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Abstract

Motivation: Driver (epi)genomic alterations underlie the positive selection of cancer subpopulations, which
promotes drug resistance and relapse. Even though substantial heterogeneity is witnessed in most cancer
types, mutation accumulation patterns can be regularly found and can be exploited to reconstruct predic-
tive models of cancer evolution. Yet, available methods cannot infer logical formulas connecting events to
represent alternative evolutionary routes or convergent evolution.

Results: We introduce PMCE, an expressive framework that leverages mutational profiles from cross-
sectional sequencing data to infer probabilistic graphical models of cancer evolution including arbitrary
logical formulas, and which outperforms the state-of-the-art in terms of accuracy and robustness to noise,
on simulations.

The application of PMCE to 7866 samples from the TCGA database allows us to identify a highly significant
correlation between the predicted evolutionary paths and the overall survival in 7 tumor types, proving that
our approach can effectively stratify cancer patients in reliable risk groups.

Availability: PMCE is freely available at https://github.com/BIMIB-DISCo/PMCE, in addition to the
code to replicate all the analyses presented in the manuscript.

Contacts: |daniele.ramazzottiQunimib.it, alex.graudenzi@ibfm.cnr.itl

1 Introduction

Many natural phenomena are characterized by the presence of ordered sequences of discrete states or events,
such as the accumulation of somatic mutations during cancer progression [12L[19]. A particular class of
mathematical models used to represent such phenomena is provided by Bayesian Networks (BNs) and related
extensions, such as Conjunctive Bayesian Networks (CBNs) [23,125,45] and Suppes-Bayes Causal Networks
(SBCNs) [17,41,142]. Such models capture the temporal ordering and the conditional dependencies among
the events, and can be inferred by pooling data of multiple patients.
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For instance, cross-sectional mutational profiles of cancer patients generated, e.g. via variant calling
from bulk sequencing data, can be used to infer the most likely trends of accumulation of somatic muta-
tions during the development of a certain cancer type. These trends enable the prediction of the the next
step(s) of the disease evolution of any given patient, with evident implications on prognostic strategies and
therapeutic interventions [56]. Yet, the inference problem is complicated by the high levels of heterogeneity
typically observed in most tumor types, which are due to the existence of multiple independent evolutionary
trajectories, often involving shared subsets of events with complex dependencies [53].

In this regard, most existing computational approaches allow one to model conjunctive processes (i.e.
AND logical operator), according to which a certain event can occur only if all its direct ancestors (i.e. parent
events) have occurred. This strategy allows one to cover a wide range of evolutionary processes observed
in real-world scenarios, yet it struggles when more complex dependencies are present, such as disjuctions
(i.e. OR), according to which a certain event can occur if at least one of its parents has occurred, or mutual
exclusivity relations (i.e. XOR), in which a given event can occur if only one of its parents has occurred, e.g.
due to synthetic lethality [36].

Therefore, some methods have been recently devised to overcome the limitations of conjunctive models,
by allowing one to assess the existence of arbitrary logical formulas connecting events [41,[42]. However,
such approaches require that such formulas are identified prior to the inference and provided as input, thus
requiring either to possess a deep biological knowledge on the underlying evolutionary process, or to employ
ad hoc computational strategies to identify specific patterns among events [14].

In this work we propose PMCE (Predictive Models of Cancer Evolution), a computational framework for
the inference of expressive probabilistic graphical models of cancer evolution from cross-sectional mutational
profiles of cancer samples, which are named Hidden Extended Suppes-Bayes Causal Networks (HESBCNS).
The main novelty of PMCE is the automated identification of logical formulas connecting the events, which
is achieved via an efficient Markov Chain Monte Carlo (MCMC) search scheme. In addition, PMCE employs
an Expectation-Maximization (EM) strategy on a continuous-time Hidden Markov Model (HMM), in order
to assign an error probability to the dataset and an evolutionary time (i.e. the expected waiting time
required to observe a given sample) to any node of the output model. On the one hand, this allows one
to evaluate the predictability of any given tumor, as initially proposed in [25], and which roughly measures
the repeatability of the evolutionary patterns observed in a given tumor by quantifying the entropy of the
different trajectories of the model. On the other hand, by attaching samples to the evolutionary paths of
the output model, it is possible to estimate the evolutionary time of any given sample with respect to the
expected progression of the corresponding tumor type (notice that time is measured in arbitrary units and
the temporal position of the samples is relative to that of the other samples of the dataset).

