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Abstract

Motivation: Large metabolic models, including genome-scale metabolic models (GSMMs), are nowadays
common in systems biology, biotechnology and pharmacology. They typically contain thousands of
metabolites and reactions and therefore methods for their automatic visualisation and interactive
exploration can facilitate a better understanding of these models.
Results: We developed a novel method for the visual exploration of large metabolic models and
implemented it in LMME (Large Metabolic Model Explorer), an add-on for the biological network analysis
tool VANTED. The underlying idea of our method is to analyse a large model as follows. Starting from
a decomposition into several subsystems, relationships between these subsystems are identified and an
overview is computed and visualised. From this overview, detailed subviews may be constructed and
visualised in order to explore subsystems and relationships in greater detail. Decompositions may either
be predefined or computed, using built-in or self-implemented methods. Realised as add-on for VANTED,
LMME is embedded in a domain-specific environment, allowing for further related analysis at any stage
during the exploration. We describe the method, provide a use case, and discuss the strengths and
weaknesses of different decomposition methods.
Availability: The methods and algorithms presented here are implemented in LMME, an open-source
add-on for VANTED. LMME can be downloaded from www.cls.uni-konstanz.de/software/lmme

and VANTED can be downloaded from www.vanted.org. The source code of LMME is available from
GitHub, at https://github.com/LSI-UniKonstanz/lmme.
Contact: michael.aichem@uni-konstanz.de

1 Introduction
Metabolic models have gained increasing interest over the last decades.
Large metabolic models, including genome-scale metabolic models
(GSMMs), which represent the complete metabolism of an organism and
are usually based on its genomic information, are nowadays common
in systems biology, biotechnology and pharmacology. Their analysis
and simulation provides deeper insight into the molecular mechanisms
of the organism under investigation and is, for example, important to
predict targets for gene manipulations and to understand the metabolic
effects of drugs. Since the first GSMM was developed for the bacterium

Haemophilus influenzae in 1999 (Edwards and Palsson, 1999), many
GSMMs have been created for bacteria, archaea as well as eukaryota. For
example, Path2Models (Büchel et al., 2013), a branch of the BioModels
Database (Malik-Sheriff et al., 2019), contains a large amount of metabolic
(and other) models automatically generated from pathway resources,
including more than 2,600 genome-scale metabolic reconstructions.

Large metabolic models typically contain thousands of metabolites and
reactions. Automatic visualisation and interactive exploration methods
can facilitate a better understanding of metabolic models and help to
find errors in a model more easily, to support model comparisons,
and to solve similar tasks. Visualisations have already proven to be
useful to investigate biological data and processes, and many different
approaches exist for all kinds of biological data (Gehlenborg et al., 2010;
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Kerren et al., 2017), including biological networks such as metabolic
networks (Kohlbacher et al., 2014). To provide interactive exploration, the
decomposition of the metabolic network into sub-networks (pathways) is
an important step as it allows to break the large and complex network
into several much smaller parts. Such a decomposition can be done
manually, for example, the pathways in the KEGG database (Kanehisa
et al., 2012) are manually curated, or by using an algorithm, such as the
one presented by Schuster et al. (2002). Decompositions also offer new
ways for analysing data related to the metabolic network, such as over-
representation analysis (Khatri et al., 2012), using the given or computed
decomposition of the network as starting point.

This paper describes a novel method for the interactive visualisation
of large metabolic models, including GSMMs, which is based on model
decompositions. Starting from a decomposition into subsystems, their
relationships are identified and an interactive overview is computed and
visualised. This overview may be analysed, compared, or used to select
parts to be recombined and shown in greater detail. Integrating more
than one decomposition as alternatives into this conceptual pipeline may
facilitate the understanding and eventually lead to broader conclusions. As
one possible way, we discuss decomposition-based over-representation
analyses. As a proof of concept, the method has been implemented in
LMME (Large Metabolic Model Explorer), an add-on for the open-source
framework VANTED (Junker et al., 2006). Implementing it as a VANTED
add-on allows the analyst to make use of all the other functionality of
VANTED (such as mapping of *omics data onto metabolic networks and
general network analysis algorithms) in addition to layout, interactive
exploration and decomposition-based over-representation analysis. We
introduce the methodological background and describe the method in
detail, followed by a use case and a discussion of the strengths and
weaknesses of different decomposition methods.

