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Abstract

Motivation: Species tree estimation from genes sampled from throughout the
whole genome is complicated due to the gene tree-species tree discordance. Incom-
plete lineage sorting (ILS) is one of the most frequent causes for this discordance,
where alleles can coexist in populations for periods that may span several speciation
events. Quartet-based summary methods for estimating species trees from a collec-
tion of gene trees are becoming popular due to their high accuracy and statistical
guarantee under ILS. Generating quartets with appropriate weights, where weights
correspond to the relative importance of quartets, and subsequently amalgamating
the weighted quartets to infer a single coherent species tree allows for a statistically
consistent way of estimating species trees. However, handling weighted quartets is
challenging.

Results: We propose wQFM, a highly accurate method for species tree es-
timation from multi-locus data, by extending the quartet FM (QFM) algorithm
to a weighted setting. wQFM was assessed on a collection of simulated and real
biological datasets, including the avian phylogenomic dataset which is one of the
largest phylogenomic datasets to date. We compared wQFM with wQMC, which is
the best alternate method for weighted quartet amalgamation, and with ASTRAL,
which is one of the most accurate and widely used coalescent-based species tree
estimation methods. Our results suggest that wQFM matches or improves upon
the accuracy of wQMC and ASTRAL.

Availability: wQFM is available in open source form at https://github.

com/Mahim1997/wQFM-2020.
Keywords: Species tree, gene tree, weighted quartet, incomplete lineage sort-

ing (ILS), quartet consistency.
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1 Introduction

With the rapid growth rate of newly-sequenced genomes, it is now common to estimate
species trees from genes sampled throughout the whole genome. However, each individual
gene has its own phylogeny (known as a gene tree), which may not agree with the species
tree. Species tree estimation from multi-locus datasets is complicated in the presence of
species tree-gene tree heterogeneity when gene trees differ, which can result from many
biological processes, of which incomplete lineage sorting (ILS), modelled by the multi-
species coalescent (MSC) [1], is probably the most common. ILS is also known as “deep
coalescence”, which occurs with high probability whenever the time between speciation
events is short relative to the population size [2]. ILS presents substantial challenges to
species tree estimation [3,4]. For example, the standard approach, concatenation (which
concatenates multiple sequence alignments of different genes into a single super-alignment
and then estimates a tree from this alignment) can be statistically inconsistent [5] and
can return incorrect trees with high confidence [6–9]. Moreover, under some conditions,
the most probable gene tree topology may not agree with the species tree, which is known
as the “anomaly zone” [3, 10].

As a result of these studies, “summary methods”, which operate by computing gene
trees from different loci and then combine the inferred gene trees into a species tree,
are becoming increasingly popular [11], and many of these summary approaches are
statistically consistent under the MSC model [12–23]. Using the most basic pieces of
phylogenetic information (i.e., triplets in a rooted setting, and quartets in an unrooted
setting) are key to the design of some of the statistically consistent methods [15, 20, 24].
ASTRAL, which is one of the most accurate and widely used coalescent-based methods,
tries to infer a species tree so that the number of induced quartets in the gene trees
that are consistent with the species tree is maximized. Another approach is to infer
individual quartets, and then amalgamate these quartets into a single coherent species
tree [20, 24–30].

Quartet amalgamation techniques have drawn substantial interest both from practical
and theoretical perspectives as quartets can be inferred from raw data with high accuracy
and these quartets can subsequently be amalgamated to obtain a highly accurate species
tree [20, 25, 31–33]. The summary methods are usually sensitive to gene tree estimation
error [11, 34, 35], so methods that can estimate species trees without needing to com-
pute gene trees are of utmost importance. Therefore, quartet amalgamation techniques
have attracted a lot of interest among the systematists. For example, SVDquartets [20]
reliably estimates quartets from sequence data under the coalescent model using tech-
niques from algebraic statistics, and then assemble these quartets to infer a species tree.
However, a given set of quartets may not be compatible with a single species tree, and
estimating a species tree by finding the largest compatible subset of a given quartet set is
computationally hard [36]. Moreover, this approach implicitly gives the same importance
to all quartets, and thus does not take the relative reliabilities of various quartets into
account [27].

There is ample evidence that assigning weights to quartets (where weight of a quartet
denotes the relative confidence of a particular quartet topology out of the three alternate
topologies on a set of four taxa) can improve phylogenetic analyses [27,32,37]. This grow-
ing awareness about the importance of weighted quartets has led to the development of
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methods like wQMC [30], which is an weighted extension of the quartet max-cut (QMC)
algorithm [29]. In this paper, we present a new method for amalgamating weighted quar-
tets by extending Quartet Fiduccia-Mattheyses (QFM) algorithm [24], which is being
widely used in important phylogenetic studies [38–47], especially along with SVDquar-
tets [20, 48]. SVDquartets has been implemented in PAUP* [49], which uses QFM as a
quartet agglomeration technique [50]. The proposed extension of QFM, weighted QFM
(wQFM), is provably statistically consistent under the MSC. This is a divide-and-conquer
based approach, and it introduces a novel scheme for defining the “partition score” to
assess the quality of the candidate partitions during each divide step of the algorithm.
We report, on an extensive evaluation study using widely used simulated dataset as well
as biological dataset, the performance of wQFM. We reanalyzed a collection of biological
dataset, including the avian phylogenomic dataset [51] comprising 14,446 genes across 48
genomes representing all avian orders. Our results suggest that wQFM achieves compet-
itive or in some cases better tree accuracy than the main two alternatives, wQMC and
ASTRAL. Notably, wQFM produced a relatively more reliable avian tree than ASTRAL.

2 Approach

wQFM uses a two-step technique in which we first use the input set of estimated gene
trees to produce a set of weighted four-taxon trees (called “weighted quartet trees”, or
“weighted quartets”), and then combine these weighted quartet trees into a tree on the
full set of taxa using a heuristic aimed at finding a species tree of minimum distance to the
set of weighted quartet trees (details below). Thus, wQFM is similar in overall structure
to the population tree in BUCKy [18, 52], and its proof of statistical consistency follows
the same arguments as those provided for BUCKy-pop [52]. To understand wQFM, we
begin by defining a very simple approach, Combining Dominant Quartet Trees (CDQT ),
which is also statistically consistent. The proof that CDQT is statistically consistent
explains why wQFM and BUCKy-pop are statistically consistent, and motivates their
algorithmic designs.

Combining Dominant Quartet Trees CDQT . The basic idea is to take the input set
of gene trees, compute a “dominant quartet tree” (see below) for every four species, and
then combine the dominant quartet trees into a supertree on the full set of species us-
ing a preferred quartet amalgamation technique. If the quartet amalgamation technique
correctly computes the supertree when the dominant quartet trees are “compatible” (see
below), then CDQT is a statistically consistent method under the multi-species coales-
cent. Thus, CDQT depends on the quartet amalgamation technique, and so is a general
technique, and not a particular technique.

The input to CDQT is a set G of unrooted gene trees, one for each gene, and each
gene tree has the set S of species for its leafset. We denote by ab|cd the induced quartet
on four species a, b, c, d, where the internal branch separates a and b from c and d. Note
that on a set of four species a, b, c, d, there are three possible quartet trees (ab|cd, ac|bd,
and bc|ad). The CDQT algorithm has the following steps:

1. For every set of four species a, b, c, d, we compute the set of induced four-leaf trees,
one for each gene.
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2. For every four leaves a, b, c, d, we determine which of the three possible unrooted
trees on a, b, c, d occurs the most frequently; this is called the “dominant quartet
tree on a, b, c, d”.

3. We construct a tree T from the set of dominant quartet trees using a preferred
quartet amalgamation technique.

Because the method depends on the choice of quartet amalgamation technique, we
now discuss this issue. We say that a set of quartet trees is “compatible” if there is a
tree T such that every quartet tree is topologically identical to the subtree of T induced
on its leaf set. Furthermore, when the set of quartet trees is compatible, then there is a
unique tree T ′ that induces all the quartet trees (called the “compatibility supertree”),
and it can be computed in polynomial time using very simple techniques (e.g., the Naive
Quartet Method, discussed in [53]). Thus, while there are many quartet amalgamation
techniques, most of them are able to return the compatibility supertree when the input set
contains a tree on every four leaves and is compatible. We call such quartet amalgamation
techniques “proper”.

Theorem 1. If the quartet amalgamation technique is proper, then CDQT is statistically
consistent under the multi-species coalescent model.