We assessed the performance of our approach via extensive simulations, in which we tested the capability
of PMCE, HCBNSs [25] and standard Bayesian Networks [28] in recovering the ground-truth topology, with
respect to generative models with distinct sample size, topological complexity and noise. PMCE significantly
outperforms competing methods in most settings, proving its superior expressivity and robustness to noise.

Finally, we applied PMCE to 7866 samples from 16 cancer types from The Cancer Genome Atlas (TCGA)
database [57]. In addition to the evolutionary models, we computed the predictability of each cancer type,
also assessing the possible correlation with the overall mutational burden. Importantly, we executed a
combined regularized Cox regression [47.[52] and Kaplan-Meier survival analyses by employing the patient-
specific evolutionary paths and evolutionary times inferred from the HESBCN models. This allowed us
to identify 7 cancer types in which a risk-based stratification of patients defines statistically significant
differences in the overall survival. This important result proves that PMCE can be employed to generate
experimental hypotheses with translational relevance and high prognostic power and which might, in turn,
drive the design of cancer- and patient-specific therapeutic strategies.



2 Methods

Bayesian Networks (BNs) [28] have been often employed to model the likely temporal trends of accumulation
of somatic variants in cancer, in many cases by fitting binarized mutational profiles generated from cross-
sectional bulk sequencing experiments [5,[19,46]. The different existing approaches are characterized by
distinct levels of expressivity, ranging from tree models [18/[32], to conjunctive Bayesian networks (CBNs) [4
23] and to more complex representations involving logical formulas among genomic events, including Suppes-
Bayes Causal Networks (SBCNs) [7,8,12,22,41] and Extended Suppes-Bayes Causal Networks (ESBCNs)
[421[44]. In particular, since the search of logical formulas implies an exponential growth in computational
complexity, all available algorithms require a set of logical formulas as input, which are then tested in the
search step [42,/44].

In this work, we first introduce the Hidden Extended Suppes-Bayes Causal Network (HESBCN) model,
in which a HMM is added to ESBCNs to simulate the stochastic processes related to the accumulation
of genetic alterations during cancer development, as well as the measurement error. In particular, we
assume that the time between two (independent) events is exponentially distributed with rate \;, whereas
measurement errors are modeled via a Bernoulli process with error probability e.

We then present a new algorithmic framework named PMCE for the inference of HESBCNs from cross-
sectional mutational profiles of cancer samples, which includes a two-step procedure: (i) a MCMC search to
infer the Maximum a Posteriori (MAP) structure of HESBCNs and the concomitant automated inference of
logical formulas, (i7) an EM procedure to infer the parameters of the HMM (see Figure [I).

More in detail, a HESBCN is a probabilistic graphical model [39] defined by

e the set {N} = {41,...,9,} of vertices representing logical formulas involving one or more atomic
event(s) of a model. In our case, the atomic events are binary variables modeling the presence/absence
of genomic variants (e.g. single-nucleotide or structural variants), whereas logical relations are limited
to AND, OR (soft exclusivity) and XOR (hard exclusivity).

e The set {p} = {>1,...,>y} of w edges representing the conditional dependencies among the vertices
of the model (e.g. ; >1;) and which are also referred to as evolutionary steps in the case studies.
We note that, by construction, HESBCNs model Direct Acyclic Graphs (DAGs), in which a vertex
can have more than one parent and models with multiple roots and/or disconnected components are
allowed.

e The set of conditional probabilities associated to the vertices, {8} = {61,...,60,}, where 6; is the
conditional probability that a logical formula v; € N is true, given that its predecessor formulas are
true.

e The error probability € of the dataset, by assuming that the false positives/negatives rates in the input
binary data are modeled with a Bernoulli process, as in [45]. In our case, we assume that the rate of
false positives and false negatives is identical and = €/2.

e The set {\} = {A1,...,\,} of rates of the Poisson processes of the continuous-time HMM, associated
to the vertices of the model, which allow one to estimate the expected waiting time of a node, given
that its predecessor has occurred.

