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Abstract

Motivation: Co-evolution analysis can be used to accurately predict residue-residue contacts from

multiple sequence alignments. The introduction of machine-learning techniques has enabled substantial

improvements in precision and a shift from predicting binary contacts to predicting distances between

pairs of residues. These developments have significantly improved the accuracy of de novo prediction of

static protein structures. With AlphaFold2 lifting the accuracy of some predicted protein models close to

experimental levels, structure prediction research will move on to other challenges. One of those areas

is the prediction of more than one conformation of a protein. Here we examine the potential of residue-

residue distance predictions to be informative of protein flexibility rather than simply static structure.

Results: We used DMPfold to predict distance distributions for every residue pair in a set of proteins that

showed both rigid and flexible behaviour. Residue pairs that were in contact in at least one reference

structure were classified as rigid, flexible or neither. The predicted distance distribution of each residue

pair was analysed for local maxima of probability indicating the most likely distance or distances between

a pair of residues. We found that rigid residue pairs tended to have only a single local maximum in their

predicted distance distributions while flexible residue pairs more often had multiple local maxima. These

results suggest that the shape of predicted distance distributions contains information on the rigidity or

flexibility of a protein and its constituent residues.

Contact: deane@stats.ox.ac.uk

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Important functions of proteins like catalysis or molecular recognition
are often coupled to switching between multiple structurally distinct
states of protein complexes or single proteins (Henzler-Wildman and
Kern, 2007; Nussinov et al., 2019). Here we examine the structural
changes of single polypeptide chains. Such changes can range from side
chain movements to whole domain movements (Henzler-Wildman and
Kern, 2007) and are always associated with specific residues or regions
being flexible. Knowledge about residue flexibility or about a protein’s

structural ensemble would improve our mechanistic understanding of
protein function and benefit areas such as in silico screening for drug
discovery (Cleves and Jain, 2020).

Protein flexibility can be experimentally determined through
techniques such as Nuclear magnetic resonance (NMR) (Frueh et al.,
2013), Förster resonance energy transfer (FRET) (Sanyal et al., 2016),
Hydrogen deuterium exchange (HDX) (Hamuro et al., 2003; Zhang, 2020)
or X-ray free-electron laser (XFEL) (Keedy et al., 2015) experiments.
While NMR spectroscopy has been widely used to gain structural and
dynamic information about proteins, the technical difficulties increase for
proteins larger than 20kDa (about 200 amino acids) (Frueh et al., 2013).
Although protein size is less of an issue for FRET, HDX and XFEL
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studies, all these techniques require extensive experimental resources
making large-scale application infeasible.

Due to these limitations, several methods have been developed
for the computational prediction of protein flexibility. They can be
divided into two main types: prediction of residue flexibility and
prediction of a protein’s structural ensemble. Individual residue flexibility
can be predicted using many techniques including information from
crystallographic B-factors (Schlessinger and Rost, 2005), normal mode
analysis (NMA) (Jacobs et al., 2001), NMR chemical shift data (Cilia et al.,
2014) and Molecular Dynamics (MD) simulation data (Narwani et al.,
2019). While some of these methods can predict residue flexibility from
sequence alone, the predictions contain no information about different
distinct conformations of a protein. In contrast, ensemble prediction
methods such as NMA (Lindahl et al., 2006; Krüger et al., 2012), distance
geometry (Greener et al., 2017) or coarse-grained MD simulations (Kuriata
et al., 2018) generate information about distinct conformations of a protein
but currently no ensemble predictor uses only sequences as input. In fact,
most of the methods that predict individual residue flexibility and all of the
ensemble predictors rely on experimentally determined or fully modelled
structures to guide analysis. Since sequence information is generally more
widely available than accurate structural data, it would be desirable to
have ensemble predictors that only take protein sequences as input. This
would enable the large-scale prediction of structural ensembles at low
computational cost. Most recent progress in protein structure prediction
makes accurate de novo models more widely available and reduces the
bottleneck of structural data. However, even the newest generation of
structure prediction tools only aims to predict static protein structures.
Thus, extracting flexibility information directly from sequence is desirable
if possible.