2 System and Methods

2.1 Background

2.1.1 Model sources
Metabolic models can be built from scratch, obtained from supplementary
materials of publications and from databases such as the BioModels
Database (Malik-Sheriff et al., 2019), BiGG Models (King et al., 2015a),
the Human Metabolic Atlas (Robinson et al., 2020), Model SEED (Henry
et al., 2010) and the Virtual Metabolic Human Database (Brunk et al.,
2018). According to the review by Gu et al. (2019), GSMMs have been
reconstructed for more than 6,200 organisms.

These models are typically given as a file using the SBML (Hucka
et al., 2003) notation, a machine-readable XML-based format for the
representation of biochemical models. Often, the models are also given in
form of an SBGN (Le Novère et al., 2009) map, a graphical representation
standard for biochemical models.

2.1.2 Layout
Algorithms for the layout of metabolic pathways and networks have been
presented first in the mid 1990s and early 2000s, for example, the mixed
layout approach of Karp and Paley (1994) (which depicts (sub-)pathways
of different topology using combined linear, circular, tree and hierarchical
layout algorithms), an extended layered approach (Schreiber, 2002) (which
provides hierarchical layout for different node sizes, consideration of co-
substances and special layout of open and closed cycles) and the algorithm
of Becker and Rojas (2001) (which emphasises cyclic structures). Most
layout methods available nowadays are based on simple force-based layout
methods (in particular for large networks with thousands of elements),
while manual layouts such as given in KEGG (Kanehisa et al., 2012) are
still important. Only a few advanced methods for automated conversion

are available, see for example the approach by Czauderna et al. (2013),
which is using a constraint-based method.

2.1.3 Interactive exploration
There are many tools and web-based systems which visually represent
metabolic pathways and networks (partly including the possibility to
design or customise pathways), allow to search through the visualisation
and provide mechanisms to map data onto pathways. Examples include
ArrayXPath (Chung et al., 2004), CellDesigner (Funahashi et al., 2008),
Cytoscape (Shannon et al., 2003), Escher (King et al., 2015b), iPath (Darzi
et al., 2018), PathVisio (Kutmon et al., 2015), Omix (Droste et al.,
2011), VANTED (Junker et al., 2012), VisAnt (Granger et al., 2016) and
WikiPathways (Slenter et al., 2017).

However, there are only a few tools which provide interactive
layout and exploration methods for metabolic models. The tool
ModelExplorer (Martyushenko and Almaas, 2019) is intended to check
a model for inconsistencies during the construction and refinement
processes. It allows to visually explore reactions that may not be able to
carry flux during simulations, showing it within its local neighbourhood in
the network. The web-based application provided by the Metabolic Atlas
project (Robinson et al., 2020) also offers visual exploration of models,
but is so far restricted to two available models. A large overview map is
provided and one can investigate individual pathways and compartments
in detail. MetExplore (Cottret et al., 2018) offers web-based exploration of
large models providing a set of interactive, interconnected tables, together
with a visualisation component. Subsets of pathways and reactions can be
filtered and visualised together, showing their interconnections. However,
these tools do not directly provide a summary of the overall network
structure and the relationships between pathways or subsystems in general.

Using a graph summary that allows to investigate details on demand
is an established technique when dealing with the exploration of large
graphs (Pienta et al., 2015), that has also been adopted by corresponding
applications for metabolic models. KGML-ED (Klukas and Schreiber,
2007) provides the opportunity to create an overview graph, where nodes
correspond to KEGG pathways. Any node can then be expanded to show
the contained reactions and metabolites, which allows for a detailed
investigation of the interaction between pathways. During the process,
nodes may also be collapsed again to prevent from loosing track of the
overall structure. Another tool, GLIEP (Jusufi et al., 2012), uses a different
approach to investigate the interconnections between different pathways.
Having a detailed view of a particular pathway, one can directly see which
of the contained metabolites serve as an interface to other pathways.
The other pathways may then be selected and be shown in detail. In
addition, glyphs (graphical markers) are used to show the distribution of
the connected pathways across pathway categories.

Our concept deviates from what the mentioned tools offer as follows.
While these, if any, only allow to explore predefined decompositions
obtained from respective model annotations or established online databases
(such as KEGG), the main purpose of our method is to allow the exploration
of large models through different decompositions of the model. The
approach is complemented by the possibility to extend the range of possible
decomposition methods. This counteracts the situation that there have
been developed many decomposition methods for this kind of networks,
but hardly any applications to integrate them. To the best of the authors’
knowledge, LMME is the first tool providing such an exploration approach
that includes different decomposition methods for large metabolic models.