2.1 Structure learning of HESBCNs via MCMC

The PMCE framework first aims at inferring the Maximum a Posteriori (MAP) HESBCN structure. Given
a cross-sectional mutational profiles dataset D, generated, e.g. from bulk sequencing data, let r be the total
number of atomic events, i.e. the genomic variants observed in at least one sample. Let be d* € {0,1}" the
binarized mutational profile of length r of the i*" sample belonging to the input dataset D, such that d; =1
if the j*" mutation is detected in sample i**, 0 otherwise (a discussion on the binarization of variant allele
frequency profiles from sequencing data can be found in [I1],41]).
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Fig 1. PMCE framework. (A) PMCE takes as as input binarized cross-sectional profiles of driver
mutations, generated via bulk sequencing experiments. Data can include false positives and false negatives.
(B) PMCE employs a Monte-Carlo Markov Chain (MCMC) search and an Expectation-Maximization step
to infer the Maximum a Posteriori (MAP) structure and the parameters of (C) a Hidden Extended
Suppes-Bayes Causal Network (HESBCN), which describes the evolutionary steps > from the wild-type
(WT). PMCE is capable of inferring logical formuals ¢ connecting the events, the evolutionary time 7 of
each event, and the error rate € of the dataset. (D) PMCE attaches the samples to the HESBCN model
via maximum likelihood estimation, and employs the evolutionary steps and time in order to perform a
Regularized Cox Regression [47\[52] on survival data. This allows one to identify the relevant covariates
and the corresponding risk coefficients 5. Samples are then stratified in clusters according to the overall
risk. (E) Risk clusters are compared via Kaplan-Meier survival analysis.



Assuming that all the observations are independent, the posterior probability of a HESBCN model ({>},
{0}, €), given the data D, is proportional to:

P({p}, {0}, €lD) o

< [T 32 P} 000 | - PUSDPUOPe), (1)

dieD 0,e{0}

where: P({6}) = [, P(6;) and P(6;) are Beta-priors with both shape parameters equal to 107°, as in [45];
P(e) is the prior for the error probability, chosen as uniform in the structure learning step; P({>}) is the
prior for the network structure, which here encodes the conditions of Suppes’ probabilistic causation [49], as
follows:

1 if Ve € {Pa(ii)}
B P(¢;) > P(¢;) and
P({r}) = iel{_]lv} p(wj\zpj) > P(¢i]=))

0 otherwise.

(2)

where {Pa(v;)} indicates the parent set of the formula 1);. Notice that the convergence to the MAP structure
in this scenario was demonstrated in [41].

The likelihood term P(d!|{>}, 0, €) represents the probability to observe the d* sample given a HESBCN
model. This term is evaluated for each node k = 1,...,n by first solving each formula from the data (= 1
if the formula is true, = 0 otherwise) and then computing the conditional probability 6.

In order to infer the structure of a HESBCN given the data, PMCE employs a Monte Carlo Markov
Chain (MCMC) approach with a Gibbs’ sampling scheme from the posterior distribution, which is a mod-
ification of that proposed in [45]. The MCMC starts from a randomly initialized HESBCN structure and
includes 8 different moves:

1. Modify Theta: given a randomly chosen node i, ; is set to a new value, which is sampled from a
uniform distribution: [0, 1].

2. Create a new parental relation: a new parental relation is randomly added to the model, by avoiding
the creation of cycles.

3. Delete a parental relation: a randomly chosen parental relation is deleted from the model.

4. Add an edge into a transitive closure relation: we select a node, and considering its transitive closure
a new edge is inserted into the model.

5. Delete an edge from a transitive closure relation: an edge is deleted from the model, by considering
only the edges belonging to the transitive closure of a given node.

6. Node swap: two randomly chosen nodes are swapped.
7. Reincarnation: a delete a parental relation move is followed by a create a new parental relation move.

8. Local restart: the inference is restarted from a new random configuration, if the previous MCMC has
converged to a deadlock.

During the MCMC, every time that a node (e.g. A) happens to have more than one parent (e.g. B
and (') a logical operator is chosen with uniform probability among AND, OR and XOR and associated
to the elements of its parent set (e.g. (B XOR C)> A).



Table 1. Values of move selection probability (MSP) for the moves described in the Methods section.