Directly predicting multiple structurally distinct states of a protein is far
more challenging than predicting individual residue flexibility but it offers
more insights and direct applicability in further research studies such as
in silico screening. We introduce a third concept of protein flexibility that
might bridge this gap between residue flexibility and ensembles: residue
pair flexibility. It describes the flexibility of residue-residue interactions
that change when proteins switch between different structurally distinct
states to perform their function. Knowledge about the rigidity or flexibility
of two residues’ interactions can inform the prediction of a protein’s
structural ensemble. Prediction of residue-residue interaction, in particular
the prediction of residue-residue distances, has recently been developed
and applied in static protein structure prediction (Senior et al., 2020;
Greener et al., 2019; Xu, 2019; Yang et al., 2020). Co-evolutionary
distance prediction is a method that uses only sequences as input. We
examined whether this method also contains information on residue pair
flexibility and thus, could potentially be used for sequence-only ensemble
prediction.

Co-evolutionary contact predictions have been used to improve ab

initio prediction of static globular protein structures (Schaarschmidt
et al., 2018), domain boundaries (Ovchinnikov et al., 2016), protein-
protein interactions (Hopf et al., 2014), and loop structures (Marks and
Deane, 2018). Additional improvements have been made by training
neural networks on large sets of available protein structures alongside
co-evolutionary information (Jones and Kandathil, 2018; Adhikari et al.,
2018; Wang et al., 2017). Recently these data have been used to train
methods to predict residue-residue distances instead of binary contacts
(Greener et al., 2019; Xu, 2019; Senior et al., 2020; Yang et al., 2020).
These distance predictions yield a probability distribution over distance
bins, with local maxima of probability indicating the most likely distance or
distances between pairs of residues. For the earlier methods that predicted
only binary contacts (Morcos et al., 2011; Marks et al., 2011; Jones et al.,
2012; Seemayer et al., 2014), it was found that when two residues were
in contact across all known PDB (Berman et al., 2000) structures of a

multiple sequence alignment, the predicted residue-residue coupling score
was ranked higher than a residue pair that was only in contact in a subset
of the structures of that multiple sequence alignment (Zea et al., 2018). A
similar observation was also found for protein-protein interaction surfaces
where conserved interactions more often showed strong co-evolutionary
couplings than less conserved ones (Rodriguez-Rivas et al., 2016). Since in
these binary methods a lower rank indicates a lower probability, residue-
residue contacts that only exist in some states of a protein’s ensemble
were more likely to be falsely classified as not in contact (at all). We
wanted to test whether the recent improvements in co-evolution analysis
and distance predictions encode information about different conformers
of a protein in the shape of their predicted distance distributions. We
hypothesise that predicted distance distributions with more than one local
maximum indicate residue pairs that can adopt more than one metastable
state, and that having more than one local maximum is therefore related
to flexibility.

As mentioned above, flexibility can be determined by different
experimental or computational methods which each have their limitations,
especially for large sets of proteins. Another way of approximating the
flexible nature of a protein is the comparison of its different available
PDB structures (Hrabe et al., 2016; Monzon et al., 2016). These static
representations of proteins lack the dynamic component of flexibility
but represent multiple structurally distinct conformations of a protein’s
ensemble and thus, approximate the degree of flexibility and the change
of interactions between pairs of residues. Here, we use the database of
Conformational Diversity in the Native State of proteins (CoDNaS), which
stores multiple PDB structures of a single protein sequence (Monzon et al.,
2016). For our analysis we used the maximum RMSD pairs dataset of
Monzon et al. (Monzon et al., 2017), a subset of CoDNaS containing two
PDB structures of one sequence that showed the maximum RMSD between
all pairwise comparisons of a protein’s available PDB structures. These
structure pairs are a proxy for a protein’s ensemble of structurally distinct
states and can be used to estimate and classify residue pair flexibility.

We find that the number of local maxima in a residue pair’s predicted
distance distribution is different between residue pairs that are rigid or
flexible. We calculated the number of local maxima in the predicted
distance distribution of each residue pair indicating if a residue pair has
a single or multiple probable distances predicted. We found that flexible
residue pairs had a significantly higher fraction of multiple local maxima
than rigid residue pairs, implying that flexible residue pairs were predicted
to be in more than one metastable state more often than rigid residue pairs.
We show that this difference was not biased by individual proteins and
that it was also not driven by the different secondary structure proportions
which were present between the sets of rigid and flexible residue pairs.
Furthermore, we observe very similar local maxima counts to the CoDNaS
dataset in the predicted distance distributions of a second dataset containing
a set of rigid loops validated by MD simulations. We therefore concluded
that the shape of predicted distance distributions is informative of stability
or flexibility of residue pairs and could potentially be used in protein
ensemble prediction.

