the theta-gamma coupling links with performances on specific cognitive

tasks (Alekseichuk et al., 2016), and showed positive correlations. This result points to the

relevance of theta-gamma co-variation in the context of abnormal neurodevelopment (Port

et al., 2019).

Left plot in Figure 8 shows the main effect of age on the predictions. We can see

how age’s attributed importance changes as its value varies. The attributed importance

is on the y-axis. The points are colored according to the predicted correlation. We can

interpret this plot as the impact of age on correlation is positive and high for subjects

younger than 20. Then it drops sharply reaching 0 (no impact) around 25 (note that we do

not have observations around 20 and the results should be interpreted cautiously in that

age range). It then continues to decrease in the negative direction, meaning the impact

increases until the beginning of the 30’s where it stabilizes with a slight increase afterwards

(i.e. a decreasing impact).

Right plot in Figure 8 presents the interaction effect between sex and pIQ (see Figure 13

in the Supplementary Material for the interaction effect between sex and vIQ). We see that

the impact increases as we move away from the average IQ. The impact of the interaction

on the theta phase coherence strength and gamma power co-variation is positive for high

IQ females and negative for low IQ females. The opposite is observed in males.

As a neuroscientific conclusion, PLV in theta waves and power in gamma waves are

statistically coupled and this coupling varies according to age and IQ. This confirms that the

co-variation in these frequency bands relate to cognitive development. The results suggest
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that the co-variation between theta and gamma and intellectual capacities is nonlinear and

that it follows a distinct pattern in males and females. Overall, these results indicate the

importance of considering sex, intellectual capacities, and age in the study of brain signal

dynamics.

5 Concluding remarks

In this paper, we study and propose a novel random forest method to estimate the canonical

correlations between two sets of variables depending on a set of subject-related covariates.

The trees of the forest are built with a new splitting rule designed to form child nodes with

maximum difference in the canonical correlation between the two multivariate data sets.

Random forest is used to build Bag of Observations for Prediction (BOP) which can be

used to compute any desired measure. We use the BOP to estimate the correlations with

canonical correlation analysis for the new observations. The proposed method is flexible

to various extensions. One of them is to use CCA variants such as sparse CCA (Witten

et al., 2009) and regularized CCA (Vinod, 1976; Leurgans et al., 1993) for final canonical

correlation estimation for a new observation using the constructed BOP. Another one is to

build trees with alternative splitting rules such as nLρ
2
L + nRρ

2
R where ρL and ρR are left

and right canonical correlation estimations and nL and nR are left and right node sizes,

respectively. It would be interesting to investigate these extensions as a future work.

We also propose a global significance test to evaluate the global effect of the subject-

related covariates and a way to compute variable importance measures. It would also

be interesting to study the statistical significance of variable importance measures. The

proposed method is based on the CART approach. Other tree-growing paradigms could

be used, like the one that separates the variable and split point selections; the conditional

inference framework (Hothorn et al., 2006) being one popular method. Section 7 in the

Supplementary Material sketches one possible way to implement such a variant within

our context. However, a limitation of the proposed method is the computational time.

Computing CCA for X ∈ Rn×p and Y ∈ Rn×q has a time complexity O
(
n(p2 + q2)

)
where

n > p + q. For each node split in each tree of the forest, we compute CCA for left and

right nodes which brings a lot of CCA computations. Therefore, testing the statistical

significance of variable importance of covariates at each node with a permutation test has

a great computational cost.

For simulations and real data analysis, we used the default parameter settings for
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randomForestSRC except the number of trees and the nodesize argument. We train ran-

dom forests with 200 trees and nodesize= 3 × (p + q). The simulation study results

showed that using different levels of nodesize could change the performance of the pro-

posed method. In such situations, normally, we do a hyperparameter tuning to select the

optimal level of the parameter. However, in our case, it is not straightforward to tune the

nodesize parameter because we do not have an observed target. It would be interesting

to find such a way to tune nodesize parameter as a future work. Moreover, by default,

only 10 random splits are considered at each candidate splitting variable to increase the

speed. Evaluating all possible splits could also improve the performance.