Move MSP default value
Modify theta 0.15

Create a new parental relation 0.4

Delete a parental relation 0.2

Add an edge into a transitive closure relation 0.04

Delete an edge from a transitive closure relation 0.04

Node swap 0.07
Reincarnation 0.1

The acceptance probability p of a proposed MCMC sample, is given by:

o P({>}.{0},¢| D) xMSP({>}.{0},6) x TP ({p} {0}, e[ {>}, {6} )
p—mm{l’ P({5},{0},c[DYxMSP({>},{0},) x TP({>}", {0} ,¢| (>}, {0},¢) } (3)

where ’ indicates the quantities associated with the structure after the proposed move. MSP stands for

move selection probability (see Table [ for default probabilities). TP is the transition probability from the
current structure to the new one, given the selected move. It is important to notice that despite being in
the equation, the error rate € is set to 0 during the structure inference.

In order to limit the size of the logical formulas included in the output model, PMCE maximizes a score
composed by Equation (I plus a regularization term, e.g. BIC or AIC. As output, PMCE returns the MAP
HESBCN structure and parameters retrieved after a user-selected number of MCMC iterations and restarts.

2.2 Hidden Markov Model

The accumulation of genomic variants during cancer evolution can be modeled as a stochastic time-dependent
process, e.g. via a continuous-time Hidden Markov model, as originally proposed in [23]. More in detail,
let us suppose that the formula v; of a HESBCN model is satisfied after time ¢;. A model composed by n
nodes will include n waiting times t¢1,...,t,. As commonly done with stochastic branching processes, we
assume an exponentially distributed time and, accordingly, we define the waiting time associated to any
logical formula 1); as:
t;= max t;+ Z; Zi ~ exp| ], 4
"owelPaay T i~ eopl @
where J\; is the rate of the exponential distribution of the i-th formula.

Let us then define a logical formula path as an ordered sequence of logical formulas:

‘I’l:(...(llel/JQ)D...)Dl/Jl, (5)

such that ¢;—1 € {Pa(¢y)}, Vi=2,...,1. If we suppose that the probability density of a logical formula
path ¥; factorizes according to P(¥;) = H§:1 P(1;), then the following equation holds:

l 00 00
P(‘I’l) = H/O dtz/o dtsX(ti,ts)f(ti|{tj}{Pa(wi)})f(ts)v (6)

where ts is time of the diagnosis, x(t;,ts) = 1 if t5 > ¢;, 0 otherwise, f(ts) is the probability density of
the diagnosis time (which is assumed to be uniform) and f(¢;|{t;}{pa(y,)}) is the probability density of #;,
conditioned on its predecessors.

In principle, one could directly maximize Eq. (@) to estimate the set of optimal {);}. However, dealing
with real data, it may be sound to account for experimental noise, i.e. the false positives and false negatives
possibly included in the input data D.

Thus, let us introduce the set of theoretical genotypes {Gw,} = {g',..., 97} as the set of ¢ possible
genotypes subsumed by the HESBCN path ¥; and that are represented as ternary vectors: g* = {0,1,*}",



such that gf = 1 if the variant j is present in the theoretical genotype k, gf = 0 if it is absent, gf = x if the
variant is not included in path ¥; and, therefore, it can either be present or absent.

Then, we model the measurement errors via a Bernoulli process with an error probability €. In detail,
the probability of observing the genotype d*(r), given that the theoretical genotype is ¢*(r) and the error
probability is €, is given by:

P(d(7)|g" (), €) = PO 0) (1 _ ¢yr=HD(G" (). () (7)
Here, HD(g*(r), d*(r)) denotes the Hamming distance between d(r) and g*(r).

Accordingly, the posterior probability of a HESBCN model becomes:

P({>}, {6}, {\}e|D) = PP}, {\}.e|D) =
> P(¥)P(d (1) (G, ). ©
St Swerr) PEIPE G )0

v, e{P}d:

where {P} is set of the logical formula paths included in the HESBCN model, P(®¥;) is the probability
density from Eq. (@) and the likelihood is defined by assuming that the probability of a logical formula path
is equal to the product of the probability of every related theoretical genotypes, as follows:

P(dl(T)’{g\pl},E) = H P(di(T)‘gk(T),e), (9)

gk (r)e{Gw,}

To estimate the sets of {\;} and e while the structure is kept fixed, we employ a EM algorithm to
maximize equation (). Thanks to this procedure, PMCE returns the expectation time \; for each node of
the model (notice that the choice of not including the search of A; and e directly in the MCMC was made
to reduce the overall computational complexity and speed the computation up).

PMCE then computes the maximum likelihood (ML) attachment of the samples to the HESBCN model
using Eq. (7)) with the e estimated in the EM step. This allows one to return: (i) the ML theoretical
genotype of each sample and (ii) the ML evolutionary steps, i.e. the set of parental relations among true
logical formulas of that sample (see Figure [I]).