2 Materials and methods

2.1 Dataset

The Database of protein Conformational Diversity in the Native State
(CoDNaS) stores multiple PDB structures of single protein sequences
(Monzon et al., 2016). For our analysis the maximum RMSD pairs
dataset of Monzon et al. (Monzon et al., 2017) was used. This CoDNaS
subset contains 4791 pairs of PDB structures that had the maximum Cα

RMSD amongst the pairwise comparisons between all conformers of a
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given protein. This subset includes only proteins that had at least five
solved structures in the CoDNaS database to increase the reliability of the
approximation of conformational diversity. Only X-ray structures with a
resolution equal or less than 2.5Å were considered.

For our analysis a subset of the maximum RMSD pairs dataset
was used which contained 3075 proteins. This subset contains only
proteins that have no intrinsically disordered regions (unresolved patches
of five or more residues) in any of the conformers. The list of PDB
structure pairs can be found in SI Table 1. PDB structures were pre-
processed with clean_pdb.py to remove alternative locations (downloaded
from https://github.com/harryjubb/pdbtools/blob/master/clean_pdb.py on
14/11/2019).

For 2947 out of the 3075 proteins distance predictions, secondary
structure assignment and chemical interaction analysis for both PDB
structures could successfully be performed. These protein pairs constitute
our analysis set and are marked with a 1 in the ’analysis_complete’ column
of SI Table 1.

Topological similarities between the CoDNaS set and the structures
of the distance predictor’s training set may exist, however, DMPfold was
trained on only one protein conformation each for a non-redundant set of
proteins and to yield only one protein conformation. Any overlap between
the DMPfold training set and the CoDNaS set would therefore if anything
be detrimental as DMPfold would have seen only a single conformation,
reducing the likelihood of predicting multiple peaks for any residue pair
in that structure.

2.2 Co-evolutionary distance prediction

DMPfold (Greener et al., 2019) was downloaded from https://github.com/
psipred/DMPfold on 01/10/2019. It uses following sequence-based input
features: sequence profile, mutual information (MI), MI product (MIp),
mean contact potential, PSICOV contact scores (Jones et al., 2012),
FreeContact (mfDCA) contact scores (Kaján et al., 2014), CCMpred
(plmDCA) contact scores (Seemayer et al., 2014), PSIPRED secondary
structure, Shannon entropy in multiple sequence alignment columns,
SOLVPRED solvent accessibility, log(1 + sequence separation), sequence
bounds (channel of ones), DeepCov covariance matrix (Jones and
Kandathil, 2018). In its normal application it generates distance predictions
for all residue pairs and then feeds those into a structure modelling program
(CNS). After 3D model building the distance predictions are updated
considering the built model (by default this step is done twice but can
be varied). DMPfold was run with default parameters but without any
3D model building and updates of distance predictions. Thus, distance
predictions used in this work always refer to the initial distance prediction
generated before protein structure modelling iterations. Input features for
the initial distance prediction were generated with hhblits 3.0.3 (multiple
sequence alignment) against uniclust30 (2018_08).

Trivial contacts/residue pairs are defined as those between residues
that are four or less residues in sequence apart. No distance prediction is
generated by DMPfold for those residue pairs.

A distance prediction for a pair of residues refers to the predicted
Cβ -Cβ distance (in case of glycine Cα) between those two residues and
is termed predicted distance distribution here. Each predicted distance
distribution is a vector of 20 points, representing the probabilities for
each of the distance bins that DMPfold was trained to predict for a given
sequence (or multiple sequence alignment). The first bin is ranging from
3.5-4.5Å, followed by seven bins of 0.5Å width up to a distance of 8Å and
eleven bins of 1Å width up to 19Å. The last bin contained the probability
density for distances over 19Å.

Target sequence of a distance prediction was the sequence derived
from PDB structure 1 (see ’pdb_id_1’ and ’chain_id_1’ columns of SI

Table 1. Flexibility class definitions.

Rigid residue pairs Flexible residue pairs

Cβ -Cβ distance difference < 1Å >= 2Å
Chemical bond category 1 + /1+ 0/1+

Table 1) through PDBParser(permissive=0) from Biopython 1.74 (Cock
et al., 2009).

2.3 Local maxima analysis

Distance probability distributions were analysed with the ’peakdet’
function from Eli Billauer, version 3.4.05 (downloaded from
https://gist.github.com/endolith/250860 on 18/10/2019). The function
considers a point a local maximum if it has the local maximal value,
and was followed (to the right) by a value lower by at least DELTA,
which was chosen to be 0.03 (to maximise the fraction having two peaks
while allowing at most three peaks. Detecting a local minimum (analogue
definition with greater by at least delta) resets the local maximum. Thus,
multiple local maxima can be found for each probability distribution. The
last bin is never considered to be a maximum. See SI Figure 1 for randomly
selected examples of predictions with 0, 1, 2 or 3 local maxima.