The proposed method can be used in other bioinformatics studies. For example, in

gene-environment interaction studies (Caspi and Moffitt, 2006; Hunter, 2005; Ma et al.,

2011), the covariates (Z) would be the environment variables, and the two multivariate

data sets (X and Y ) would correspond to brain imaging and genomic variables. In another

application, the proposed method would allow us to investigate how gene expression (Z)

can modulate the correlation between genomic (X) and brain imaging data (Y ). In all

these examples, the proposed algorithm can capture nonlinear interactions, which is new

compared to existing approaches.
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Supplementary Material for

Conditional canonical correlation estimation based

on covariates with random forests

1 Motivating examples

1.1 Example with univariate X and Y

We generated a data set with Z = (Z1, . . . , Z10) ∈ Rn×10, X ∈ Rn×1 and Y ∈ Rn×1 where

n = 500, Zi ∼ N(0, 1) ∀i = {1, 2, ..., 10} and (X,Y ) ∼MVN(0,Σ) where Σ =
(

1 ρ
ρ 1

)
. The

correlation between X and Y is a function of Z1 given by

ρ =

{
0 Z1 ≤ 0

0.8 Z1 > 0

where ρ is the population correlation between X and Y . The sample correlation between

X and Y , as a function of Z1, is

r(X,Y ) =

{
0.017 Z1 ≤ 0

0.737 Z1 > 0

whereas the sample correlation between all X and Y is 0.329. Our aim is to identify the two

groups of observations having the most different correlation. After applying the proposed

method with a single tree and a single split, we have two groups of observations. Figure

1 illustrates the single split of the method. The observations are grouped according to

their Z1 values, the first group has Z1 ≤ 0.011 and the second group has Z1 > 0.011. The

correlation between X and Y in those two groups are respectively 0.018 and 0.741. Hence,

the proposed method was able to identify the two groups.

1.2 Example with multivariate X and Y

As a second example, now with multivariate X and Y , we have a data set with Z ∈ Rn×10,
X ∈ Rn×2 and Y ∈ Rn×2 where n = 500, Zi ∼ N(0, 1) ∀i = {1, 2, ..., 10}. The canonical
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𝑍! ≤ 0.011 𝑍! > 0.011

𝜌" = 0.018 𝜌# = 0.741

𝜌 = 0.329
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Figure 1: Illustration for the example, single split of a single decision tree.

correlation between X and Y is a function of Z1

ρCCA =

{
0.2 Z1 ≤ 0

0.8 Z1 > 0

where ρCCA is the population CCA correlation between X and Y . The sample CCA

correlations between X and Y as a function of Z1 is

rCCA(X,Y ) =

{
0.237 Z1 ≤ 0

0.785 Z1 > 0

whereas the sample CCA correlation between all X and Y is 0.535. Again, after applying

the proposed method with a single tree and single split, we have two groups of observations.

The observations are grouped according to their Z1 values, the first group has Z1 ≤ 0.014

and the second group has Z1 > 0.014. The CCA correlation between X and Y in those

two groups are respectively 0.237 and 0.785. Thus, again, the proposed method was able

to identify the two groups.
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2 Computing canonical correlations

Canonical correlation analysis, firstly introduced in Hotelling (1936), seeks vectors of a ∈
Rp and b ∈ Rq for two multivariate data sets X ∈ Rn×p and Y ∈ Rn×q such that Xa and

Y b are maximally linearly correlated. We can formulate the problem

(a∗, b∗) = argmax
a,b

corr(Xa, Y b) (7)

where

corr(Xa, Y b) =
aTΣXY b√

aTΣXXa
√
bTΣY Y b

,

and where ΣXX and ΣY Y are the covariance matrices of X and Y , respectively, and

ΣXY is the cross-covariance matrix. The choice of rescaling of a and b does not affect the

corr(Xa, Y b), so we can add the constraints aTΣXXa = 1, bTΣY Y b = 1 to the maximization

problem (7).

In Hotelling (1936), the CCA solution is based on two similar-looking equations

(ΣY XΣ−1XXΣXY − ρ2ΣY Y )y = 0 (8)

(ΣXY Σ−1Y Y ΣY X − ρ2ΣXX)x = 0 (9)

where ΣY X is the transpose of ΣXY . We can find canonical correlations and (a∗, b∗) by

solving two standard eigenvalue problems. Basically, eigenvalues of (8) and (9) are the

same and equal to the squared canonical correlations.