Finally, since stochastic branching processes are additive, it is possible to compute the evolutionary time
of each sample as 7 = > /\%’ i.e. the expected waiting time to cover all the related evolutionary steps
(measured in arbitrary time units, which can be rescaled with respect to the diagnosis time g, as in [45]).

2.3 Predictability

After inferring the HESBCN model from the mutational profiles of the samples of a given tumor, it is possible
to quantify its predictability [20,25], that is a quantity directly related to the entropy computed considering
the probability of all the possible evolutionary paths of the model.

More in detail, if each node of a HESBCN is a state of the evolutionary history of a given tumor type, then
it is natural to interpret the set of the logical formula paths {P} as the set of all the possible evolutionary
trajectories. Since 1/); is the expected waiting time of the i-th node, it is intuitive to relate the probability
of a single logical formula path of length [ to the set of A associated to the nodes belonging to the path,
ie. [20,25]:

I
Avy . (10)
i=1 Elﬁ;LWiE{Pa(wh)} Ay

It is then possible to define the entropy of the set of logical formula paths of a HESBCN model {P} as [20/50]:

() =

Hppy=— > (%) log(TI(W,)). (11)
v, c{P}



This quantity estimates the amount of uncertainty in selecting a certain path among all possible paths
of a given model. As a consequence, a HESBCN model has a maximum entropy if the probability associated
to any possible path of the process is the same: H,,q, = log(l!) [25].

Intuitively, entropy in Eq.(II]) could be used to quantify how much of the evolutionary process is “localized”
in a few paths. The predictability of a HESBCN model characterized by a set of logical formula paths {P},
is then defined as in [25]: .
{P}
<I>{7>} 1 . (12)

As a matter of fact, 0 < ®py < 1. If &¢py = 0, all possible logical formula paths are equally probable,

whereas, if ®¢py =1, only one path is possible, which indicates perfect predictability.

2.4 Survival Analysis

The evolutionary path and time of a given sample can be employed as risk estimators, in order to stratify
patients into risk groups. To assess the prognostic power of the cancer evolution models returned by PMCE,
we implemented a combined regularized Cox regression [47.52] and Kaplan-Meier survival analysis.

In brief, according to the standard Cox proportional hazards model [15], given a baseline of risk 7 of a
given disease, and a vector of covariates X;, the risk associated to X; is given by the hazard function:

r(t) = ro(t)e=i X, (13)

where (; are coefficients that measure the impact of every covariate (if 8; > 0 the covariate is associated to
a risk increment). In our case, we applied the regularized Cox regression via Coxnet [47,[52], which allows
one to select the subset of covariates that minimize the cross validation error, by employing the elastic net
regularizer (see Supplementary Figure S1).

In particular, we employed as input covariates for the analysis: (i) all the parental relations between the
nodes (i.e. the formulas v;) of the MAP HESBCN model, assessed with respect of the maximum likelihood
evolutionary steps associated to each sample (= 1 if both the formulas in that relation are satisfied, = 0
otherwise), and (77) the evolutionary time 7 of each sample (in arbitrary units, see Figure [I]).

For each tumor, we selected the set of §3; associated to the minimum cross-validation error and kept as
significant only the cancer types displaying at least one covariate with non-zero ;. We then computed for
each sample a risk score as follows:

§= Zﬁz‘Xi- (14)

This allowed us to stratify the patients into three different risk clusters: (i) high risk with & > 0, (i)
medium risk with & = 0 (baseline, typically including all the samples with impactless covariates), (iii) low
risk with & < 0. The survival curves of the outcoming risk clusters were finally assessed via standard
Kaplan-Meier analysis.