Proof. Let (T0,Θ) be an unrooted model species tree in the multi-species coalescent
model (and so T0 is a binary species tree and Θ are the branch lengths in T0 in coalescent
units). Let Q be a set of k gene trees sampled under the multispecies coalescent model
on (T0,Θ). By [10], for every four species a, b, c, d (leaves in T0), the most probable
unrooted gene tree on a, b, c, d is topologically identical to the unrooted tree induced by
T0 on a, b, c, d. Therefore, when k (the number of gene trees) is large enough, with high
probability the dominant quartet tree on a, b, c, d will be equal to the species tree on
a, b, c, d. Hence, for large enough k, with high probability the set of dominant quartet
trees will be compatible, and will uniquely identify the unrooted species tree; when this
holds, CDQT will reconstruct the species tree. In other words, for every ε > 0, there is
some value K so that for k > K and given k true gene trees sampled from the probability
distribution on true gene trees defined by (T0,Θ), with probability at least 1 − ε, the
dominant quartet trees will be equal to the induced four-leaf species trees, and any
proper quartet tree amalgamation technique will correctly reconstruct the species tree.
Hence, CDQT is statistically consistent under the multi-species coalescent model.

The proof that CDQT is statistically consistent under the multispecies coalescent
model provides a guarantee under idealized conditions – where all gene trees are correct
and there are a sufficiently large number of them. However, in practice estimated gene
trees have error and there may not be a sufficiently large number of gene trees. There-
fore, for good performance (and not just theoretical guarantees), species tree estimation
methods need to work well with estimated gene trees – for which the dominant gene trees
may not be identical to the most probable gene trees, and hence may not be compatible
with each other. Therefore, heuristics for combining quartet trees, that can construct su-
pertrees even when the quartet trees are incompatible, are valuable techniques for species
tree estimation in the presence of ILS.
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Related methods. BUCKy-pop [18] (the population tree output by BUCKy) is one
of the statistically consistent methods for species tree estimation under the multi-species
coalescent model that uses a quartet-based approach. The input to BUCKy is a set of
unrooted gene tree distributions, with one distribution per gene. (BUCKy was originally
intended for use with posterior distributions computed using Bayesian MCMC methods,
but has also been used with distributions computed using maximum likelihood bootstrap-
ping; both approaches give similar results [54]). In the first step, BUCKy-pop uses the
gene tree distributions to estimate a quartet tree for every four species, and performs this
estimation using Bayesian techniques. In the second step, it combines these estimated
quartet trees using a quartet tree amalgamation technique [28]. Because the quartet tree
amalgamation technique will reconstruct the compatibility supertree if it exists, BUCKy-
pop is statistically consistent under the multi-species coalescent model. Another popular
method is SVDquartets [20,48], where the loci in a multi-locus dataset are concatenated
into a single long alignment, and then, for each set of four species, a quartet tree for
that set is computed using algebraic statistics and singular value decomposition (SVD).
Finally, a species tree is estimated (using QFM or QMC) by amalgamating the quartet
trees so that it agrees with as many of these quartet trees as possible. ASTRAL is an-
other quartet based method, which explores the tree space under a dynamic programming
based algorithm which uses a weighted quartet score of a candidate species tree defined to
be the number of quartets from the set of input gene trees that agree with the candidate
species tree.

wQFM. We present a new summary method, wQFM, which estimates species trees
by combining gene trees. However, unlike SVDquartets, BUCKy-pop and CDQT , which
consider a single quartet for each set of four taxa and compute species trees by combining
these “dominant” quartet trees, wQFM computes weights for every possible four-leaf tree
(and so for each of the three possible unrooted trees for every four leaves), and then
combines this set of weighted quartet trees into a tree on the full set of species. However,
wQFM can also be used to amalgamate a set of dominant quartets. In this study, we
consider the frequency of a quartet, in the input gene trees, as its weight and so high
weight suggests higher confidence in the quartet gene tree. However, weights can be
inferred in other ways as well. For example, pairwise distances between taxa can be
considered while computing the weights on quartets [30]. The weights can be computed
from input set of gene trees with or without generating bootstrapping gene tree samples.
wQFM uses a heuristic to combine the weighted quartet trees into a supertree, attempting
to solve a version of the NP-hard “Maximum Quartet Compatibility” problem [55], where
we set weights on the quartet trees.

2.1 Algorithmic pipeline of wQFM

wQFM has two steps; in the first step, we generate a set of weighted quartet trees from
the input, and in the second step we estimate the species tree from the set of weighted
quartet trees. We now describe how we perform each step.
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Step 1: Generate weighted quartets

Given a set G = {g1, g2, . . . , gk} of k gene trees on taxon set X , we compute weights for
every possible quartet tree ab|cd of four leaves, where ab|cd denotes the unrooted quartet
tree with leaf set a, b, c, d ∈ X in which the pair a, b is separated from the pair c, d by an
edge. Thus, we compute a weight w(q) for every possible (unrooted) quartet tree q. Note
that on every set of four species, there are three possible unrooted quartet trees (simply
called “quartets”). Also note that every gene tree on the set X of taxa induces a single
quartet tree on a, b, c, d. We define the support for quartet tree ab|cd to be the number
of the trees in G that induce ab|cd on set a, b, c, d.

Step 2: Construct supertree

Our technique, which we call wQFM, to combine the quartet trees into a tree on the full
set of taxa is the weighted version of the QFM technique, developed in Reaz et al. [24].
We briefly describe the algorithmic pipeline, and refer the readers to Reaz et al. [24] for
more details.

Terminology. For an unrooted tree T on taxon set P ⊆ X , we let L(T ) denote the leaf
set of T . Every edge in T defines a bipartition of its leaf set (defined by deleting the edge
but not its endpoints from T ), which is denoted by πe. However, we can also refer to an
arbitrary bipartition on set P , whether or not it is present in a given tree T ; thus, we let
(X, Y ) be a bipartition with X on one side and Y on the other (note that the order of
X and Y does not matter).

Under the assumption that all gene trees in the input are fully resolved, then given
a bipartition (X, Y ) on set P ⊆ X , we partition the quartet trees defined by the input
trees as follows:

• quartet trees that are satisfied by (X, Y ): those quartet trees ab|cd where {a, b} ⊆ X
and {c, d} ⊆ Y , or {a, b} ⊆ Y and {c, d} ⊆ X (i.e., the bipartition (X, Y ) separates
the two sibling leaf pairs with the quartet tree from each other),

• quartet trees that are violated by (X, Y ): those quartet trees q whose taxa are fully
contained in X ∪Y , and where X and Y each contains exactly two of the four taxa
in q but q is not satisfied by (X, Y ), and

• quartet trees that are deferred by (X, Y ): those quartet trees q so that ≥ 3 of its
four taxa reside in X or in Y .

In fact, we can partition all possible quartet trees using any given bipartition, whether
or not they appear in any input gene tree. We will refer to a pair (X, Y ) with X ∩Y = ∅
and X ∪ Y ⊆ X as either a full bipartition (or simply a bipartition). A non-trivial
bipartition is one that has at least two taxa on each side.

2.2 Divide-and-conquer approach

Let Q be a set of weighted quartet trees over a taxon set P ⊆ S. The divide-and-
conquer approach takes the pair (Q,P ) as input. The basic divide-and-conquer algorithm
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operates in a top-down manner: a good nontrivial bipartition is produced, rooted trees
are calculated on the two parts of the bipartition, and then combined together into a
rooted tree on the full dataset by making them both subtrees of a common root. Then
the tree is unrooted. The key to the algorithm is therefore finding the bipartition, and
showing how to recurse on the subproblems so as to produce rooted trees.

This is the same basic top-down technique as used in Quartets MaxCut (QMC) [29], so
the only difference in the two methods is how the good non-trivial bipartition is produced.
The differences in algorithm design define how the tree space is being searched and are
important to the accuracy of the resultant tree.

We now briefly describe the technique used to find a good bipartition. We score a
bipartition with respect to the set Q of quartet trees based on the total weight of all
satisfied quartets and the total weight of all violated quartets. However, the partition
score can be defined in other ways and the number of deferred quartets can be considered
as well [24]. We have proposed a new approach, where a weighted difference of the total
weight of all satisfied quartets and the total weight of all violated quartets is used as
a partition score. These weights are computed based on the distribution of the weights
of the quartets (see Section “Partition score computation” for details). The technique
to find the bipartition uses a heuristic iterative strategy, in which each iteration begins
with the bipartition from the previous iteration, and tries to improve it. If the search
strategy within this iteration finds a better bipartition, then a new iteration begins with
the new bipartition. Thus, the strategy continues until it reaches a local optimum. The
search within each iteration, however, allows for bipartitions with poorer scores to be
computed, and hence the overall strategy is not purely hill-climbing. The running time
of each iteration is polynomial, but the number of iterations depends on the search.