In addition to solving standard eigenvalue problem, there are some alternative ways to

solve CCA. We can solve the generalized eigenvalue problem (Hardoon et al., 2004; Bach

and Jordan, 2002). We can find the solution of CCA by alternating least squares regression

(Branco et al., 2005; Wilms and Croux, 2015). Alternatively, we can use singular value

decomposition (SVD) to find the canonical correlations (Healy, 1957; Ewerbring et al.,

1990). In the SVD method, we firstly find the singular value decompositions of X and Y

as

X = UXDXV
T
X

Y = UYDY V
T
Y
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where the columns of UX(UY ) and the columns of VX(VY ) are called the left and right

singular vectors of X(Y ), respectively. Then, we can find the canonical correlations by

finding the singular values of UTXUY . Overall, this method requires three singular value

decompositions.

Another way to compute canonical correlations is to find the QR decomposition of X

and Y and then apply SVD (Golub, 1969; Björck and Golub, 1973). The QR decomposition

of X and Y are

X = QXRX

Y = QYRY

where QTXQX = Ip, Q
T
YQY = Iq, and RX and RY are upper triangular matrices. Following

this, we can express ΣX and ΣY as

ΣX = XTX

= RTXQ
T
XQXRX

= RTXRX

ΣY = Y TY

= RTYQ
T
YQYRY

= RTYRY

where ΣX = RTXRX and ΣY = RTYRY are the Cholesky decompositions. The singular

values of QTXQY , which are derived from

(RTX)−1ΣXYR
−1
Y = (RTX)−1RTXQ

T
XQYRYR

−1
Y

= QTXQY ,

are the canonical correlations. This method requires two QR decompositions and one

singular value decomposition. Since QR decomposition for a matrix requires less computa-

tional work than computing SVD (Do Q, 2012), we utilise QR decomposition to compute

canonical correlations in the implementation of our methods.
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3 Variable importance

In this section, we explain computation of the variable importance for covariates in random

forest framework and present the simulation results for the estimated variable importance.

3.1 Variable importance computation

The quantification of variable importance (VIMP) is important to assess relative impor-

tance of covariates. In the random forest framework, the mostly used VIMP idea proposed

by Breiman (2001) is based on the increase in the prediction error when the link between

the covariates and the response is broken by permuting out-of-bag (OOB) observations. In

a regression setting with a set of covariates X and for a continuous response variable Y ,

VIMP for Xj can be computed as

V IMP (Xj) =
1

B

B∑
b=1

(
MSE(OOBb

j)−MSE(OOBb)
)

where OOBb is the OOB sample of the bth tree of the forest, OOBb
j is the OOB sample of

the bth tree where the jth covariate is randomly permuted and MSE stands for the mean

squared error. The average over B trees gives the variable importance measure for Xj .

Larger VIMP shows greater importance.

randomForestSRC uses the same idea of breaking the link between covariates and the

response but with another way of permuting Xj as proposed in Ishwaran (2007). Instead

of permuting OOB samples at each tree, during the tree growing process, observations in

the parent node are assigned to child nodes at random or consistently to the other child

node when the split variable is Xj . VIMP for Xj can be computed as

V IMP (Xj) =
1

B

B∑
b=1

(
MSE(t̃b, OOBb)−MSE(tb, OOBb)

)
(10)

where tb is the original bth tree of the forest, t̃b is the permuted bth tree, and OOBb is the

OOB sample of the bth tree.

Computing VIMP measure (10) requires the true response values for training obser-

vations. However, in this paper the problem is unsupervised by nature. Therefore, we

propose a two-step process for VIMP computation. Firstly, we build a random forest with
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the proposed splitting criterion for X, Y , Z and compute the estimated canonical correla-

tions, ρ̂(zi), as described in Algorithm 1 in the paper. Then, we use the ρ̂(zi) estimations

as a continuous response variable for the original covariates (Z) and we train a regression

random forest. Finally, we use the VIMP measures from this random forest.