3 Results

3.1 Results on simulations

To assess the performance of PMCE with respect to competing approaches, we performed extensive tests
on simulations. Synthetic datasets were sampled from randomly generated weekly connected DAGs with
r = 10 atomic events and density = 0.4. Three levels of topological complexity were implemented and, in
particular, 100 DAGs were generated to include only AND logical relations (associated to the confluences),
100 DAGs only 0R’s and 100 DAGs only X0R’s, for a total of 300 generative topologies. For each topology,
3 different values of sample size (m = [50,100,200]) and 5 levels of noise rates (e = [0,0.05,0.10,0.15,0.20])
were scanned to generate a synthetic mutational profile dataset, for a total of 4500 independent datasets. We
compared PMCE with Hidden Conjunctive Bayesian Networks (HCBNs) [23] and with standard Bayesian
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Fig 2. Performance assessment on simulations. 4500 independent synthetic datasets were generated

from DAG generative topologies with m = 10 nodes (representing e.g. genomic variants) and density = 0.4,
three distinct levels of topological complexity (only AND — panels (A), OR — panels (B) and XOR — panels
(C), respectively), three sample sizes (m = [50,100,200]) and 5 noise levels (e = [0,0.05,0.10,0.15,0.20]).
PMCE was compared with HCBNs [23] and standard BNs [28] (with BIC regularization) on overall
accuracy with respect to the ground-truth generative topology. Box-plots return the distributions on all
simulations.



Networks (BNs) [28] and compared the performance of the methods by assessing the accuracy %
with respect to the ground-truth generative topology. Both PMCE and standard BNs were executed with
BIC regularization.

In Figure 2] one can see that PMCE significantly outperforms the competing approaches in all settings,
except for the scenarios with high samples size and AND generative topologies, in which, as expected, HCBNs
display a superior accuracy, likely due to the algorithmic design aimed at specifically inferring conjunctive
relations and the smaller search space.

The most difficult setting appear to be that involving XOR generative topologies (Figure 2IC), in which
consistently lower performances are observed for all methods, with respect to synthetic datasets generated
with distinct topological complexity. This result is likely related to the presence of spurious dependencies
among events due to the properties of the XOR logical formula.

Importantly, the overall performance of PMCE is only slightly affected by even significantly high levels
of false positives/negatives in the data (in all setting and with all topologies), and this is especially true
for configurations with large sample size. This result proves the robustness of our approach in delivering
reliable predictions from real-world data.

3.2 Results on real data

We applied PMCE to 7866 samples from 16 cancer types from The Cancer Genome Atlas (TCGA) database
[57]. The dataset includes bulk sequencing data, which is often coupled with clinical information on the
related patient. In particular, the HESBCN model was inferred separately for every cancer type via PMCE,
by considering putative driver mutations only, as identified in related works [3]. All models are displayed in
Supplementary Figures S2-S17 and highlight different degrees of complexity and heterogeneity.

Predictability. For each model, we evaluated the predictability as per Eq. (I2]) and the results are shown
in Figure BIA-C. One can notice that & is significantly different across cancer types. For instance, lung
squamous cell carcinoma display a value of ® = 0.97, which is likely due to the fact that most patients
follow a single path including a driver mutation on TP53. Conversely, both glioblastoma multiforme and
colorectal adenocarcinoma show a very low score of ® = 0.05, hinting at the presence of multiple independent
evolutionary trajectories in distinct patients.

We investigated the possible correlation between the predictability and the overall mutational burden,
measured via both the median number of total mutations and the mean number of driver mutations (see
Figure BIA-B). Notably, the overall correlation appear to be limited in both cases: R? = —0.087 and
R? = —0.025, respectively. Despite a higher number of driver mutations may imply, in principle, a larger
number of possible evolutionary trajectories, the overall tumor burden appears not to be a clear indicator
of predictability, pointing at the existence of preferred routes of cancer evolution for certain cancer types,
as opposed to the limited regularities that characterize the evolution of distinct cancer types [10,33L54].

Conversely, the number of formulas included in the evolution models shows a moderate anti-correlation
with the predictability (R? = —0.407, Figure BIC). This result would suggest that, as intuitively expected,
tumors with a larger number of possible trajectories are indeed the less predictable.

We also assessed the contribution of each genomic alteration included in the models to the overall
predictability of the respective tumors. In particular, for each tumor type and each genomic event, we
computed the predictability value of the subgraph defined by considering only the paths from the root to
that event. With this analysis we obtained a predictability score for each genomic alteration with respect
to every cancer type, which is displayed as a heatmap in Supplementary Figure S20.