2.1.4 Decomposition
With the increasing size of metabolic models there is an increasing need
for automatic methods to compute decompositions of them. Accordingly,
a variety of methods have been developed and published over the last two
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decades. There is for example a very recently published web service, called
GEMtractor, that allows a model to be trimmed by removing currency
metabolites (abundant metabolites, see Subsection 2.3) and transformed
to related alternative representations (Scharm et al., 2020).

Available decomposition methods on the one hand may only take
the network structure into account to derive a decomposition, e.g.
by identifying hub metabolites using local (Schuster et al., 2002)
or global (Holme et al., 2003) criteria, that are then interpreted as
connections between different subsystems. On the other hand, there are
methods that include more domain-specific data, e.g. metabolic flux
measurements (Yoon et al., 2007), in order to derive a decomposition.
The interested reader may find several of these methods in the reviews
by Rezvan and Eslahchi (2017) and Singh and Lercher (2020).

The pathways that may be found in the literature often overlap and
intertwine to a large extent (Holme et al., 2003). To complement these
traditional decompositions, the need for unbiased decomposition methods
has been stated several times (Holme et al., 2003; Papin et al., 2004).
While, for the available methods, it is generally assumed that metabolites
may belong to more than one subsystem, e. g. as interfaces (Schuster
et al., 2002; Ma et al., 2004), reactions are in most of these approaches
only assigned to at most one subsystem (see for example Schuster et al.,
2002; Holme et al., 2003; Ma et al., 2004). To be consistent, we always
assign a reaction to exactly one subsystem in our proposed method. As the
KEGG database sometimes assigns a reaction to more than one pathway,
we used a heuristic approach to end up with a single assignment (for more
information, see Sec. 3.1).

2.1.5 Over-representation analysis
Over-representation analysis (ORA) is a standard analysis tool for many
years now (Khatri et al., 2012), even though there are still some
shortcomings, see also the performance evaluation of Marco-Ramell et al.
(2018) which in particular mentions the completeness of metabolite and
pathway databases as an issue. The method has been originally developed
for gene sets and starting with MSEA (Xia and Wishart, 2010) in 2010,
several similar techniques for metabolite sets have been developed. The
underlying idea is to test a family of metabolite sets in order to find sets
that contain an unexpectedly high proportion of metabolites that have been
measured with significantly altered concentrations. The ratio between the
number of significant metabolites and the number of reference metabolites
(e.g., the total set of metabolites that have been measured during an
experiment) is computed and compared to the ratios within the individual
metabolite sets using statistical methods. This reflects the following idea:
if, for example, 27 out of 100 measured metabolites were significant, one
would also expect to have around 27% of the metabolites within every
metabolite set being significant. However, if there is a metabolite set
containing 33 metabolites and 20 of them are significant, this would be a
starting point for a detailed investigation.

Khatri et al. (2012) describe three generations of pathway analysis
approaches: over-representation analysis (ORA) approaches as first
generation, functional class scoring (FCS) approaches as second
generation, and pathway-topology (PT)-based approaches as third
generation. There are also approaches that combine methods originating
from different of the mentioned generations, like the tool netGO (Kim
et al., 2020), which has been published very recently.

As the focus of our tool is on exploring the structure of large models,
we decided to initially only provide a simple statistical approach, while,
once having computed a decomposition of interest, the analysis beyond
that can be performed using other tools that are specifically designed for
that purpose.

Fig. 1. A schematic overview of the method. Subfigure (a) shows an example metabolic
network (base graph) that may be decomposed into five subsystems (pathways) as indicated
by the background colours in subfigure (b). The corresponding overview graph, preserving
the colours, is depicted in subfigure (d). The user may then either perform an over-
representation analysis, providing a visual mapping like the one shown in subfigure (c)
(red colour means that the p-value of the subsystem was significant), or investigate selected
subsystem(s) as shown in subfigure (e) (again preserving the colours).

2.2 Approach

The methodological approach described in this paper mainly consists of
two phases: the decomposition phase and the exploration phase, see Fig. 1.