Given the final bipartition (A,B) on P , we use it to define two inputs to wQFM. By
running wQFM recursively, we construct two rooted trees, one on A and one on B. We
then create a rooted tree on A ∪ B (the full set of taxa), and then ignore the rooting to
obtain an unrooted tree on X . Thus, the rest of the algorithm depends on how we define
these two inputs, and how we use wQFM to obtain rooted trees.

Letting (A|B) denote the bipartition that is produced in the divide step, we divide Q
into three sets, as follows. The first set contains all quartet trees that are either satisfied or
violated by (A|B). The other two sets are QA and QB, where QA = {q ∈ Q : |q∩A| ≥ 3},
and QB is defined similarly. Note that all quartet trees in QA and QB are deferred by
(A|B).

For each quartet tree q ∈ QA with |q ∩ A| = 3, we label the taxon that is not in A
by a new dummy taxon b∗. We similarly relabel one leaf in the relevant quartet trees
in QB with a new dummy taxon a∗. This produces sets Q′A and Q′B, which are on sets
A′ = A∪{b∗} and B′ = B∪{a∗}, respectively. We then recurse on each pair (Q′A, A

′) and
(Q′B, B

′), producing trees that we combine by identifying leaves a∗ and b∗, and suppressing
nodes of degree two. The base case is obtained when the taxon set has three or fewer
leaves, in which case we return a star. We do not pursue this further here, but see Reaz
et al. [24].

Theorem 2. wQFM is statistically consistent under the multispecies coalescent model.

Proof. Statistical consistency for a summary method follows if the method will return
the true species tree given a sufficiently large number of true gene trees sampled from the
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distribution defined by the model species tree. So suppose we are given a large number
of true gene trees so that the most probable gene tree is also the dominant gene tree.
Therefore, the weights on quartet trees will be equal to the proportion of the gene trees
that induce that particular quartet tree. Note that the weight of the dominant quartet
tree will be greater than all other quartet trees. Because that the dominant quartet tree
(one with the highest frequency) is the most probable gene tree, and hence also the true
species tree for its leaf set (since there are no anomalous 4-leaf unrooted gene trees), the
best score is obtained by the true species tree.

2.3 Partition score computation

For unweighted quartet amalgamation techniques, where, for each set of four taxa, we are
given with one of the three alternate quartet topologies (as in SVDquartets), defining the
partition score as the difference between the numbers of satisfied and violated quartets is
a suitable criteria [24]. However, under the weighted setting – where all possible quartets
are considered with relative weights – if one quartet topology on a set of four taxa is
satisfied, the other two are guaranteed to be violated. Therefore, unless the weights
of the satisfied quartets is substantially higher than the other two, the partition score
will be negative. Hence, a partition score that assigns a relatively higher importance
to the satisfied quartets is more reliable for weighted quartets. Let ws and wv be the
total weights of the satisfied and violated quartets, respectively. In general, we can use
αws − βwv as a partition score such that αws − βwv ≥ 0, where 0 < α, β ≤ 1. When
only the dominant quartets are given as input (i.e., only one quartet for each set of four
taxa), α = β = 1. Otherwise, we find appropriate values for α and β using an empirically
selected heuristic, which takes the distribution of the weights of the quartets into account.

Let Q be the set of all possible sets of four taxa (for a set of n taxa, |Q| =
(
n
4

)
).

For the first divide step (where all the input quartets are considered), if the weights of
the quartets are “closer” to each other on a reasonably small fraction of the four taxa
sets in Q, we set α = β = 1. Otherwise, we assign a relatively higher importance to
the satisfied quartets by setting α = 1 and choosing an appropriate value for β using
a heuristic approach. For a set Qi ∈ Q, let q1, q2 and q3 be the three alternate quartet
topologies with weights w1, w2, w3, respectively. Without loss of generality, we assume
that w1 ≥ w2 ≥ w3. Setting αw1 − β(w2 + w3) = 0, and α to 1, the upper limit of β
becomes equal to a ratio r, where r = w1

w2+w3
. The minimum value of r is 0.5 (when three

alternate quartets have equal weights, i.e., w1 = w2 = w3), and the value of r increases
as the differences in the weights are increased. We compute r for each Qi ∈ Q. Next,
we compute the fraction f of Qi ∈ Q, for which r lies within the range [0.5, λ), where λ
is a empirically selected threshold. For the very first divide step, if f is relatively small
(i.e., f < δ where δ is a user defined hyper parameter), we set α = β = 1, and use these
values of α and β for all subsequent divide steps (i.e., we do not compute β heuristically
in subsequent steps). Otherwise, we find a suitable value for β heuristically in every
divide step. We have empirically selected λ = 0.9 and δ = 0.1. Note that different sets of
quartets will be considered in different divide steps in the divide-and-conquer algorithm,
and subsequently β will be changed accordingly.

We now describe the heuristic which we use to choose β. When f ≥ δ, we consider
a series of bins of size 0.01 within the range [0.5, λ), i.e., b1 = [0.50, 0.51), b2 = [0.51,
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0.52), . . . , b(λ−0.5)∗10 = [λ − 0.01, λ). If f < δ (not in the very first divide step, but in
any of the subsequent ones), we consider a series of bins of size 0.01 within the range [λ,
1]. Next, for each bin bi, we compute ci, which denotes the number of Qi ∈ Q for which
r lies in bi. We replace all the r values which are larger than 1 by 1 since very large r can
inflate the overall computation. Finally, letting mbi denote the mid-point of a bin bi, we
compute β according to Eqn. 1. The pseudo-code of this heuristic algorithm is provided
in supplementary materials.

β =

∑
i ci ∗mbi∑

i ci
(1)

The running time of wQFM (and similar divide-and-conquer methods) depends on the
rate of convergence to a good bipartition in every divide step. This, in turn, depends on
the partition score which is used to evaluate a bipartition. See supplementary materials
for additional results showing the impact of different partition scores on tree accuracy.

3 Experimental Studies

3.1 Datasets

Simulated dataset. We studied previously used simulated and biological datasets to
evaluate the performance of wQFM. We used two biologically-based simulated datasets
(the avian and mammalian simulated datasets) studied in [56]. We also analyzed three
other simulated datasets (11-taxon, 15-taxon and 101-taxon) from [56–58]. These dataset
range from moderately low to extremely high levels of ILS, and range in terms of gene
tree estimation errors and numbers of genes.

This mammalian dataset was simulated by taking the species tree estimated by MP-
EST on the biological dataset studied in Song et al. [59]. This species tree had branch
lengths in coalescent units, which we used to produce a set of gene trees under the
coalescent model. Thus, the model tree has an ILS level based on a coalescent analysis of
the biological mammalian dataset, and other properties of the simulation that are set to
reflect the biological sequences they studied. We explored the impact of varying numbers
of genes (25 ∼ 800), varying amounts of gene tree estimation error (i.e., the amount of
phylogenetic signal by varying the sequence length for the markers: 250bp ∼ 1500bp). In
both cases, the levels of ILS were varied (shorter branches increases ILS) by multiplying or
dividing all internal branch lengths in the model species tree by two. Thus, we have three
model conditions that are referred to as 1X (moderate ILS), 0.5X (high ILS) and 2X (low
ILS). The 48-taxon avian simulated dataset is based on the species tree estimated using
MP-EST on the avian dataset of [51], and was simulated by following a similar procedure
as the mammalian dataset. Similar to the mammalian dataset, it has three different ILS
levels (1X, 0.5x and 2X), albeit the ILS levels are higher than the mammalian dataset
(i.e., more discordance between the true gene trees and the species tree).

We analyzed the high-ILS 11-taxon datasets from [57] (as the model condition with
lower amount of ILS is very easy to analyze [11]) which varies in the number of genes
and amount of gene tree estimation error. 15-taxon datasets contain a high level of
ILS and vary in sequence lengths and numbers of genes. Thus, the simulated datasets
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provide a wide range of challenging and practical model conditions in which we explore
the performance of wQFM.

Biological dataset. We analyzed a collection of biological datasets: the 37-taxon mam-
malian dataset from Song et al. [59], the avian phylogenomic dataset containing 48 species
and 14,446 loci (including exons, introns and UCEs), the amniota dataset from Chiari et
al. [60], and the angiosperm dataset from Xi et al. [61].