2.4 Residue pair analysis

We only investigated non-trivial residue pairs that fulfilled the following
true contact definition (true positives) and pairs that fulfilled the binary
contact definition in at least one PDB structure if no local maximum could
be detected at all (false negatives).

2.4.1 Definition of true contacts

The standard threshold for ’binary’ contact predictors defines a residue
pair to be in contact if the Cβ-Cβ distance (in case of glycine Cα) of
two residues is 8Å or less (Marks et al., 2011). Adapting this to distance
predictions and multiple conformers, we define a true positive contact
having at least one local maximum below 8Å and the ’binary’ contact
definition being satisfied in at least one of the conformers.

2.4.2 Flexibility definition

Residue pairs were classified into two distinct classes, rigid and flexible
pairs; Cβ-Cβ distances (Cα for glycine) and chemical bonds were used
for this classification (Table 1). Residue pairs not matching those criteria
were not classified as it is unclear if those residue pairs represent pairs
with medium flexibility or uncertainty of experiments and analyses. See
SI Figures 3 and 4 for fractions of predicted local maxima of these non-
rigid-non-flexible residue pairs.

2.4.3 Cβ-Cβ distance difference

The absolute difference between the Cβ -Cβ distances of the two structures
of the same sequence was determined for each residue pair (in case of
glycine Cα). The absolute difference in distance had to be smaller than
1Å for the rigid classification and greater or equal to 2Å for the flexible
classification.

2.4.4 Chemical bond analysis

To increase the confidence in a residue pair’s assignment to a flexibility
class (rigid/flexible), we determined the presence of at least one chemical
bond between those two residues in both PDB structures. A chemical
bond is defined as any of the CREDO interactions (Schreyer and Blundell,
2009) detected by Arpeggio (Jubb et al., 2017); proximal interactions
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excluded. Arpeggio is a programme that calculates and visualises
interatomic interactions from protein structures. It was downloaded from
https://github.com/harryjubb/arpeggio. At least one chemical bond had to
be present in both PDB structures (1+/1+) to classify for the rigid set and
at least one bond in one of the structures but none in the other (0/1+) to
classify for the flexible set.

2.4.5 Secondary structure pair types

Secondary structure assignment was determined using DSSP (Kabsch
and Sander, 1983) on PDB structure 1 (see ’pdb_id_1’ and ’chain_id_1’
columns of SI Table 1). DSSP outputs an 8-letter code which we converted
into two categories: secondary structure element (S) or loop/coil region
(L). ’H’, ’G’, ’I’ and ’E’ were assigned to S and ’B’, ’T’, ’S’ and ’ ’ were
assigned to L following the definition of Marks et al. (Marks and Deane,
2018). The secondary structure pair type is constituted by both residues’
assignments, leading to three types: ’S-S’ (within or between secondary
structures), ’S-L’ (between secondary structure and loop) and ’L-L’ (within
or between loops).

2.5 Set comparisons

For the comparison of fraction distributions the Mann-Whitney U test (two-
sided) was applied as implemented in the Stats module of SciPy version
1.3.1 (Virtanen et al., 2020). Common language effect size f was calculated
as: f =

U1

n1n2

.

2.6 Rigid loop set

Daggert et al. (Benson and Daggett, 2008) defined a set of loops that
showed very little movement in MD simulations (average below 0.5Å).
Lists of the loop definitions and PDB structures used can be found in SI
Table 2. We followed the set definition of Marks et al. (which excluded one
original loop because of an uncertainty in labelling) (Marks and Deane,
2018). The number of local maxima was determined for each predicted
distance distribution of residue pairs involving one of the defined loop
residues.

3 Results and discussion

3.1 The shape of predicted distance distributions is related

to flexibility

Co-evolutionary information and machine-learning have recently enabled
the prediction of residue-residue distances (Greener et al., 2019; Xu, 2019;
Senior et al., 2020; Yang et al., 2020). These methods yield a predicted
distance distribution for every residue pair and have been used to identify
the most likely distance (or distance interval) between a pair of residues in
a protein. Such distance constraints have been successfully used to predict
static protein structures, e.g. Kryshtafovych et al. (Kryshtafovych et al.,
2019).