Such analysis highlighted that driver mutations involved in many evolutionary paths, i.e. representing
an early or necessary mutational event for a given tumour type, typically provide limited information in
terms of predictability for that cancer. The most evident example is represented by the mutation of TP53,
that is a pivotal driver in most cancer types, which shows always a very limited predictability score (see
Supplementary Figure S20). The same pattern was observed for tissue-specific drivers, see, for instance,
the mutations hitting APC' in colorectal cancers, BRAF in thyroid cancers, IDH1/2 in brain lower grade
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gliomas or VHL and PBRM1 in kidney carcinomas. Interestingly, we also found driver mutations showing a
mixed behaviour, being pivotal and scarcely contributing to predictability in some cancer types, but defining
high predictable subtypes in others. A very interesting example in this regard is the mutation of PIK3CA,
that is a major cancer driver of ER+ breast carcinomas, which displays a very low predictability in breast
cancer, but a very high predictability score, e.g. in brain lower grade gliomas and stomach cancers.

Survival analysis. Survival analysis was executed by employing the Regularized Cox Regression via
Coxnet [47.52] with 10000 maximum iterations via elastic net, which allowed us to identify the significant
subset of covariates for each tumor type. In particular, for every sample, we employed as covariates: (i)
each evolutionary step (i.e. parental relation of the HESBCN model) present in the maximum likelihood
theoretical genotype and (i) the evolutionary time 7. In detail, for 7 cancer types we found an non-empty
set of covariates (i.e. 8 # 0) associated to the minimum cross-validation error (See Supplementary Figure
S1 and Supplementary File 1). The samples of each of such cancer types were then divided into three risk
clusters, according to Eq. (I4)).

We first estimated the stability of such results, by performing cross-validation as follows: (i) we randomly
selected 80% of the samples of each cancer type, (ii) we performed the regularized Cox regression analysis
for each sampled dataset and estimated the § coefficients, (iii) we independently repeated the sampling
procedure 1000 times; (iv) we finally computed the Pearson correlation coefficient among the g coefficients
obtained from the sampled dataset and those from the full dataset, for each of the 1000 independent sam-
plings. As a result, the median Pearson correlation coefficients for the 7 considered cancer types are all larger
than 0.90 (i.e. high correlation), proving the significant stability of the analysis (full results are provided in
Supplementary Figure S19).

In Figure BID-I, we show the Kaplan-Meier plots for 6 cancer types, in addition to the selected covari-
ates and the associated risk coefficient (since in the liver hepatocellular carcinoma one of the two clusters
contains only 16 patient, we show the corresponding plots as Supplementary Figure S18). In all cases, the
highly significant p-values prove that the information retrieved from the evolutionary models is effective in
stratifying patients in well-separated risk groups.

More in detail, brain lower grade gliomat (Fig. BID)

[51] is characterized by the presence of three risk groups. The low risk cluster is characterized by evolutionary
trajectories comprising an OR relation between mutations of IDH1 and IDH2, which are typically associated
with good prognosis [51]. Notably, the high risk cluster is characterized by mutations of EGFR, which
identifies the “glioblastoma-like” subtype with a known poor prognosis. Consistently, in the glioblastoma
multiforme (Fig. BIF) the cluster with better overall survival is associated to the evolutionary steps comprising
mutations of TP53, which may confirm the role of such gene as a tumor suppressor gene for this cancer
type [29]. In the breast invasive carcinoma (Fig. BIE) two clusters are found and the main covariate that
seems to affect the overall survival is the presence of the mutation of PIK3CA, confirming the hypothesized
positive prognostic significance of such mutation [27].

The analysis of the kidney renal cell carcinoma (Fig. BIG) returns a high number of significant covariates,
which is consistent with the observed low predictability value for this cancer type. Strikingly, the presence
of the mutation of VHL is associated to the low risk cluster, which may be in accordance to the fact that
the inactivtion of such gene VHL is a common biomarker of bad prognosis [9]. With respect to the skin
cutaneous melanoma (Fig. BH), two different clusters are discovered, with the bad prognosis one associated
to mutations on BRAF [6]. Finally, the uterine corpus endometrial carcinoma (Fig. BI) shows an high
number of relevant drivers, including mutations of PTEN, TP53 and PIK3CA [51].