In the decomposition phase, a model is decomposed into several
subsystems (pathways) that, in a graph-theoretic sense, are (overlapping)
subnetworks of the original network. This may take the topological
network structure into account, as well as integrate more domain-specific
data. For further details see Sec. 3. Using the decomposition, an overview
layout of the resulting subsystems and their relationships is computed,
presenting one node per subsystem, connected by edges that reflect the
connections between the respective subsystems (Fig. 1(d)).

In the subsequent exploration phase, users can explore the model.
Employing the view of the overall model structure (Fig. 1(d)) one can
identify subsystems of interest, which can be selected and investigated in
more detail on demand (Fig. 1(e)). This is an iterative process that may be
repeated for any subsystem of interest. Moreover, one can select more than
one subsystem at a time in order to investigate the interplay between these
subsystems, see Sec. 3 for more details. In addition, the overview graph
can be used for analysis, for example, for over-representation analysis
(Fig. 1(c)).

The approach is implemented as an add-on for VANTED (Rohn
et al., 2012), so the analysis and visualisation infrastructure provided by
VANTED can be used to further investigate both the overview graph and
the detailed subsystem graphs, see Sec. 4 for more details.

2.3 Theoretical Model

This section outlines the theoretical model of our approach and defines the
terms that will be used in the remainder of the article.

A graph G = (V,E) consists of a set of vertices V and a set of edges
E. The graph may either be directed (i. e., the edge set consists of ordered
pairs of vertices) or undirected (i. e., unordered pairs of vertices). A vertex
is a neighbour of another vertex if they have a common edge. The degree of
a vertex is the number of edges that this vertex belongs to. As base graph,
we refer to the bipartite graph that represents the large metabolic model of
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Fig. 2. A flow chart describing the overall workflow. For some of the steps, the
corresponding graphs are shown next to the chart. The symbol + represents further optional
algorithms.

interest (Fig. 1(a)). Its vertex set is partitioned into the set of metabolites
and the set of reactions, which are connected via directed edges.

A decomposition is a set of subgraphs of the base graph (Fig. 1(b)).
Each of these subgraphs is referred to as a subsystem and it is assumed that it
represents a meaningful subunit within the overall system. For any reaction
vertex that is contained in a subsystem, also every adjacent metabolite
vertex is contained in the same subsystem. Therefore, a subsystem
may already be determined by the reactions it contains. Accordingly,
a decomposition can be constructed by assigning every reaction to a
subsystem.

A transport reaction is a reaction in which metabolites are transported
from one cellular compartment to another. On the network level, several
definitions for transport reactions exist. The one we used for our
implementation is a reaction that involves metabolites from at least two
different compartments. The set of all transport reactions may already
constitute a subsystem itself - the transporter subsystem.

An interface between two subsystems is a metabolite that participates
in two reactions that each belong to one of the two subsystems.

The overview graph is the graph that is constructed as follows:
There is one vertex per subsystem that has been derived in a particular
decomposition while an edge connects two subsystems if the base graph
contains an interface between these two subsystems (Fig. 1(d)).

Metabolite vertices in the base graph with many neighbours may be
cloned. For this purpose, a metabolite vertex of degree d is replaced by
d copies of itself, each of which are adjacent to exactly one of the edges
that the original vertex has been adjacent to. Cloning metabolites in our
case is mainly done for two reasons. First, it keeps the graphs readable in
further stages, as it decreases their density. Second, it avoids meaningless
interfaces between subsystems in the overview graph. For example, if
two subsystems both include ATP (which is very likely), this does not
necessarily mean that these subsystems have a meaningful relationship.
Following the terminology of Huss and Holme (2007), we distinguish
between currency metabolites (the abundant metabolites) and commodity
metabolites (the non-currency metabolites).

A consolidated subsystem graph is a bipartite graph that is constructed
as union of several subsystems (Fig. 1(e)). Unifying in this case ensures
that interfaces are only contained once in the resulting graph.

3 Algorithm
This section gives a detailed description of the algorithms and the
corresponding user workflows. We first explain the decomposition phase
and then the exploration phase. Fig. 2 gives a visual overview of the overall
possible workflows using our tool.

3.1 Decomposition Phase

1. Load a metabolic model in the SBML format into VANTED (either as
file, or via direct access from VANTED to the BioModels Database).
2. Select a decomposition method (see step 4 for details).
3. Cloning is possible for all currently available decomposition methods:
Select a degree threshold, such that all metabolites having at least this
degree are cloned. However, as the degree alone is not always sufficient to
discriminate between currency metabolites and commodity metabolites,
the list of cloned metabolites can be manually edited.
4. Compute the decomposition. Currently, the following four different
methods are provided in LMME.