Here we test whether these predicted distance distributions also contain
information about residue pair flexibility. Information on which residues
change their interactions to facilitate the switching between conformers
will be crucial to predict multiple biologically relevant conformations. To
identify these interaction changes we analysed and compared the two most
different PDB structures of a protein sequence. All residue pairs that are
present in both of these structures were classified into rigid, flexible or
neither (only non-trivial, true contacts considered; See Methods for more
information).

All analysed residue pairs are present in two conformations (two
distinct PDB structures), so that for each residue pair two Cβ -Cβ distances
and thus, a Cβ -Cβ distance difference could be determined (Cα for
glycine). Rigid residue pairs were defined as those with a Cβ -Cβ distance
difference below 1Å and flexible pairs were those with a Cβ -Cβ distance

Rigid

Residue pair

Flexible

Residue pair

L105

I143

S93 H98

S93

H98

L105 I143

a)

b)

c)

d)

Fig. 1. A rigid residue pair associated with a single local maximum and a flexible residue

pair with multiple local maxima in their predicted distance distributions are shown. a)

displays an example of a rigid residue pair of Myoglobin (L105:I143) and b) a flexible pair

(S93:H98). The two most different PDB structures of Myoglobin were superimposed and

in both images PDB 2EB8_A is shown in blue, 2JHO_A in red and the residue pairs in stick

representation. c) and d) depict the predicted distance distributions for the respective residue

pairs. Black dotted lines in PDB structures as well as vertical dotted lines in probability

distributions represent the two Cβ -Cβ distances that are associated with the residue pairs in

both PDB structures. The rigid residue pair in a) is very similar in both structures and hence,

its two Cβ -Cβ distances are close to each other in c) next to the single local maximum

of the distance prediction. The flexible residue pair in b) displays much greater movement

and two Cβ -Cβ distances greater than 4Å apart which roughly represents the difference

between the distance prediction’s two local maxima in d).

difference equal or above 2Å. Residue pairs with a distance difference
between these two cutoffs were not classified into either set. Additional
to the distance difference thresholds we applied a bond change criterion.
Rigid residue pairs had to have at least one physicochemical bond in both
structures and flexible pairs had to display at least one bond in one structure
but none in the other. This criterion was applied to ensure interaction
change for residue pairs that were classified as flexible. More details on
the rigid and flexible definitions can be found in Methods.

If the shape of the predicted distance distributions relates to the
conformational ensemble of a protein, rigid residue pairs should be
characterised by predicted distance distributions with only one local
maximum and flexible pairs should show predictions with two or more
local maxima.

Figure 1 illustrates the expected difference between rigid and flexible
residue pairs. The two residues of the rigid residue pair remain in the
same orientation to one another in the two structures (Figure 1a), the two
residues of the flexible pair have changed orientations between the two
structures (Figure 1b). The distance prediction of the rigid pair shows a
distribution with only one local maximum and the two Cβ -Cβ distances
of the two structures are close to that maximum (Figure 1c). In contrast
to that, the flexible pair’s distribution shows two local maxima and the
Cβ -Cβ distances of the two structures differ by more than 4Å (Figure 1d).

3.2 Flexible residue pairs have more distance prediction

local maxima than rigid residue pairs

To test whether there is a general relationship between the flexibility of a
residue pair and its predicted distance distribution, we investigated 2947
proteins from the CoDNaS database. We classified each residue pair in each
of those proteins into rigid or flexible (or none) and examined the predicted
distance distributions for all residue pairs in those sets. Local maxima in
the predicted distance distributions were defined as bins that were followed
by a local minimum of at least 3% probability below its maximum value
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a)

b)

Fig. 2. Fractions of local maxima counts are different between rigid and flexible residue

pairs. (a) Fractions of predicted local maxima across all classified residue pairs of all

proteins, showing that flexible residue pairs are both more likely to have no local maximum

or multiple local maxima. (b) Protein-averaged fractions of predicted local maxima, showing

the same overrepresentation of no or multiple local maxima for flexible residue pairs.

(see Methods). For a given set of residue pairs the number of local maxima
in each predicted distance distribution was determined and from all those
predictions the fraction of predictions with no, one, two or more local
maxima was calculated. The different fractions of local maxima counts
for all residue pairs, rigid residue pairs and flexible residue pairs across all
proteins are shown in Figure 2a.