3.2 Methods

We compared wQFM with the best existing weighted quartet amalgamation method
wQMC as well as with ASTRAL-III [62] (version 5.7.3), which is considered as one of
the most accurate and widely used coalescent-based species tree estimation methods.
ASTRAL has been shown to outperform other coalescent based methods [15, 50, 63],
including MP-EST, Bucky, NJst and SVDquartets. We ran wQFM and wQMC using
the embedded quartets in the gene trees with weights reflecting the frequencies of the
quartets. ASTRAL augments the set of bipartitions present in the input gene trees (by
adding extra bipartitions) in order to search a larger tree space [58], and thus it extends
the set of quartets in the input set of gene trees. This expansion resulted in an improved
accuracy of ASTRAL-II over ASTRAL-I [58]. Therefore, the search space explored by
ASTRAL could be larger than those considered by wQFM and wQMC.

3.3 Measurements

We compared the estimated trees (on simulated datasets) with the model species tree
using normalized Robinson-Foulds (RF) distance [64] to measure the tree error. The RF
distance between two trees is the sum of the bipartitions (splits) induced by one tree
but not by the other, and vice versa. All the trees estimated in this study are binary
and so False Positive (FP), and False Negative (FN) and RF rates are identical. For the
biological dataset, we compared the estimated species trees to the scientific literature. We
analyzed multiple replicates of data for various model conditions and performed Wilcoxon
signed-rank test (with α = 0.05) to measure the statistical significance of the differences
between two methods.

4 Results and Discussion

4.1 Results on 37-taxon dataset

The average RF rates of wQFM, wQMC and ASTRAL on various model conditions in
37-taxon dataset are shown in Fig. 1. Overall, ASTRAL, wQFM and wQMC had com-
petitive accuracy, but wQFM achieved statistically significant improvement over Astral
and wQMC on a few model conditions. The impact of changes in the ILS level with
500bp sequences and 200 genes is shown in Fig. 1(a). As expected, species tree error
rates increased as ILS levels increased. ASTRAL and wQMC had similar accuracy, and
wQFM was slightly better than these two existing methods (the differences are statis-
tically significant (p ≤ 0.05) on 1X model condition). Figure 1(b) shows the impact
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of varying amounts of gene tree estimation error (controlled by sequence lengths). All
methods showed improved accuracy as the sequence length was increased, and best results
were obtained on true gene trees. wQFM consistently produced slightly better species
trees than ASTRAL and wQMC, and its improvement over ASTRAL and wQMC is sta-
tistically significant on 250bp and 500bp model conditions. Fig. 1(c) shows that all these
methods improved as we increased the number of genes, which is expected for statistically
consistent methods. wQFM matched the accuracy of ASTRAL and wQMC with slight
advantage on model conditions with relatively larger numbers of genes.

4.2 Results on 11-taxon dataset

The performance of various methods on 11-taxon high-ILS dataset with varying numbers
of estimated and true gene trees is shown in Fig. 2. On this dataset, similar to the
37-taxon dataset, ASTRAL and wQMC had very close performance, and wQFM was
better than them in some cases (although the improvement was not always statistically
significant). As was expected, the accuracy of these methods improved with the increase
in the number of genes and they returned highly accurate species trees when true gene
trees were used (even with only 25 genes). wQFM outperformed both ASTRAL and
wQMC on small numbers of true gene trees (e.g., 5 and 15 gene model conditions), and
returned the true species tree for all of the 20 replicates of data with 25 true gene trees.

On this smaller dataset, ASTRAL was run with its exact version, meaning that it
is guaranteed to return a tree with the highest quartet score. Therefore, the fact that
wQFM is sometimes more accurate than ASTRAL (albeit by a narrow margin) is inter-
esting. These results support that, on real biological datasets with limited numbers of
genes, summary methods tend to “overshoot” the optimization criteria that they try to
optimize [65]. These results also support the presence of “phylogenomic terrace”, where
multiple trees with the same quartet score can have different topological accuracies, and
multiple trees with the same topological accuracy may have different quartet scores (see
[65] for more details, and also [63]). Therefore, different algorithmic design for searching
the species tree space under the quartet score may lead to different tree accuracies even
though they achieve similar quartet scores.

4.3 Results on 48-taxon avian simulated dataset

Fig. 3(a) shows the performance on varying the ILS levels (0.5X, 1X, 2X) with 1000
genes and fixed default sequence length (500 bp). Unlike 37-taxon dataset, ASTRAL
outperformed both wQFM and wQMC. wQFM was the second best method, outper-
forming wQMC on all three ILS levels, and the differences were statistically significant
for 0.5X and 1X model conditions. We also assessed the performance on varying numbers
of genes with fixed default level of ILS (1X level) and 500bp sequence length (Fig. 3(b)).
wQFM matched the accuracy of ASTRAL (except for the 500- and 1000-gene model con-
ditions), whereas wQMC incurred the highest tree errors. The improvement of wQFM
and ASTRAL over wQMC are statistically significant in most cases.
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Figure 1: Comparison of ASTRAL, wQFM and wQMC on 37-taxon simulated
mammalian dataset. We show the average RF rates with standard error bars over 20
replicates. (a) The level of ILS was varied from 0.5X (highest) to 2X (lowest) amount,
keeping the sequence length fixed at 500bp and the number of genes at 200; (b) The
sequence length was varied from 250bp to 1500bp, keeping the number of genes fixed at
200, and ILS at 1X (moderate ILS); (c) The number of genes was varied from 25g to
800g, with 500bp sequence length and moderate (1X) ILS.
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Figure 2: Comparison of ASTRAL, wQFM and wQMC on 11-taxon high-ILS
dataset. We varied the number of genes (5 genes to 100 genes) for both estimated and
true gene trees. We show the average RF rates with standard errors over 20 replicates.
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Figure 3: Comparison of ASTRAL, wQFM and wQMC on 48-taxon simulated
avian dataset. We show the average RF rates with standard error bars over 20 replicates.
(a) The level of ILS was varied from 0.5X (highest) to 2X (lowest) amount, keeping the
sequence length fixed at 500bp and the number of genes at 1000, (b) number of genes
was varied from 50g to 1000g, with 500bp sequence length and moderate (1X) ILS.

4.4 Results on 15-taxon and 101-taxon dataset

Similar trends were observed on 15-taxon and 101-taxon dataset (see Sec. 3 in the sup-
plementary materials.).

4.5 Results on biological dataset

Avian Dataset. We have re-analyzed the avian biological dataset containing 14,446
loci across 48 taxa. This is an extremely challenging dataset since it contains high levels
of gene tree discord, perhaps because their ancestors experienced a rapid radiation [51].
The original analyses of this data by MP-EST using the binned gene trees was largely
congruent with combined analyses using ExaML [66], and both trees were presented as
reference [51,56].

Similar to the unbinned MP-EST analysis [51, 56, 67], ASTRAL, wQFM and wQMC
run on 14,446 unbinned gene trees violate several subgroups established in the avian
phylogenomics project and other studies (indicated in red in Fig. 4). However, wQFM
estimated tree is more closer to the reference MP-EST tree (on binned gene trees) than
the trees estimated by ASTRAL and wQMC. ASTRAL and wQMC differ in 9 and 10
edges, respectively, with respect to the reference MP-EST tree, whereas wQFM differs in
6 edges. Notably, the reference combined analysis tree and the MP-EST tree (presented
in [51]) differ with each other in 5 edges.

Both wQFM and ASTRAL correctly placed seriemas as sister to the clade contain-
ing passerimorphae (passeriformes, parrot) and falcon, and thus reconstructed the well
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established Australaves clade (passeriformes, parrot, falcon, seriema). However, wQMC
misplaced seriemas and failed to recover Australaves. ASTRAL and wQFM correctly
reconstructed the core landbirds and core waterbirds [51, 68–71]. wQMC also grouped
them together, albeit with different branching orderings. wQFM correctly identified the
core waterbirds as belonging to the sister clade of the core landbirds, whereas both AS-
TRAL and wQMC misplaced Caprimulgimorphae as sister to the core landbirds. While
these methods recovered the core landbirds and core waterbirds [51, 68–71] as well as
various smaller sub-groups (e.g., Passerimorphae, Accipitrimorphae, Phaethontimorphae,
Caprimulgimorphae, Phoenicopterimorphae), they could not recover some key clades. All
of them failed to recover Columbea (flamingo, grebe, pigeon, mesite, sandgrouse). Al-
though all of them correctly constructed Columbimorphae (mesite, sandgrouse, pigeon)
and Phoenicopterimorphae (flamingo, grebe), they did not place them as sister clades
and thus failed to recover Columbea. ASTRAL failed to recover Otidimorphae (bustard,
turaco, cuckoo), whereas both wQFM and wQMC reconstructed this clade. All these
methods failed to recover Cursores (crane, killdeer).