KEGG decomposition: Users specify the name of an SBML note on
an SBML reaction that contains the KEGG identifier (ID) of a reaction. In
addition, the user sets a threshold t for the minimum number of reactions
per subsystem (the role of t is described below). Let W denote the set
of all reactions that provide such an ID (working set). Using the KEGG
Rest API, for any reaction R ∈ W , its ID is used to retrieve a list CR of
candidate pathways that R might belong to. Having computed CR for all
R ∈ W , the following heuristic approach is used to assign eachR ∈ W to
a subsystem. We iteratively repeat the following steps untilW is empty:

1. For the KEGG pathway P that currently is contained in CR for the
most reactions R ∈ W , create a new subsystem SP .

2. For each reaction R that has P as candidate pathway (i.e. P ∈ CR),
assign R to the new subsystem SP and remove R from the working
set W .

3. For any KEGG pathway P that is now contained in CR for less than
t reactions R ∈ W (meaning that P is a candidate pathway only for
less than t reactions), remove P from CR. If CR is now empty, also
remove R from W .

The reason for using the threshold t is that some reactions exist in more
than one pathway and therefore some of the candidate pathways may
actually not be part of the model at all. For example, the model described
in Sec. 3.4 contains a reaction (L-glutamate-5-semialdehyde:NADP+ 5-
oxidoreductase (phosphorylating)), which according to its KEGG ID
belongs to the pathways Arginine and proline metabolism and Carbapenem
biosynthesis. However, while there are 36 reactions in the model belonging
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to the former, there are only 3 that belong to the latter. So, Carbapenem
biosynthesis is most probably not part of the model. Instead, the model only
shares a few reactions. Consequently, if a pathway occurs as candidate in
less than t reactions, it is very likely that the respective pathway is not part
of the model but it just occurred as alternative in a few of the reactions by
chance. The threshold itself is very sensitive. An ad hoc test with the model
described in Sec. 3.4 revealed that t = 1 results in 71 subsystems, t = 5

results in 46 subsystems and t = 10 results in 35 subsystems. Hence, there
are 36 subsystems that contain between 1 and 9 reactions. The threshold
may be considered as a measure of confidence for the existence of the
actual subsystems in the model. The default value is t = 5.

Decomposition by Schuster et al. (2002): This method computes the
decomposition solely from the graph structure of the model. It temporarily
removes vertices with degree above a specified threshold, followed by
a computation of the resulting connected components within the graph.
These are then interpreted as subsystems, while the temporarily removed
vertices are understood as interfaces.

Compartment decomposition: The compartment affiliation of the
metabolites is read from the SBML file and the reactions are accordingly
classified into either being inside one of the compartments or as being
a transport reaction. The decomposition consists of the transporter
subsystem and one subsystem per compartment contained in the model.

Predefined decomposition: The user specifies the name of an SBML
note on an SBML reaction (Hucka et al., 2019), containing a subsystem
assignment, that is then used to classify the reactions.

In case there are unclassified reactions after the decomposition
procedure, these reactions will be assigned to a default subsystem. This
ensures that the model itself remains complete and no entities are lost. In
addition to the derived decomposition, the transporter subsystem can be
computed optionally, into which any transport reaction will be inserted,
independent of whether it has been classified before. This may reduce
the size and complexity of the default subsystem by introducing another
subsystem that is determined by its function.

After a decomposition is computed, for each pair of subsystems their
interfaces are determined and from this information the overview graph is
constructed. It is then laid out using a force-directed layout, a grid layout,
or a circular layout. However, VANTED offers some additional layout
algorithms that can easily be accessed and executed afterwards.

Once the overview graph is constructed, it is shown on the left side of
the application window, reserving the right side for the detail view of a
consolidated subsystem graph (see Fig. 3).

3.2 Exploration Phase

There are two main directions for model investigation: Analysing the
overview graph or selecting one or more subsystems for a detailed look at
their consolidated subsystem graph.