3.2 Simulation results for variable importance

As stated in Section 3.3.3 of the paper, Figures 2 and 3 present the average rank, from the

estimated VIMP measures, for the important variables group and noise variables group, for

low and high correlated data sets, respectively. The most important variable (the one with

the highest VIMP measure) has rank 1. As ranks increases, variable importance decreases.

We see that in almost all settings, the important variables have smaller average ranks than

noise variables.
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Figure 2: Average ranks from estimated VIMP measures for low correlated data sets when
nodesize = 3 × (p + q). Smaller values of rank indicate a more important variable (the
most important variable has rank 1).
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Figure 3: Average ranks from estimated VIMP measures for high correlated data sets when
nodesize = 3 × (p + q). Smaller values of rank indicate a more important variable (the
most important variable has rank 1).
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4 Examples of sample distributions with DGP

Figures 4 and 5 show some examples for sample distributions with different parameter

settings. See Section 3.1 of the paper for the explanation of DGP. Figure 4 and 5 correspond

to the low and high correlated data settings with ntrain = 1000 in the simulations for

accuracy evaluation (Section 3.2.2 of the paper), respectively. The left plot in the figures is

the histogram of the generated sample. In the low correlated data setting (Figure 4), the

mean and median correlations of the sample are 0.29 and 0.20, respectively. In the high

correlated setting (Figure 5), the mean and median correlations of the sample are 0.61 and

0.57, respectively. The right plot in the figures is the ordered bar chart for the average of

the coefficients within the X and Y sets over the sample. The selection of parameters sx

and sy affects the coefficients of variables. In both low and high correlated settings, sx > sy

which result in faster decrease in generated X coefficients (a) compared to Y coefficients

(b).
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Figure 4: In this example, we have 5X, 5Y, 5Z variables and the sample size is 1000. The
DGP parameters are β0 = −2, ρx = ρy = 0.3, ρz = 0.1, sx = 0.7, sy = 0.4. The mean
and median correlations are 0.29 and 0.20, respectively. This setting corresponds to the
low correlated data set with ntrain = 1000. (left) The sample distribution of correlations.
(right) The ordered bar chart for the average of the coefficients within the X and Y sets
over the sample.
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Figure 5: In this example, we have 5X, 5Y, 5Z variables and the sample size is 1000. The
DGP parameters are β0 = −0.3, ρx = ρy = 0.3, ρz = 0.1, sx = 0.4, sy = 0.3. The mean
and median correlations are 0.61 and 0.57, respectively. This setting corresponds to the
high correlated data set with ntrain = 1000. (left) The sample distribution of correlations.
(right) The ordered bar chart for the average of the coefficients within the X and Y sets
over the sample.

5 Simulations results for accuracy evaluation

In this section, we present the detailed simulations results for accuracy evaluation. See

Section 3.2.2 of the paper for the explanation of performance criterion.

5.1 Results for nodesize selection

Here we compare the performance of the proposed method with six levels of nodesize,

{2 × (p + q), 3 × (p + q), 4 × (p + q), 6 × (p + q), 8 × (p + q), 10 × (p + q)} , for low and

high correlated data settings and ntrain = {100, 200, 300, 500, 1000, 5000}. Figures 6 and 7

present the average MAE over the 100 repetitions with each ntrain for the low and high

correlation settings, respectively. As can be seen from the results, in some scenarios, MAE

increases as nodesize increases (e.g., high correlation setting with p = 10, q = 10, r = 5

and ntrain = 1000) whereas in some scenarios MAE decreases as nodesize increases (e.g.,
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low correlation setting with p = 5, q = 5, r = 5 and ntrain = 1000). Moreover, there are

some cases where MAE decreases first and then increases as nodesize increases (e.g., low

correlation setting with p = 5, q = 5, r = 5 and ntrain = 300). In such situations, normally

we do a hyperparameter tuning with cross-validation or by dividing the data set into train

and validation sets. However, in our case, we cannot tune the nodesize parameter because

we do not have a target. As can be seen from the nodesize comparison results, although it

is not optimal, the proposed method is almost always better than the benchmark method.