Mammalian Dataset. We re-analyzed the mammalian dataset from [59] containing
447 genes across 37 mammals after removing 21 mislabeled genes (confirmed by the
authors), and two other outlier genes. The trees produced by wQFM, wQMC and Astral
are identical to each other (see Fig. 5(a)). This tree placed tree shrews (Tupaia belangeri)
as sister to Glires, which is consistent to the CA-ML analyses (reported in [59]), and
bats have been placed as sister to the clade containing Cetartiodactyla, Carnivora, and
Perissodactyla (which is consistent to the MP-EST analyses [72]). However, alternative
relationships (e.g., tree shrew as sister to Glires, and bats as sister to Cetartiodactyla)
have also been observed [15,72]. The placement of tree shrews and bats is of substantial
debate [73–76], and so the differential placement is of considerable interest in mammalian
systematics.

Amniota dataset. We re-analyzed the amniota dataset (both amino acid (AA) and
nucleotide (DNA) gene trees) from Chiari et al. [60] containing 248 genes across 16 am-
niota taxa. The goal is to resolve the position of turtles relative to birds and crocodiles.
Previous studies [60,72,77,78] suggest the sister relationship between birds and crocodiles
(forming archosaurs), and the placement of turtles as the sister to archosaurs.

ASTRAL, wQMC and wQFM, either on AA or DNA gene trees, correctly put turtles
as a sister clade to archosaurs (see Fig. 5(b)). All these three methods, either on AA or
DNA data, reconstructed identical trees and these two trees (on AA and DNA data) are
highly congruent, differing only in the resolution of squamates (lizards and snakes).

Angiosperm dataset. We analysed the angriosperm dataset from Xi et al. [61] con-
taining 310 genes samples from 42 angiosperms and 4 outgroups. The key question here
is to investigate the position of Amborella trichopoda Baill. Our analyses with ASTRAL,
wQFM and wQMC support the placement of Amborella as sister to water lilies (i.e.,
Nymphaeales) and rest of the angiosperms (see Fig. 6). This placement of Amborella is
congruent to the CA-ML analysis in Xi et al. [61] and other molecular studies [58,79,80].
An alternate hypothesis, which supports a clade containing Amborella plus water lilies
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Figure 4: Estimated trees on the avian dataset with 14,446 genes. (a) Reference
trees from the original paper [51] using MP-EST with statistical binning [56], (b)-(d) trees
estimated by ASTRAL, wQFM and wQMC, respectively on 14,446 unbinned gene trees.
Branches conflicting with the reference coalescent-based tree are shown in red lines.
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Figure 5: Analyses of the mammalian and amniota dataset using ASTRAL,
wQFM and wQMC. (a) The tree estimated by ASTRAL, wQMC and wQFM on the
mammlian dataset, (b) analysis of the amniota dataset using both DNA and AA gene
trees.
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that is sister to all other angiosperms, has also been observed [61, 81, 82]. wQFM and
wQMC differ from ASTRAL on a single edge (the placement of Sapindales (Citrus)).
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Figure 6: Analyses of the angiosperm dataset using ASTRAL, wQFM and
wQMC. All these three methods support the placement of Amborella alone as sister to
all other extant angiosperms.

4.6 Comparison with QFM

Both QFM and wQFM construct trees from a collection of quartets, but wQFM is capable
of handling weighted quartets. One of the motivations for using the weighted version is
to use all possible quartets (i.e., 3∗

(
n
4

)
quartets for n taxa) with relative weights instead

of using the unweighted setting, where – for each set of four taxa – we are given with one
of the three alternate quartet topologies [20, 24]. In order to show the efficacy of using
weighted quartets, we have compared wQFM with QFM (see supplementary materials).
Experimental results suggest that assigning weights can improve phylogenomic analysis.

18

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 1, 2020. ; https://doi.org/10.1101/2020.11.30.403352doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.30.403352
http://creativecommons.org/licenses/by-nc-nd/4.0/


Dataset Method Quartet score Total weight Proportion of
(input quartets) total weight (%)

Amniota aa
wQFM 83604

125412
66.66

wQMC 83604 66.66
ASTRAL 83604 66.66

Amniota nt
wQFM 97890

125412
78.06

wQMC 97890 78.06
ASTRAL 97890 78.06

Mammal
wQFM 25526915

28003080
91.16

wQMC 25526915 91.16
ASTRAL 25526915 91.16

Avian
wQFM 1228137381

2462111516
49.88

wQMC 1223578787 49.70
ASTRAL 1231992828 50.04

Angiosperm
wQFM 11551948

14499592
79.67

wQMC 11551948 79.67
ASTRAL 11553053 79.68

Table 1: Quartet scores of various methods on biological datasets. We show
the quartet scores (sum of the weights of the satisfied quartets) of various methods, total
weight of the quartets in the input gene trees, and their respective ratios.

4.7 Running time

We performed the experiments on a Linux machine with 8 GB RAM and i7 2.50 GHz
processor. We ran the exact version of ASTRAL-III (version: 5.7.3) for smaller datasets
(11 ∼ 15 taxa), and used the heuristic version to analyze larger datasets. For wQFM and
wQMC, we report the running time for amalgamating the weighted quartets (given as
input), which excludes the time for computing the weighted quartets. We used a custom
script for generating weighted quartets, by computing the frequency of each quartet, from
a collection of gene trees. However, weight/confidence of a quartet can be generated in
different ways, e.g., using the quartet frequency (as used in this study), likelihood of
a quartet, and various algebraic and statistical approaches. Thus, the time required to
generate weighted quartets may differ depending on what types of weights are being used.

For smaller datasets, these three methods wQFM, wQMC and ASTRAL took very
small amounts of time. Both wQFM and wQMC took only a fraction of a second for 11
and 15-taxon datasets. ASTRAL also took around a second to analyze 11-taxon datasets.
For 15-taxon datasets however, it took ASTRAL (exact version) 1 to ∼12 min (depending
on various numbers of genes), which is much longer than wQFM and wQMC. Note that,
since the input to wQFM and wQMC are weighted quartets embedded in the input gene
trees, their running times are not much sensitive to the number of genes.

For 37-taxon dataset, heuristic version of ASTRAL was used, which led to much
smaller running times per replicates, ranging from 2 ∼6 s. The running time of ASTRAL
decrease from 6 s to 2 s as we decrease the level of ILS from higher ILS (0.5X) to lower
ILS (2X). This decrease in running time may be due to the fact that as the amount of
discordance (due to ILS) decreases in the gene trees, the number of bipartitions in the
gene trees also decrease. This leads to a smaller search space for ASTRAL (heuristic
version) to explore. ASTRAL took around 1 s (on 50 genes) to 10 s (on 800 genes) to
analyze various numbers of genes. wQMC was the fastest method which took only a
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second to analyze a single replicate of this dataset. wQFM was also fast, taking only 4
∼12 s.

On the 48-taxon simulated avian dataset, wQMC took around 2 s. ASTRAL’s running
time ranges from 6 ∼150 s, depending on various numbers of genes and ILS levels. wQFM
took around 15 ∼35 s per replicate on avian dataset. The most significant difference in
running times was observed on the avian biological dataset with 14K gene trees, where
ASTRAL took ∼32 hours to run. wQMC and wQFM, on the other hand, finished within
2 and 20 s, respectively. This is due to the fact that ASTRAL’s running time increases as
we increase the number of genes, but wQMC and wQFM takes as input a set of weighted
quartets and thus their running times are not sensitive to the number of genes. This
is attributed to the fact that ASTRAL’s running time is much more sensitive to the
number of genes (hence to the number of unique bipartitions) than wQFM and wQMC.
On a relatively larger dataset with 101 taxa, the running time of wQFM ranges from 25
∼35 min. ASTRAL and wQMC were much faster, taking around 2 ∼ 3 min and 5 s,
respectively.