To analyse the relationships between the derived subsystems, the
number of interfaces can be mapped to the edge thickness in the overview
graph (Fig. 3). However, if the relationships are not of interest at all, the
edges can be hidden in order to reduce visual clutter in the drawing. In
addition, other analytic features provided by VANTED can be used to
further investigate the overview graph. This includes computing attributes
like centrality values and mapping the results to visual variables such as
the node size or colour. Whenever a single subsystem node in the overview
graph is selected, additional information such as the number of reactions
and metabolites that are contained in this subsystem is shown. Whenever
an edge between two subsystem nodes is selected, the list of interfaces
that confirm this relationship is shown (Fig. 3 top right and in the overlay
bottom right). These features may guide the decision for subsystems that
may be analysed in the detail view.

Selected subsystems in the overview graph can be used to construct
and visualise a consolidated subsystem graph (CSG) out of them. The CSG
is shown on the right side of the application window. A colour mapping
between the overview graph and the subsystems view ensures a user can
keep track of which metabolites and reactions belong to which subsystem.
Interfaces remain uncoloured to emphasise their role in the CSG. Different
layout algorithms for the drawing of the CSG can be selected. Besides the
force-directed algorithm, there are two layouts which make use of the
bipartition of the CSG: a layout that consists of two concentric circles,
and a layout that consists of two straight lines made up of nodes. Using
further layout algorithms provided by VANTED as well as implementing
new ones is also possible.

Finally, the consolidated subsystem graph drawing can be translated
into SBGN-PD (Rougny et al., 2019) or subsequently translated into
SBGN-AF (Mi et al., 2015).

3.3 Over-representation analysis based on network
decomposition

As soon as the overview graph has been constructed, the user can also
run an over-representation analysis. For an explanation of this method, see
Subsec. 2.1.5. We implemented a one-tailed Fishers exact test (assuming
a hyper-geometric distribution) using the false discovery rate (Benjamini
and Hochberg, 1995) (FDR) to correct for multiple testing. These are
very common techniques for ORA (Khatri et al., 2012). To perform this
analysis, the user additionally provides a list of metabolites that have been
measured with significantly altered concentrations. In addition, the user
may provide another list containing the reference set for the calculation
(a superset of the former, e. g. the total set of metabolites that have been
measured during the experiment), or decides to use the set of all metabolites
that exist in the model as a reference set. Using Fishers exact test and FDR, a
corrected p-value for every subsystem is then computed and all subsystems
having p ≤ 0.05 are coloured while the others remain uncoloured (see
Fig. 1(c) for a schematic view).

While many of the previously published ORA tools only allow for
the comparison against the predefined metabolite sets of corresponding
online databases, our approach allows the analysis to be done for
any decomposition that has been derived before (including user-specific
implementations).

3.4 Use Case

To demonstrate the usage of LMME, we now describe an exemplary use
case. We used iPAO1, a GSMM for Pseudomonas Aeruginosa PAO1, that
has been developed by Zhu et al. (2018). A copy of the model can be
downloaded from the LMME webpage. We applied all four currently
available decomposition methods to the model and computed some
properties of the resulting decompositions: the number of subsystems,
the number of connections between the subsystems (i. e. the number of
edges in the overview graph), the number of reactions contained in the
transporter and default subsystems, as well as the minimum, the median,
the maximum, the mean, and the standard deviation of the number of
reactions over all subsystems. The detailed results are shown in Table 1.

iPAO1 contains 3,022 metabolites and 4,365 reactions. For all
decompositions, we chose the cloning threshold to be its default value
15 and chose the transporter subsystem option. This resulted in 1,854
transport reactions and 2,511 remaining reactions that were distributed
across the remaining subsystems. The KEGG decomposition was the only
method that introduced a default subsystem, while all remaining did not
end up with any unclassified reactions. For the KEGG decomposition,
the decomposition-specific reaction threshold was chosen to be its default
value t = 5, while for the decomposition by Schuster et al. (2002), the



6 Michael Aichem et al.

Fig. 3. A screenshot of LMME. On the left side, the three subsystems Benzoate degradation (light blue), Lysine biosynthesis (green) and Phenylalanine metabolism (blue) have been chosen
to be shown as consolidated subsystem graph on the right side. Consistent colour coding is used to link the two views. One edge has been selected in the overview graph (for presentation
purposes this edge has been drawn red). Corresponding information is shown in the session information panel (top right and in the overlay bottom right). The number of interfaces between
two subsystems has been mapped to the edge thickness. The two highly connected subsystem nodes represent the default subsystem (left) and the transporter subsystem (right). For both
views, an overlay has been added at the bottom, to show the appearance when zoomed in.

decomposition-specific splitting threshold was chosen to be its default
value 8.