Cases where no local maximum could be detected in a distance
prediction (grey) implied that either both residues were predicted to be
further than 19Å apart or that the predictor did not predict a highly probable
distance (see Methods for definitions), 7% of all residue pairs that we
investigated fell into this category. In the set of rigid residue pairs only 5%
showed no local maximum but in the set of flexible residue pairs 24%,
indicating that predicting residue-residue distances for flexible residue
pairs is more challenging. 70% of rigid residue pairs had a single local
maximum, whereas this was only 42% for flexible residue pairs.

As there are different numbers of residue pairs in the respective sets:
1,370,737 pairs in total, 711,239 in the rigid set and 8,681 in the flexible
set and to show that no individual proteins are driving the differences in
the number of local maxima, protein-averaging was performed. For each
protein the number of local maxima was calculated for each residue pair
(’all’) and for the sets of rigid and flexible residue pairs if a protein had
at least one residue pair with a single local maximum and at least one
other pair with multiple local maxima. Protein-averaged fractions for the
residue pair sets are shown in Figure 2b. On average, of all residue pairs

Table 2. Fraction of secondary structure classification depending on flexibility
classification.

S-S (within/between)1 S-L or L-L2 Number of proteins3

All residue pairs 0.52 ± 0.13 0.48 ± 0.13 2934
Rigid pairs 0.58 ± 0.12 0.42 ± 0.12 2914
Flexible pairs 0.15 ± 0.14 0.85 ± 0.27 1584

1 Fraction of residue pairs within/between secondary structure elements
2 Fraction of residue pairs including at least one loop/coil residue
3 Proteins with at least one classified pair

25% ± 8% had multiple local maxima predicted. A fraction of 22% ± 7%
of the rigid pairs were found to have multiple local maxima compared to
40% ± 17% of the flexible ones. The difference in the fraction of multiple
local maxima between rigid and flexible residue pairs is slightly higher
when applying protein-averaging but qualitatively the results are the same
(Figures 2a and 2b).

This is also true when computing the local maxima fractions for a
subset of proteins that consist only of unique CATH superfamilies (see
SI Figure 3). The differences between rigid and flexible residue pairs are
qualitatively the same as well.

3.3 Predicted distance distributions can capture flexibility

independent of secondary structure

Table 2 shows that the residues in pairs that were classified as flexible
were more often part of loop structures than the residues in rigid residue
pairs (85% vs. 42%). This is expected since loop structures are often
intrinsically flexible (Nilmeier et al., 2011). As it is known that loop
structures are hard to predict (Marks and Deane, 2018), a higher fraction
of multiple local maxima could just stem from an increased uncertainty
of predictions and not from residue pair flexibility that relates to distinct
conformations. This would imply that the higher fraction of multiple local
maxima observed in flexible residue pairs compared to rigid pairs is due
to imbalances in secondary structure type proportions and not driven by
residue pair flexibility. Therefore, we analysed the secondary structure
composition of all sets of residue pairs and the local maxima fractions of
different secondary structure subgroups within the two sets of interest. If
the local maxima fractions in the respective rigid and flexible secondary
structure subgroups were identical and the overall differences were only
caused by different proportions of subgroups, the number of local maxima
would predict secondary structure type and not flexibility itself.

Figure 3 shows the local maxima fractions dependent on secondary
structure subgroups comparing the sets of rigid and flexible residue pairs.
Even when stratifying by secondary structure, we still observe differences
between the number of local maxima of the rigid and flexible sets. Whereas
the subgroups with at least one residue being part of a loop (S-L and L-L)
of rigid and flexible sets show similar fractions of multiple local maxima
(Figures 3b and 3c), the subgroups where both residues of a pair are part of a
secondary structure element (S-S) differ with flexible residue pairs having
about twice as many predictions with multiple local maxima compared
to the rigid pairs (red in Figure 3a). This, and the large differences in
single local maximum fractions (blue) in all subgroups, confirms that the
differences between rigid and flexible residue pairs are not driven only by
different proportions of secondary structure in the sets.

As for the overall fractions, we also computed local maxima fractions
of the secondary structure subgroups for a subset of proteins with unique
CATH superfamilies (see SI Figure 4). The differences in secondary
structure subgroups between rigid and flexible residue pairs are also found
when controlling for a potential superfamily bias which further supported
our finding.
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Our definition of rigid depends on the currently solved crystal
structures, so it is possible that when a residue pair is classified as rigid it
might not be, alternative conformations might not yet have been solved.
However, if a residue pair is classified as flexible, this is likely to be correct
as it has already been found in at least two different distinct conformations.
As residue pairs are more prone to be incorrectly classified as rigid than
as flexible, the fraction of multiple local maxima of rigid residue pairs
is likely to be rather overestimated than underestimated. This implies
that the difference in multiple local maxima fractions between rigid and
flexible residue pairs could increase with more structural data becoming
available, further supporting our finding that residue pair flexibility is
captured independent of secondary structure imbalances.