The best accuracy is achieved with different levels of nodesize parameter for each

scenario and it is hard to select the global best level of nodesize for all scenarios from

those figures. Hence, we provide a global view of the performance for nodesize parameter

in Figure 8. To be able to compare the accuracy of the proposed method with different

levels of nodesize parameter across different scenarios, we use the percentage increase

in MAE with respect to the best performer nodesize value for a given scenario. This

way, we can aggregate the results across all scenarios. There are 108 scenarios for each

level of nodesize parameter in this simulation study (2 mean CCA correlation levels × 3 Z

dimensionality× 3X and Y dimensionality× 6 training sample sizes). For a given scenario,

we have the MAE on the test set for each nodesize level. Let MAEn be the MAE of

nodesize n, where n = {2×(p+q), 3×(p+q), 4×(p+q), 6×(p+q), 8×(p+q), 10×(p+q)},
for this scenario. The percentage increase in MAE of nodesize n with respect to the best

performer for this scenario is computed as

100× MAEn −minn{MAEn}
minn{MAEn}

where minn{MAEn} is the smallest MAE for this scenario. Hence, the smaller values

indicate better accuracy. Figure 8 shows the distributions of this measure for the nodesize

parameter. The results show that, the mean and median of 3 × (p + q), 4 × (p + q) and

6×(p+q) are very similar and among them 3×(p+q) has a smaller median and interquartile

range. Hence, in the paper, we evaluate the accuracy of the proposed method by setting

nodesize = 3× (p+ q) for all scenarios.
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Figure 6: Accuracy evaluation results for low correlated data sets. rnoise = 5 in all settings.
The values in the x -axis correspond to the levels of nodesize parameter. CCA is the
benchmark method. Smaller values of MAE are better.
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Figure 7: Accuracy evaluation results for high correlated data sets. rnoise = 5 in all
settings. The values in the x -axis correspond to the levels of nodesize parameter. CCA
is the benchmark method. Smaller values of MAE are better.
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5.2 Performance results for different values of parameter nodesize

Figures 9 and 10 present the average MAE over the 100 repetitions when nodesize =

{2× (p+ q), 3× (p+ q), 4× (p+ q), 6× (p+ q), 8× (p+ q), 10× (p+ q)} for the low and

high correlation settings, respectively. In fact, top right plot in Figure 9, which shows the

results of nodesize = 3× (p+ q), is the Figure 4 in the paper and is represented here to

be able to compare with the results of other nodesize values. Similarly, top right plot in

Figure 10 is the Figure 5 in the paper. As can be seen in Figures 9 and 10, for the larger

nodesize values MAE of the proposed method and the benchmark method are the same

for scenarios with smaller ntrain. For example, when nodesize = 6 × (p + q), MAE of

the proposed method and the benchmark method are the same for p = 10, q = 10 when

ntrain = {100, 200, 300}. For this setting, nodesize = 6 × (10 + 10) = 120 which results

in no splits for ntrain = {100, 200}. For ntrain = 300, a single split can occur in trees with

this nodesize. However, the BOP of a new observation may include all of the training

observations due to randomness. Each tree of the forest is a stump and there is a high

chance that the union of the training observations that are in the same terminal nodes

as the new observation is equal to the set of training observations. Estimating canonical

correlation with this BOP is the same as computing CCA for all X and Y . When the

sample size is small, increasing the nodesize may cause underfitting.
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Figure 9: Accuracy evaluation results for low correlated data sets for six values of parameter
nodesize = {2×(p+q), 3×(p+q), 4×(p+q), 6×(p+q), 8×(p+q), 10×(p+q)}. rnoise = 5
in all settings. CCA is the benchmark method. Smaller values of MAE are better.
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Figure 10: Accuracy evaluation results for high correlated data sets for six values of pa-
rameter nodesize = {2× (p+q), 3× (p+q), 4× (p+q), 6× (p+q), 8× (p+q), 10× (p+q)}.
rnoise = 5 in all settings. CCA is the benchmark method. Smaller values of MAE are
better.
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5.3 Performance results for bootstrapping and sub-sampling