Fig. 3 shows the tools appearance, when performing a KEGG
decomposition with the circular layout method chosen for the overview
graph. From the 4,365 available reactions, 1,027 provide a KEGG reaction
ID and may therefore be assigned to a subsystem that corresponds to a
KEGG pathway. The execution results in a decomposition consisting of
46 subsystems. The default subsystem contains 1,645 reactions, while the
transporter subsystem contains 1,854. The remaining 866 reactions are
accordingly distributed across the remaining 44 subsystems. The reason
why only 866 out of the annotated 1,027 reactions were finally assigned to
a KEGG induced subsystem is that the remaining ones were either assigned
to the transporter subsystem or belonged to a pathway that did not exceed
the threshold t = 5. For more information, see the caption of Fig. 3.

Finally, we used a metabolomics dataset from an experiment studying
metabolomic changes in response to drug treatments (Mahamad Maifiah,
2017), which was collected as follows. Metabolomics samples were
collected at 0, 0.25, 1, 4, and 24h of a polymyxin B (1mg/L) time-
kill experiment with an initial PAO1 inoculum size of 108 CFU/mL.
Intracellular metabolites were then extracted and used for LC-MS analyses
as previously described (Han et al., 2019). Metabolomic data analyses were
then performed using IDEOM (Creek et al., 2012). Significantly changed
metabolites of treated samples relative to untreated control samples at each
time point were identified by One-way Analysis of Variance (ANOVA)
(p < 0.05, FDR ≤ 0.05) for multiple comparison and post hoc

analysis using Tukey’s Honestly Significant Difference (Tukey’s HSD)
with MetaboAnalyst 3.0 (Xia et al., 2015).

Finally, using the KEGG ID, the processed data collected at 1h
was mapped to those species in the model that provided a KEGG ID
and we performed an ORA with this data on each of the four resulting
decompositions. The resulting overview graphs are shown in Fig. 4.

4 Implementation
The method that was presented in this paper is implemented in the software
LMME. LMME is open-source, developed in Java and realised as an add-
on for VANTED. It uses several of VANTED’s core features, such as
drawing graphs, reading and processing SBML files, sending http requests
to the KEGG API, and several graph data structures and algorithms. For
translation to SBGN, the SBGN-ED add-on (Czauderna et al., 2010) of
VANTED also has to be installed. It also offers an SBGN-PD to SBGN-AF
translation (Vogt et al., 2013).

A custom decomposition method can be implemented by extending
the abstract class MMDecompositionAlgorithm. A respective
developers guide is available on the LMME webpage.

5 Discussion
When exploring a systems structure and functional mechanisms, having
to view the detailed functional cascades within the entire context of
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Table 1. Properties of the resulting decompositions after applying the different methods to iPAO1 (Zhu et al., 2018). For each resulting decomposition, we computed
the number of subsystems, the number of connections between the subsystems (i. e. the number of edges of the overview graph), the number of reactions in the
transporter and default subsystems, as well as the minimum, the median, the maximum, the mean, and the standard deviation (SD) of the number of reactions over
all subsystems.

Number of reactions

Method Subsystems Connections Transporter subsystem Default subsystem Minimuma Median Maximuma Mean SD

KEGG decomp. 46 237 1,854 1,645 3b 14 85 94.9 353.9
Schuster et al. (2002) 322 398 1,854 0 1 1 1,916 13.6 148
Compartment decomp. 4 3 1,854 0 392 1,059.5 1,716 1,091.3 695.5
Predefined decomp. 106 476 1,854 0 1 6.5 550 41.2 190.4

a Not considering the transporter and default subsystems.
b This falls below the threshold t = 5 as some reactions have been classified as transport reactions afterwards.

Fig. 4. Resulting overview graphs of the model discussed in Sec. 3.4. An over-
representation analysis with the same underlying metabolomics dataset has been performed
on all four decompositions: KEGG decomposition (a), decomposition by Schuster et al.
(2002) (b), compartment decomposition (c), and predefined decomposition (d).

thousands of network entities might be challenging, time-consuming and
cluttered. So, the idea is to reduce the size of the detailed view. To enable
this as freely and unbiasedly as possible, it is crucial to offer several
different decomposition methods and paradigms. In the following, we
briefly discuss the strengths of individual methods in terms of the size of
decompositions (number of resulting subsystems) and the size of individual
subsystems (number of reactions contained), their confidence (to what
extent the derived subsystems represent meaningful substructures of the
total system), the underlying paradigm and the customisability.