3.4 Differences in number of local maxima between rigid

and flexible sets are statistically significant

Given that these differences in predicted distance distributions are related
to flexibility and rigidity of residue pairs, we tested if these differences
are statistically significant. For this we performed protein averaging
and analysed the fraction-per-protein distributions. For each protein the
fraction of all residue pairs with multiple local maxima was determined
and as well as the fraction within the sets of flexible and rigid residue pairs,
respectively (See SI Figure 2 for distribution histograms).

The number of proteins contributing to the distribution of all proteins
was 2899, 2858 for the rigid sets and 542 for the flexible sets. Note the
differences to the numbers when comparing secondary structure pairs in
Table 2 (1584 vs. 542). Applying a criterion of having at least one residue
pair with a single local maximum and at least one other pair with multiple
local maxima in a given protein reduced the number of proteins by about
two thirds. We applied this criterion to reduce the potential bias from
proteins with a very low number of classified residue pairs.

All three distributions are significantly different from one another
(Mann-Whitney U test): all vs. rigid sets with a p-value < 10-44, all vs.
flexible sets with a p-value < 10-87 and rigid vs. flexible with a p-value
< 10-122. These results not only show that the shape of predicted distance
distributions of rigid and flexible residue pairs differ significantly, but also
that, when comparing to rigid residue pairs, flexible residue pairs more
often have multiple (instead of single) local maxima in their predicted
distance distributions.

3.5 Examining the local maxima fractions on a set of

protein loops defined as rigid

In order to see if our findings generalised to other methods of identifying
protein flexibility, we investigated a set of 20 loops that had been found to
move very little during MD simulations (Benson and Daggett, 2008). In
a large-scale flexibility analysis of MD simulations of 250 proteins these
loops had a mean movement of less than 0.5Å and thus, were at the very
rigid end of the spectrum of all loops analysed.

We computed the number of predicted local maxima for each residue
pair that involved at least one of the loop residues of these 20 rigid loops
(496 pairs in total) and generated per-rigid-loop-averaged fractions. This
rigid loop set of residue pairs had on average 72% ± 23% of predicted
distance distributions with a single local maximum, 25% ± 13% with
multiple maxima and 3% ± 10% without any local maximum. Since
the loops of this set had shown little flexibility during simulations, their
fractions should be similar to the rigid residue pairs of the CoDNaS set
which is indeed what we observe (see Figures 4a and 4b for a comparision
of S-L and L-L secondary structure subgroups). Although generally
similar, the fractions of multiple local maxima are even lower and the
fractions of single local maxima are even higher in the rigid loops than
in the rigid residue pairs of the CoDNaS set. These results agree with the

a)

b)

c)

S-S

S-L

L-L

Fig. 3. Predicted distance distributions capture flexibility independent of secondary

structure. Number of local maxima fractions were computed for subgroups depending on

their secondary structure annotation: (a) ’S-S’ when both residues were found to be part

of a secondary structure element, (b) ’S-L’ when one of the residues was in a secondary

structure element and the other in a loop, and (c) ’L-L’ when both were part of a loop/coil

region. The different fractions of multiple local maxima (red) between rigid and flexible

residue pairs are not only driven by an imbalance of secondary structure element and loop

residues: for example the S-S subgroup of the flexible set has a fraction of multiple local

maxima twice as big as the rigid set’s.

idea described above that some rigid residue pairs within the CoDNaS set
might be incorrectly classified as rigid because alternative conformations
have not yet been observed in crystal structures.
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a)

b)

Fig. 4. Local maxima fractions of the rigid loop set are similar to fractions of the rigid

residue pairs of the CoDNaS set. Secondary structure subgroups (a) ’S-L’ and (b) ’L-L’

show small fractions of distance predictions with multiple local maxima (red) and large

fractions with a single local maximum (blue). The fractions of multiple local maxima are

generally similar to the fractions of rigid residue pairs in the CoDNaS set. This rigid loop set

that was defined not by comparing two PDB structures but by analysing MD simulations,

confirms the finding that rigid residue pairs less often have multiple local maxima in their

distance predictions than flexible pairs.