5 Conclusions

We present wQFM – a new statistically consistent method for estimating species trees
from genome-scale data by amalgamating weighted quartets, which matches or improves
upon the best existing methods under a range of realistic model conditions. Quartet
amalgamation is an important class of methods which takes individual quartets as input
and amalgamate them into a single coherent tree. With the recent advances in computing
accurate quartet estimation using site pattern probabilities without needing to estimate
gene trees [20], and thereby reducing the impact of gene tree estimation error in species
tree estimation, quartet amalgamation techniques like QFM are being widely used and
have drawn substantial attention from the systematists. Moreover, assigning relative
weights to the quartets can potentially improve the tree accuracy [30], and thus can
be more applicable than weight-oblivious techniques like QMC and QFM for estimating
species trees from multi-locus data. wQMC and ASTRAL are two well known quartet
based methods that can take the weights of the quartets into account. As previous studies
have suggested the presence of phylogenomic terraces, i,e., multiple trees with an identical
quartet score may have different topological accuracies (and vice versa) [65], developing
various methods to efficiently search the tree space under the weighted quartet score will
add value to the existing literature.

wQFM is a new divide-and-conquer based method for amalgamating weighted quar-
tets. Our wide-ranging experimental results suggest that wQFM can reliably estimate
species trees under practical and challenging model conditions. We showed that wQFM
can estimate trees with similar or better accuracy than the main two alternate methods,
wQMC and ASTRAL. Moreover, we showed that designing appropriate approaches for
assessing a particular partition in the divide steps of divide-and-conquer based quartet
amalgamation methods is crucial for computing reliable trees. We have proposed a novel
scheme for finding partition scores which dynamically changes depending on the distri-
bution of the weights of the quartets considered in a particular divide step. Thus, wQFM
advances the state-of-the-art in weighted quartet amalgamation and can be used to ac-
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curately analyze upcoming multi-gene datasets. However, this study can be extended in
several directions. This study is limited to small to moderate size datasets. Future studies
need to investigate the performance of wQFM on relatively larger phylogenomic datasets
with hundreds of taxa. This study considers the frequency of the quartets in input gene
trees as weights. Future studies will need to investigate other ways of inferring quartet
support including various statistical methods (e.g., likelihood score of a quartet with re-
spect to sequence alignments) and their impact on the resulting trees. Both wQFM and
wQMC consider the quartets present in the input set of gene trees. However, ASTRAL
augments the set of bipartitions [62] in the gene trees and thus considers a larger tree
space, which may result in better accuracies on large dataset. Exploring the performance
of wQFM and wQMC on augmented sets of quartets by exploring the neighborhood of
the input gene trees through SPR (subtree pruning and regrafting), NNI (nearest neigh-
bor interchange) and TBR (tree bisection-reconnection) operations would be another
interesting research direction. As we have shown that divide-and-conquer based quartet
amalgamation methods could be sensitive to the way of computing partition scores, fur-
ther investigations are required to design more effective approach for defining a partition
score. wQFM is provably statistically consistent under the MSC model and has been
evaluated on various datasets simulated under ILS. However, evaluating the performance
of wQFM (weighted quartet amalgamation techniques in general) in the presence of hori-
zontal gene transfer and gene duplications and losses would be interesting. On an ending
note, our paper shows that the idea of estimating species trees by amalgamating weighted
quartets has merit and should be pursued and used in the future phylogenomic studies.
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1 Overview

These supplementary materials present additional results, additional details on comput-
ing partition scores and the impact of various partition scores on the tree accuracy.
Additionally, we observe the positive impact of including weights in both the partition
scores as well as overall computation.
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2 Effectiveness of using weighted quartets: compar-

ison between wQFM and QFM

A direct comparison between wQFM and QFM using all possible quartets (weighted
quartets for wQFM and unweighted quartet for QFM) sampled from the input set of
gene trees is not meaningful. This is because using all possible 3

(
n
4

)
quartets without any

weight as input and seeking a tree by maximizing the number of consistent quartets will
just produce a random tree. Therefore, when using the unweighted setting – for each
set of four taxa – the “best” quartets out of the three alternate quartet topologies are
used [1]. In this study, we consider the support/weight for quartet tree ab|cd to be the
number of the trees in G that induce ab|cd on set a, b, c, d. Therefore, for a set of four
taxa a, b, c, d, the best quartet (out of three possible quartets: ab|cd, ac|bd, and bc|ad) is
defined to be the quartet with the highest weight. In order to show the efficacy of the
weighted setting, we compare the following three variants of quartet amalgamation.

1. wQFM with all possible weighted quartets.

2. wQFM with weighted best quartets. That means,
(
n
4

)
best weighted quartets (one

quartet for each set of four taxa) are being used instead of 3
(
n
4

)
possible weighted

quartets.

3. QFM with unweighted best quartets (one quartet for each set of four taxa).

Figures S1-S3 show the comparison among these three variants on various simulated
datasets. These results show the superiority of weighted setting over the unweighted set-
ting, as in most of the cases, wQFM with all possible weighted quartets outperformed the
other two variants. Moreover, wQFM with weighted best quartets outperformed QFM
with unweighted best quartets in many of the model conditions on these datasets – an-
other evidence that assigning weights to the quartets can improve phylogenetic analyses.
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(a) Analysis of 11-taxon estimated gene trees
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(b) Analysis of true gene trees

Figure S1: Comparison of wQFM and QFM on 11-taxon high-ILS dataset. We show the
average RF rates over 20 replicates.
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(a) Analysis on 100 genes
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(b) Analysis on 1000 genes

Figure S2: Comparison of wQFM and QFM on 15-taxon dataset. We show the average
RF rates over 10 replicates.
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Figure S3: Comparison of wQFM and QFM on 37-taxon simulated dataset over 20 repli-
cates per model condition. (a) The level of ILS was varied from 0.5X (highest) to 2X
(lowest) amount, keeping the sequence length fixed at 500bp and the number of genes at
200; (b) The sequence length was varied from 250bp to 1500bp, keeping the number of
genes fixed at 200, and ILS at 1X (moderate ILS); (c) The number of genes was varied
from 25g to 800g, with 500bp sequence length and moderate (1X) ILS.
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3 Algorithms for Computing Partition Scores

Algorithm 1: Dynamic Partition score calculation on each level

Input: S: Set of input array of four-taxa-sequence (along with weights) of
quartet-topologies for each sequence.
F : (Global variable) Flag to check for subsequent levels if we want to
continue binning or not. (True: Bin further, False: Don’t bin further)
Level L, Threshold λ (default: 0.9) , Cut-off δ (default: 0.1), Step-Size ∆
(default: 0.01)

Output: Coefficient β for partition score calculation
1 for seq ∈ S // Iterate through each four-taxa-sequence

2 do
3 if Len[seqw] == 3 then

// Obtain the ratio r of weights for this four-taxa-sequence only if

there are three quartet-topologies present.

4 seqratios ← seqw1

seqw2+seqw3

5 if L == 1 then
// Initial Level-1 checking for decision-making process.

6 if Sratios == ∅ then
// There are no four-taxa-sequence with three-quartet-configurations.

So, don’t bin further. Choose ws − wv.

7 β ← 1
8 F ← False

9 else
// Four-taxa-sequence with three-quartet-configuration does exist, so

need to check proportions accordingly.

10 f ← Proportion of Sratios in the interval [0.5, λ)
11 if f < δ then

// Significant amount of quartet weights of same four-taxa-seq have

high difference between them. Choose ws − wv. Don’t bin further

on any levels, set bin flag to false.

12 β ← 1
13 F ← False

14 else
// Set bin flag to true and calculate bin ratio on left side of λ.

15 β ← Bin-Ratio-Calculation(f , δ, Sratios, λ, ∆)
16 F ← True

17 else
// Computations for subsequent levels

18 if F == True then
// Bin flag is true, compute beta using bin ratio

19 f ← Proportion of Sratios in the interval [0.5, λ)
20 β ← Bin-Ratio-Calculation(f , δ, Sratios, λ, ∆)

21 else
22 β ← 1 // Bin flag is false, so use ws − wv partition score.

23 return β
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Algorithm 2: Function for Bin-Ratio-Calculation

0: function Bin-Ratio-Calculation(f , δ, ratios, λ, ∆)
1: if ratios == ∅ then
2: // Trivial checking if there are no 4-tax-seq with 3-quartet-config

3: β ← 1 // Set beta equal to 1 and return

4: return β
5: end if
6: if f ≥ δ then
7: // Create bins to the left side of threshold λ

8: (b1, b2, ..., bn) ←MakeBins(limlower = 0.5, limupper = λ , step-size = ∆)
9: else
10: ∀r∈ratios,r>1 r ← 1 // Replace all values of ratio above 1 to 1

11: // Create bins to the right side of threshold λ

12: (b1, b2, ..., bn−1) ←MakeBins(limlower = λ, limupper = 1 , step-size = ∆)
13: bn ← Bin(limlower = 1, limupper = 1, midpoint = 1) // Create an additional bin

14: end if
15: ∀i∈n ci ← 0 // Initialize count of each bins to 0

16: for r ∈ ratios do
17: if ∃i∈n and r ∈ [bilower

, biupper
) then

18: ci ← ci + 1 // Increment count of bin by 1 which includes this ratio r
19: end if
20: end for
21:
22: β ←

∑
i ci∗mbi∑

i ci
// Compute and return beta

23:

24: return β
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4 Additional Results

4.1 Results on 15-taxon simulated dataset

We have explored the performance on varying gene tree estimation errors using 100bp
and 1000bp sequence lengths, and numbers of genes (100 and 1000) as shown in Figure
S4. ASTRAL, wQFM and wQMC achieved similar tree accuracy (with no statistically
significant differences) on all the model conditions. All these methods improved as the
number of genes and sequence length increased, and obtained best results (RF rate = 0)
on true gene trees.
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(a) Analysis on 100 genes
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(b) Analysis on 1000 genes

Figure S4: Comparison of ASTRAL, wQFM and wQMC on 15-taxon dataset.
We show the average RF rates with standard errors over 10 replicates.