Decomposition size: The number of resulting subsystems may be an
important factor. While compartment decompositions result in very few
subsystems (4 in our use case), the KEGG decomposition results in many
more (46 in our use case), but is still bounded by the number of pathways
available at KEGG. Computational methods on the other hand, may vary
in their size, also being not bounded (e. g. 322 mostly small subsystems
in our use case).

Sizes of subsystems: According to the means and medians computed
in our use case, the subsystems resulting from the compartment are very

large, while the KEGG and predefined decompositions seem to have
provided more compact subsystems. The latter may, however, keep the
successive exploration of the connections between different subsystems
more manageable.

Confidence: The pathways available at KEGG are established, so
the resulting decomposition has a high confidence (in terms of common
metabolic pathways). In addition, the compartment decomposition
naturally comes with a very high confidence (in terms of spatial separation
of pathways). Computational methods, however, may have a low
confidence, especially those that only consider the network structure. In
particular, this can be seen in our use case, where the decomposition
by Schuster et al. (2002) results in a median subsystem size of 1, meaning
that at least half of the resulting subsystems only contain a single reaction.
In this case, the decomposition may not be considered in its entirety
but rather used to find individual meaningful subsystems that are part of
it (Rezvan and Eslahchi, 2017)

Paradigm: While the compartment decomposition is a spatial
decomposition, the KEGG decomposition is a functional one. Different
computational methods in addition, may aim for both paradigms, or even
further ones.

Customisability: While the compartment and KEGG decomposition
methods are quite limited in their customisability, computational methods
have their strengths here. Through parameters, users may be able to control
the results, e. g. varying the size. However, this may change the confidence.

The importance of the individual factors may heavily depend on the
research question at hand.

A researcher having metabolomics data available may now run over-
representation analyses as shown in Fig. 4. The interpretation of the
results can now happen in the context of the respective decomposition
method, e. g. regarding its underlying paradigm: While we see that
the spatial compartment decomposition in Fig. 4(c) shows no particular
location having significant metabolite concentrations, the functional
KEGG decomposition in Fig. 4(a) shows several functional units having
significant metabolite concentrations.

Some methods derive a large default subsystem. One could apply
another decomposition method in order to split the default subsystem. In
a similar fashion, the refinement or coarsening of existing decompositions
by respective algorithms may be of interest. These aspects are currently
part of our research and will become part of a future release of LMME.

6 Conclusion
We presented a novel method for the visual exploration of large metabolic
models based on decomposition, and an implementation that provides
automatic layout, several decomposition methods and over-representation
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analysis. Our approach is implemented in LMME, an add-on for the
VANTED framework and publicly available as open-source software.

With the development of our method, we address the need for
exploration approaches that facilitate the understanding of large metabolic
models, containing thousands of metabolites and reactions. By allowing
researchers to investigate different decompositions of a model, we hope
to facilitate the understanding of the overall biochemical mechanisms and
structures present in the system at hand.

We have pointed out the main workflow of our corresponding tool
LMME, explained the available decomposition and layout methods,
and have shown its application to a large model of Pseudomonas
Aeruginosa (Zhu et al., 2018).

A large amount of decomposition methods can be found in the
literature, and we provide a basic subset that will cover a broad range of
use cases and can be directly employed by the users of LMME. However,
by providing the source code of the tool and the corresponding API, we
hope to find contributors in the community to have a steadily growing set of
available decomposition methods. We also think that LMME can serve as
a test bed during the development of new methods. We also plan to extend
the range of available decomposition methods ourselves in the future.

Data availability
The source code of LMME is available from GitHub, at https://
github.com/LSI-UniKonstanz/lmme.
The iPAO1 model that was used to demonstrate LMME can be downloaded
from the LMME webpage at https://www.cls.uni-konstanz.
de/software/lmme/getting-started/.
The metabolomics dataset underlying the use case was provided by Mohd
Hafidz Mahamad Maifiah, Yan Zhu and Jian Li by permission and has
not yet been published. It will be shared on reasonable request to the
corresponding author with permission of Mohd Hafidz Mahamad Maifiah,
Yan Zhu and Jian Li.
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