Here we investigate the effect of bootstrapping and sub-sampling on the performance of the

proposed method. Figures 11 and 12 present the average MAE over the 100 repetitions

when ntrain = 1000 for the low and high correlation settings, respectively. The values in

the x -axis correspond the values of the nodesize parameter which are {2 × (p + q), 3 ×
(p+ q), 4× (p+ q), 6× (p+ q), 8× (p+ q), 10× (p+ q)}. We can both compare the effect

of sampling method and nodesize parameter on the accuracy with those plots. CCA is

used as the benchmark method. In most of the settings, there is no significant difference

in performance between sub-sampling and bootstrapping. However, in some cases (e.g.

low correlated data sets with p = 10, q = 10), sub-sampling has slightly better accuracy

than bootstrapping. There are also some cases, for instance in high correlated data sets

with p = 10, q = 10, sub-sampling shows better performance for the smaller nodesize

values whereas bootstrapping has smaller MAE for the larger nodesize values. However,

in those cases the best accuracy is still obtained with sub-sampling and smaller nodesize

values. Hence, sub-sampling is recommended. Overall, although the optimal value for the

nodesize parameter may change with the selected sampling method, the accuracy of the

proposed method with both sampling methods have a very similar pattern for different

levels of nodesize parameter.
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Figure 11: Accuracy evaluation results for low correlated data sets when ntrain = 1000.
rnoise = 5 in all settings. CCA is the benchmark method. Smaller values of MAE are
better.
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Figure 12: Accuracy evaluation results for high correlated data sets when ntrain = 1000.
rnoise = 5 in all settings. CCA is the benchmark method. Smaller values of MAE are
better.
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6 EEG data

In this section, the data collection process and preprocessing steps are explained.

6.1 Neuropsychological scale

To evaluate the intellectual disabilities, performance IQ (pIQ) and verbal IQ (vIQ), which

are the scores for total IQ, were obtained using the Mullen, the WPPSI-IV, the WISC-V,

and the WAIS-IV batteries depending on the age of the participant. The administration

was adapted for the clinical participants by starting at the first item rather than the

starting point for their chronological age, frequent breaks were proposed, and participants

were motivated through many creative incentives if necessary (songs, games, conversations

about their interests, etc.).

6.2 EEG auditory task

The auditory task was prepared using E-prime 2.0 software (Psychology Software Tools

Inc., Pittsburgh, PA, USA) on a screen placed at a viewing distance of 60 cm. Sounds,

which are presented binaurally and simultaneously, were delivered through two speakers

located laterally at 30 cm from the participants’ ears. The auditory stimulus consisted

of 24 dB/octave white noise burst. Each stimulus lasted 50 ms with an inter-stimulus

interval varying between 1200 and 1400 ms to avoid a process of habituation. The task was

composed of 150 trials. The total task duration was around 4 minutes. To assure maximal

collaboration, a movie without sound and subtitles was presented. The participant was

told to focus his/her attention on the movie and not to give attention to the auditory

stimuli.

6.3 EEG recordings

The subject was placed in an electrically shielded room in the Sainte Justine’s Hospital.

The continuous EEG was recorded with a high-density EEG system containing 128 elec-

trodes placed according to the extended 10 - 20 system (Electrical Geodesics System Inc.,

Eugene, OR, USA). Signals were acquired and processed by a G4 Macintosh computer

using NetStation EEG Software (Version 2.0). Before recording, impedances were verified

and were kept below 40 kΩ (Tucker, 1993). EEG data were amplified, band-pass-filtered

0.1–4000 Hz, and sampled at 1000 Hz with a vertex reference.
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6.4 Preprocessing for the analysis

Off-line signal processing and ERP analyses were performed using the EEGLAB toolbox

via custom Matlab scripts (Delorme and Makeig, 2004). EEG acquired data was subjected

to the following pre-processing steps. First, EEG signals were digitally filtered with a

high-band pass filter (0.5 Hz) and a 60 Hz notch filter. Twenty-eight electrodes placed

on the neck and the face and containing muscular artifacts have been removed to avoid

contamination of average reference. Moreover, a voltage threshold method (2–200 µV) was

applied to exclude channels with artifacts. Data were off-line re-referenced to the mean

of the EEG selected electrodes (100 channels). Independent component analysis (ICA) as

implemented in the EEGLAB toolbox (with default parameters) was used to remove ocular

artifacts. By removing or minimizing the effects of overlapping components, ICA enables a

detailed examination of the separate dynamics of electrical brain activity as well as artifacts

to remove them (Delorme et al., 2007). Ocular and cardiac ICA components (range across

subjects: 1–3 components) were identified by visual inspection and deleted from the global

signal. Continuous EEG was segmented into epochs covering a time window from -200

ms to 800 ms relative to the onset of the tone. Also, as the artifact ICA components

could be deemed unsatisfactory, the segmented EEG recordings were visually inspected by

a well-trained experimenter, and trials presenting with residual artifacts were rejected.