4.2 Results on 101-taxon simulated dataset

We show average RF rates of wQFM, ASTRAL and wQMC on 10 replicates of 101-taxon
dataset with 1000 true gene trees (see Fig. S5). All of these methods produced highly
accurate trees with around 1.2% ∼2.5% tree error. ASTRAL was the most accurate
method followed by wQFM. However, the difference between them was very small and
was not statistically significant.
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Figure S5: Comparison of ASTRAL, wQFM and wQMC on 101-taxon dataset.
We show average RF rates with standard error bars over 10 replicates.

4.3 Impact of partition scores on tree accuracy

The quality of the bipartitions generated by divide-and-conquer based methods like
wQFM depend on the way a partition score is defined. We investigated how the tree
accuracy of wQFM is affected by various types of partition scores. We considered the
following four different partition scores, and evaluated wQFM, when it is run with these
partition scores, on various simulated datasets (see Figs. S6, S7, S8, S9). Two of these
four partition scores are fixed, meaning that we used a particular partition score in every
divide steps of wQFM, and two of them are dynamic, meaning that the partition scores
are not fixed, rather they are defined based on the distribution of the weights of the
quartets (as described in Sec. 2.3 of the main paper).

• Fixed partition scores

1. ws − wv

2. ws − 0.5 ∗ wv

• Dynamic partition scores

1. Dynamic Level 1: partition score is defined based on the distribution of the
weights in the very first divide step, and the same score is used for subsequent
divide steps.

2. Dynamic All Levels: partition scores are defined in each divide step based on
the distribution of the weights of the quartets, which are being considered in
a particular divide step. The results presented in this paper are based on this
scheme.
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(a) Analysis of estimated gene trees
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(b) Analysis of true gene trees

Figure S6: Impact of various partition scores on the accuracy of wQFM. We
show average RF rates with standard error bars (over 20 replicates) on 11-taxon dataset
by varying genes from 5g to 100g.
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(a) Analysis on 100 genes
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(b) Analysis on 1000 genes

Figure S7: Impact of various partition scores on the accuracy of wQFM. We
show average RF rates with standard error bars (over 10 replicates) on 15-taxon dataset.
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(c)

Figure S8: Impact of various partition scores on the accuracy of wQFM in 37-
taxon dataset. We show average RF rates with standard error bars (over 20 replicates).
(a) The level of ILS was varied from 0.5X (highest) to 2X (lowest) amount, keeping the
sequence length fixed at 500bp and the number of genes at 200; (b) The sequence length
was varied from 250bp to 1500bp, keeping the number of genes fixed at 200, and ILS at
1X (moderate ILS); (c) The number of genes was varied from 25g to 800g, with 500bp
sequence length and moderate (1X) ILS.

10

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 1, 2020. ; https://doi.org/10.1101/2020.11.30.403352doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.30.403352
http://creativecommons.org/licenses/by-nc-nd/4.0/


0.0

0.1

0.2

0.3

0.5X−500b 1X−500b 2X−500b

A
vg

. R
ob

in
so

n−
F

ou
ld

s 
di

st
an

ce
w[s]−w[v]

w[s]−0.5*w[v]

Dynamic Level 1

Dynamic All Levels

(a) Analysis on varying ILS
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(b) Analysis on varying number of genes

Figure S9: Impact of various partition scores on the accuracy of wQFM in 48-
taxon dataset. We show average RF rates with standard error bars (over 20 replicates).
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4.4 Quartet Scores

Tables S2, S1, S3, and S4 show the quartet scores of various methods on various simulated
datasets (11-, 15-, 37- and 48-taxon). The average absolute quartet-scores along with the
average total weight of weighted quartets, and the average normalized quartets score per
model condition is shown for the methods wQFM, wQMC, ASTRAL-III.

Table S1: Quartet scores on 15-taxon dataset. We show average (over 20 replicates)
quartet scores (sum of the weights of the satisfied quartets) of various methods, total
weight of the quartets in the input gene trees, and their respective ratios.

Model Tree Quartet Total weight Proportion
Condition score (input quartets) (%)

100gene-100bp

Model Tree 69307.4 136500.0 50.775
wQFM 69932.3 136500.0 51.232
wQMC 69930.0 136500.0 51.231

ASTRAL 69933.8 136500.0 51.234

100gene-1000bp

Model Tree 82099.2 136500.0 60.146
wQFM 82166.6 136500.0 60.195
wQMC 82166.1 136500.0 60.195

ASTRAL 82166.6 136500.0 60.195

1000gene-100bp

Model Tree 690268.0 1365000.0 50.569
wQFM 693656.1 1365000.0 50.817
wQMC 693656.1 1365000.0 50.817

ASTRAL 693656.1 1365000.0 50.817

1000gene-1000bp

Model Tree 817937.3 1365000.0 59.922
wQFM 818022.2 1365000.0 59.928
wQMC 818022.2 1365000.0 59.928

ASTRAL 818022.2 1365000.0 59.928

100gene-true

Model Tree 84634.9 136500.0 62.004
wQFM 84634.9 136500.0 62.004
wQMC 84634.9 136500.0 62.004

ASTRAL 84634.9 136500.0 62.004

1000gene-true

Model Tree 844184.3 1365000.0 61.845
wQFM 844184.3 1365000.0 61.845
wQMC 844184.3 1365000.0 61.845

ASTRAL 844184.3 1365000.0 61.845

12

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 1, 2020. ; https://doi.org/10.1101/2020.11.30.403352doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.30.403352
http://creativecommons.org/licenses/by-nc-nd/4.0/


Table S2: Quartet scores on 11-taxon dataset. We show average (over 20 replicates)
quartet scores (sum of the weights of the satisfied quartets) of the true and estimated
trees, total weight of the quartets in the input gene trees, and their respective ratios.

Model Tree Quartet Total weight Proportion
Condition score (input quartets) (%)

true-5genes

Model Tree 1528.0 1650.0 92.606
wQFM 1536.8 1650.0 93.139
wQMC 1536.8 1650.0 93.139

ASTRAL 1536.8 1650.0 93.139

true-15genes

Model Tree 4619.5 4950.0 93.323
wQFM 4637.9 4950.0 93.695
wQMC 4637.9 4950.0 93.695

ASTRAL 4637.9 4950.0 93.695

true-25genes

Model Tree 7708.25 8250.0 93.433
wQFM 7708.25 8250.0 93.433
wQMC 7708.45 8250.0 93.436

ASTRAL 7708.45 8250.0 93.436

true-50genes

Model Tree 15412.55 16500.0 93.409
wQFM 15412.55 16500.0 93.409
wQMC 15412.55 16500.0 93.409

ASTRAL 15412.55 16500.0 93.409

true-100genes

Model Tree 30844.25 33000.0 93.467
wQFM 30844.25 33000.0 93.467
wQMC 30844.25 33000.0 93.467

ASTRAL 30844.25 33000.0 93.467

estimated-5genes

Model Tree 1321.3 1650.0 80.079
wQFM 1355.5 1650.0 82.152
wQMC 1355.05 1650.0 82.124

ASTRAL 1357.4 1650.0 82.267

estimated-15genes

Model Tree 4042.9 4950.0 81.675
wQFM 4068.25 4950.0 82.187
wQMC 4068.25 4950.0 82.187

ASTRAL 4068.25 4950.0 82.187

estimated-25genes

Model Tree 6679.45 8250.0 80.963
wQFM 6695.4 8250.0 81.156
wQMC 6695.4 8250.0 81.156

ASTRAL 6695.4 8250.0 81.156

estimated-50genes

Model Tree 13362.85 16500.0 80.987
wQFM 13383.1 16500.0 81.11
wQMC 13383.1 16500.0 81.11

ASTRAL 13383.1 16500.0 81.11

estimated-100genes

Model Tree 26686.55 33000.0 80.868
wQFM 26702.05 33000.0 80.915
wQMC 26702.05 33000.0 80.915

ASTRAL 26705.4 33000.0 80.925
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Table S3: Quartet scores on 37-taxon mammalian simulated dataset. We show
average (over 20 replicates) quartet scores (sum of the weights of the satisfied quartets)
of the true and estimated trees, total weight of the quartets in the input gene trees, and
their respective ratios. Various model conditions are defined by different ILS levels (1X,
0.5X, 2X), numbers of genes (100g, 200g, etc.) and sequence legths (500b, 100b, etc.).