This set of rigid loops was defined by an alternative validation strategy,
not by comparing two PDB structures but by analysing MD simulations,
and shows once again that rigid residue pairs have multiple local maxima
predicted less often than flexible pairs.

4 Conclusion

Switching between different structurally distinct states is common in
proteins carrying out various functions like catalysis or molecular
recognition. For this switching between conformations, flexibility and the
change of specific residue interactions is necessary. Since binary contact
predictors tend to simply assign lower probabilities to such interaction-
changing residue pairs (see SI), we wanted to test if recently developed
methods which predict residue-residue distances capture information
about these changing interactions in a more exploitable way. Specifically,
in this study we investigated if rigid and flexible residue pairs have different
numbers of local maxima in their predicted distance distributions. For this
we analysed 2947 proteins of the CoDNaS database. For every protein
the two most different available PDB structures were taken and residue
pairs that were present in both structures were grouped into rigid and
flexible sets. We analysed and defined residue pair flexibility according to

the Cβ -Cβ distance difference between the two different conformations
of a residue pair and added a bond change criterion to ensure interaction
change.

When analysing the number of local maxima in the predicted distance
distributions of rigid and flexible residue pairs, the two groups were found
to have different fractions of single and multiple local maxima. Rigid
residue pairs displayed a larger fraction of single local maxima than flexible
pairs whereas flexible residue pairs had a larger fraction of multiple local
maxima than rigid residue pairs. Each local maximum is potentially related
to a distinct distance that stems from a biologically relevant conformation
of a protein (see Figure 1). However, two case studies (see SI Figures 6-
8) suggest that using the predicted distances directly might not be the
best way of exploiting the flexibility information that is contained in
distance predictions. As current predictors are trained only on and for
single conformations, it seems more appropriate to specifically train with
multiple structures of related sequences.

Since flexible residue pairs are more commonly found as part of loop
structures which are often intrinsically flexible, we tested if this imbalance
of secondary structure proportions between rigid and flexible sets was the
sole driver of differences between residue pair sets. We found that this was
not the case and the difference between sets was also present in secondary
structure subgroups. Hence, the information on residue pair flexibility that
is captured by distance predictions is not only due to the uncertainty of
predictions for areas of loop/coil secondary structure.

After confirming that distance predictions capture residue pair
flexibility and not only secondary structure, we performed protein
averaging of the fractions of single and multiple local maxima. This
yielded distributions of fractions on a per-protein basis which allowed
us to demonstrate that the differences between rigid and flexible residue
pairs are statistically significant.

We then tested if our results held when considering protein flexibility
as defined by Molecular Dynamics. We predicted distance distributions
for all residue pairs within and in contact with a set of loops which were
found to be rigid in MD simulations. Although the validation of rigidity
differed from our approach of comparing two PDB structures of one
protein, the resulting fractions of single and multiple local maxima were
similar to the set of rigid residue pairs in the CoDNaS set. This alternative
dataset supports our findings of differences in distance predictions of rigid
and flexible residue pairs. As discussed above, some rigid residue pairs
might have been incorrectly classified as rigid because alternative protein
conformations, that might show a flexible behaviour of that residue pair,
have not yet been solved. The even higher fraction of predicted distance
distributions with a single local maximum of residue pairs that were
classified as rigid by MD simulations compared to residue pairs classified
by PDB structure pairs further strengthens this view.

The fact that the average number of local maxima and thus, the number
of predicted distances that are associated with these local maxima varies
between rigid and flexible residue pairs could be used to improve multi-
conformer modelling. Current structure prediction tools aim to predict
the static structure of a protein (Senior et al., 2020; Greener et al.,
2019; Xu, 2019; Yang et al., 2020) and multiple output structures are
an occasional byproduct (Greener et al., 2019). The results of this study
imply that distance predictions contain information about residue pair
flexibility even when the distance predictor was only trained on one
protein shape and to generally yield only a single conformation. This
highlights the potential of predictors specifically designed for predicting
more than one conformation. While there is a statistical difference, distance
predictions are not able to predict residue pair flexibility on their own, but
they could be useful information to feed into such a predictor. A very
recently published study (del Alamo et al., 2021) indicates that, as part of
CASP14, AlphaFold2 had predicted one model of an alternative protein
conformation that had only been suggested in double electron-electron
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resonance spectroscopy experiments but had not been observed in a crystal
structure. This further supports our finding that sequence information
contains information on conformational flexibility and emphasizes our
conclusion that the potential to predict biologically meaningful protein
ensembles can and should be actively pursued.
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