For time-frequency (TF) and inter-trial coherence (ITC) analyses, segments were ex-

ported to MATLAB (version R20174b) (The MathWorks Inc., Natik, MA, USA) after arti-

fact rejection. TF and ITC analyses were processed using the EEGLAB toolbox (v.13.6.5b)

(La Jolla, CA, USA). TF analysis allows us to explore different frequency bands in terms

of their power and temporal distributions (Herrmann et al., 2005). We used complex Mor-

let’s wavelet transformation (Tallon-Baudry and Bertrand, 1999) to provide power maps

in time and frequency domains. The simplified mathematical expression for applying this

specific wavelet convolution on our EEG signal is as follows:

M(t, f) =

∫
t
W
( t− a

b
, f
)
S(t)dt

where M(t, f) is a matrix of complex values (vectors) for a given time (t) and frequency

(f), S is the signal as a function of time (t) and W corresponds to Morlet’s wavelet

which is a complex exponential (Fourier) with a Gaussian envelope that undergoes a series

of translations (a) and dilations (b) dependently of the frequency (f). The event-related

49



spectral perturbation (ERSP) computation uses the complex values (amplitude and phase)

given by Morlet’s wavelet transform as shown in the following formula calculating the power

spectrum for each time and frequency point:

P (t, f) = 10 log10 |M(t, f)|2

where P (t, f) denotes TF power in terms of decibels (dB). Final TF maps were computed

as follows:

TF =
1

N

N∑
n=1

P (t, f)

where N is the total number of trials. The range of frequency investigated was from 3

to 100 Hz. ITC, analogous to phase-locking value (PLV), allows the assessment of the

strength of phase coherence across trials in temporal and spectral domains (Makeig et al.,

2004). The ITC computation uses only the phase of the complex values given by Morlet’s

wavelet transform. ITC was computed as in Lachaux et al. (1999) to extract PLV. ITC

measures phase coupling across trials at all latencies and frequencies and is defined by:

ITC =
1

N

∣∣∣ N∑
n=1

exp(jθ(f, t, n))
∣∣∣

where θ represents the phase for a given frequency (f), time point (t), and trial (n). The

obtained values are always defined between 0 and 1. Phase-locking values close to 1 indicate

strong inter-trial phase-locking, thus representing evoked activity while scores closer to 0

indicate a high inter-trial phase variability, thus representing induced activity (Lachaux

et al., 1999).

6.5 SHAP interaction effect between age and vIQ

As mentioned in Section 4 of the paper, Figure 13 presents the interaction effect between

age and vIQ. Similar to the interaction effect between sex and pIQ (right plot in Figure

8 of the paper), we see that the impact increases as we move away from the average vIQ.

Again, the impact of the interaction on the theta-gamma co-variation is positive for high

IQ females and negative for low IQ females whereas the opposite is observed in males.
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Figure 13: SHAP interaction values for sex and vIQ variable.

7 Conditional inference framework within our context

In principle, the proposed permutation test for covariates’ effects could be used to select

the split variable at a node, analogous to the conditional inference framework (Hothorn

et al., 2006). However, the computational cost would likely be high. More precisely, assume

we are at a node and want to decide whether to split it or not and with which covariate.

Using only the observations in the node;

1. For one covariate at a time, apply the permutation test described in Section 2.4 of

the main paper. However, permute only the rows of the given covariate instead of

permuting rows of covariate set (Z). Obtain a p-value for that covariate.

2. Repeat Step 1 for all covariates to obtain one p-value per covariate.

3. If none of the covariates are significant (after applying a multiple testing correction

if deemed appropriate), then do not split the node.

4. Otherwise, select the covariate with the smallest p-value as the split variable. Find

the best split using the proposed split criterion.
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