Model Tree Quartet Total weight Proportion
Condition score (input quartets) (%)

1X-100g-500b

Model Tree 5630260.55 6604500.0 85.249
wQFM 5635618.65 6604500.0 85.33
wQMC 5636032.85 6604500.0 85.336

ASTRAL 5636032.85 6604500.0 85.336

1X-200g-1000b

Model Tree 11584969.95 13209000.0 87.705
wQFM 11586529.55 13209000.0 87.717
wQMC 11586641.45 13209000.0 87.718

ASTRAL 11586641.45 13209000.0 87.718

1X-200g-1500b

Model Tree 11657249.9 13209000.0 88.252
wQFM 11658309.05 13209000.0 88.26
wQMC 11658432.55 13209000.0 88.261

ASTRAL 11658445.25 13209000.0 88.261

1X-200g-250b

Model Tree 10557321.6 13209000.0 79.925
wQFM 10560880.15 13209000.0 79.952
wQMC 10561734.4 13209000.0 79.959

ASTRAL 10561825.45 13209000.0 79.959

1X-200g-true

Model Tree 11744078.75 13209000.0 88.91
wQFM 11746143.2 13209000.0 88.925
wQMC 11746177.35 13209000.0 88.926

ASTRAL 11746203.5 13209000.0 88.926

1X-25g-500b

Model Tree 1410250.7 1651125.0 85.412
wQFM 1414463.05 1651125.0 85.667
wQMC 1414450.05 1651125.0 85.666

ASTRAL 1414559.25 1651125.0 85.672

1X-400g-500b

Model Tree 22531906.2 26418000.0 85.29
wQFM 22533922.6 26418000.0 85.298
wQMC 22534424.55 26418000.0 85.3

ASTRAL 22534424.55 26418000.0 85.3

1X-50g-500b

Model Tree 2816708.35 3302250.0 85.297
wQFM 2820861.25 3302250.0 85.422
wQMC 2820892.25 3302250.0 85.423

ASTRAL 2821123.85 3302250.0 85.43

1X-800g-500b

Model Tree 45096639.8 52836000.0 85.352
wQFM 45096766.4 52836000.0 85.352
wQMC 45096874.45 52836000.0 85.353

ASTRAL 45096874.45 52836000.0 85.353

0.5X-200g-500b

Model Tree 10003929.55 13209000.0 75.736
wQFM 10006290.4 13209000.0 75.754
wQMC 10006510.55 13209000.0 75.755

ASTRAL 10007425.55 13209000.0 75.762

2X-200g-500b

Model Tree 11943759.05 13205697.75 90.444
wQFM 11944321.3 13205697.75 90.448
wQMC 11944654.4 13205697.75 90.451

ASTRAL 11944654.4 13205697.75 90.451

1X-200g-500b

Model Tree 11266716.15 13209000.0 85.296
wQFM 11270452.0 13209000.0 85.324
wQMC 11270657.55 13209000.0 85.326

ASTRAL 11270657.55 13209000.0 85.326
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Table S4: Quartet scores on 48-taxon simulated avian dataset. We show average
(over 20 replicates) quartet scores (sum of the weights of the satisfied quartets) of the
true and estimated trees, total weight of the quartets in the input gene trees, and their
respective ratios. Various model conditions are defined by different ILS levels (1X, 0.5X,
2X), numbers of genes (100g, 200g, etc.) and sequence legths (500b, 100b, etc.).

Model Tree Quartet Total weight Proportion
Condition score (input quartets) (%)

0.5X-1000g-500b

Model Tree 110526512.9 194580000.0 56.803
wQFM 110133829.9 194580000.0 56.601
wQMC 109888348.3 194580000.0 56.475

ASTRAL 110583148.55 194580000.0 56.832

1X-1000g-500b

Model Tree 122945091.0 194580000.0 63.185
wQFM 122897544.85 194580000.0 63.16
wQMC 122865927.3 194580000.0 63.144

ASTRAL 123024937.95 194580000.0 63.226

2X-1000g-500b

Model Tree 131567523.05 194580000.0 67.616
wQFM 131455003.5 194580000.0 67.558
wQMC 131457328.1 194580000.0 67.56

ASTRAL 131631393.9 194580000.0 67.649

1X-50g-500b

Model Tree 6109255.45 9729000.0 62.794
wQFM 6203890.95 9729000.0 63.767
wQMC 6209354.0 9729000.0 63.823

ASTRAL 6204883.7 9729000.0 63.777

1X-100g-500b

Model Tree 12250259.15 19458000.0 62.957
wQFM 12343389.35 19458000.0 63.436
wQMC 12342740.1 19458000.0 63.433

ASTRAL 12349310.6 19458000.0 63.466

1X-200g-500b

Model Tree 24553380.5 38916000.0 63.093
wQFM 24618478.25 38916000.0 63.261
wQMC 24618794.95 38916000.0 63.261

ASTRAL 24632823.8 38916000.0 63.297

1X-500g-500b

Model Tree 61438944.15 97290000.0 63.15
wQFM 61463222.85 97290000.0 63.175
wQMC 61440254.85 97290000.0 63.152

ASTRAL 61528828.05 97290000.0 63.243
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4.5 Wilcoxon Signed-Rank Test

Tables S5 and S6 show the p-values using the Wilcoxon signed-rank test (with α = 0.05)
on various model conditions of 11-, 15-, 37-, and 48-taxon datasets, comparing wQFM
with wQMC and ASTRAL, respectively.

Table S5: Statistical significance of the differences between wQFM and wQMC in 11-,
15-, 37- and 48-taxon datasets. The p-values indicating statistically significant differences
(i.e., p ≤ 0.05) are shown in bold.

Dataset Model condition p-value
No. of genes Sequence len. ILS Level

11-taxon 5 g true high 0.0255
15 g true high 0.1572
25 g true high 0.3173
5 g estimated high 0.3049

15-taxon 100 g 100 bp high 0.3173
100 g 1000 bp high 0.3173

37-taxon 25 g 500 bp 1X 0.9814
50 g 500 bp 1X 0.6744
100 g 500 bp 1X 0.9444
200 g 500 bp 1X 0.0455
200 g 500 bp 0.5X 0.1250
200 g 500 bp 2X 0.3173
400 g 500 bp 1X 0.3173
800 g 500 bp 1X 0.1572
200 g 250 bp 1X 0.0033
200 g 1000 bp 1X 0.0832
200 g 1500 bp 1X 0.0458
200 g true 1X 0.0832

48-taxon 1000 g 500 bp 0.5X 0.0011
1000 g 500 bp 1X 0.0381
1000 g 500 bp 2X 0.8316

50g 500 bp 1X 0.0235
100g 500 bp 1X 0.0064
200g 500 bp 1X 0.0002
500g 500 bp 1X 0.0249
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Table S6: Statistical significance of the differences between wQFM and ASTRAL in 11-,
15-, 37- and 48-taxon datasets. The p-values indicating statistically significant differences
(i.e., p ≤ 0.05) are shown in bold.

Dataset Model condition p-value
No. of genes Sequence len. ILS Level

11-taxon 5 g true high 0.0832
15 g true high 0.1572
25 g true high 0.3173
5 g estimated high 0.1797

100 g estimated high 0.3173

15-taxon 100 g 100 bp high 0.3173

37-taxon 25 g 500 bp 1X 0.9354
50 g 500 bp 1X 0.3901
100 g 500 bp 1X 0.9444
200 g 500 bp 1X 0.0455
200 g 500 bp 0.5X 0.3750
200 g 500 bp 2X 0.3173
400 g 500 bp 1X 0.3173
800 g 500 bp 1X 0.1572
200 g 250 bp 1X 0.0157
200 g 1000 bp 1X 0.0832
200 g 1500 bp 1X 0.0832
200 g true 1X 0.1572

48-taxon 1000 g 500 bp 0.5X 0.0016
1000 g 500 bp 1X 0.0003
1000 g 500 bp 2X 0.0001
50 g 500 bp 1X 0.2435
100 g 500 bp 1X 0.9399
200 g 500 bp 1X 0.5796
500 g 500 bp 1X 0.0102
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