Interestingly, for 3 out of 7 tumors, the evolutionary time 7 is selected as a relevant covariate, suggesting
that the tumor progression time plays an important role in the clinical outcome. All in all, even though
high-level clinical descriptors such as the overall survival might be affected by the presence of unconsidered
variables and clinical covariates, we have here shown that a relatively limited number of features of the
progression models inferred by PMCE are sufficient to stratify patients in well-divided risk groups, which in
turn points at key molecular differences that might be further investigated.
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Fig 3. Application of PMCE to 7866 TCGA samples. PMCE was applied to 7866 samples of 16
different cancer types from the TCGA database [57], on the binarized profiles of driver mutations from [3].
(A) Scatter-plot returning the relation between the predictability of each tumor type and the median
number of mutations, (B) the mean number of drivers, (C) the number of logical formulas present in the
HESBCN model. The 7 cancer types showing a significant survival analysis p-value (see Methods) are
circled with a dashed line. The stratification of patients in risk groups based on evolutionary steps and
time obtained via PMCE and selected via Regularized Cox Regression is shown with Kaplan-Meier
survival plots for (D) brain lower grade glioma, (E) breast invasive carcinoma, (F) glioblastoma
multiforme, (G) kidney renal clear cell carcinoma, (H) skin cutaneuos melanoma (I) uterine corpus
endometrial carcinoma. For all tumor types, the selected covariates, the sample size of the clusters, and
the Kaplan-Meier p-value are shown. In addition, a heatmap returns the presence/absence of the selected
covariates, the value of 3; for each covariate and the values of 7 of each sample.
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Analysis of disjunctive relations in glioma models. Disjunctive relations may help grouping driver
mutations with similar influence on phenotype, since a tumor might, for instance, exploit independent
trajectories hitting the same pathway or cellular function [2]. As a proof of principle, we here focused our
analysis on the disjunctive relations of the HESBCN models of gliomas that are found to be significant
covariates in the Regularized Cox Regression analysis.

In the case of brain lower grade glioma (Fig. BD), the HESBCN model includes a significant disjunctive
relation, namely mutations of: TP53 OR IDHI OR IDH2 1> CIC. Genes IDH1 and IDH2 encode for the isoc-
itrate dehydrogenase enzyme in different cell compartments, namely in cytosol and peroxysomes the former,
in mithocondria the latter. This enzyme catalyzes the conversion of isocitrate to alpha-ketoglutarate, while
reducing NADP to NADPH. There is evidence that variations in the utilization of this reaction are asso-
ciated with increased glutamine reductive carboxylation and affect redox balance, glycolysis and oxidative
phosphorylation [16,[35]. We can speculate that mutations in these genes cause similar rearrangements in
cell metabolism. The third gene involved in the disjunctive rule (i.e. TP53) encodes a tumor suppressor
transcription factor instead. Although recent studies have shown that TP53 has a role in the regulation of
both glycolysis and oxidative phosphorylation [31], the encoded protein responds to diverse cellular stresses
to regulate expression of target genes, thereby inducing cell cycle arrest, apoptosis, senescence, DNA repair.
Hence, speculating that mutations in this gene may phenocopy mutations in I/DH1 and IDH2 is a tempting,
but more hazardous hypothesis.

Along similar lines, the glioblastoma multiforme model (Fig. BIF) highlights the presence of the disjunc-
tion involving mutations of: TP53 OR PIK3R1 OR PTEN > ATRX. PIK3R1 is a member of the PI3K/AKT
signal transduction pathway [37] and plays an important role in the metabolic action of insulin and, hence, in
the regulation of glycolysis [1I]. PTEN is known to be a major antagonist of PI3K activity in the PI3K-AKT
pathway [55] and it is also supposed to be involved in the regulation of energy metabolism in the mitochon-
dria [30]. PTEN also regulates P53 protein levels and activity via distinct mechanisms [21], whereas the
role of mutant P53 in signaling pathways associated with glioblastoma multiforme is more elusive. These
considerations support the hypothesis of a complex interplay involving such genes in this tumor type, which
is consistent with the inferred disjunctive relation included in the HESBCN model.

Overall, these results show that the logical formulas inferred by PMCE include mutations of genes
possibly involved in key molecular pathways and higher-level cellular functions (e.g. energy metabolism),
and which the tumor might independently exploit to further progress.

Application of PMCE to tumors including distinct molecular subtypes. When reconstructing
population-level models of tumor evolution from cross-sectional binarized mutational profiles of cancer pa-
tients, it is good practice to first stratify the samples into distinct molecular subtypes (as suggested, e.g.
in [12]), in order to reduce the possible confounding effects deriving from processing highly heterogeneous
mixtures of samples.

However, this task may present pitfalls and an effective stratification of samples into distinct subtypes
might not always be possible. Hence, in order to assess the capability of PMCE in dissecting tumor types
characterized by high heterogeneity, we performed two additional case studies.

We first applied PMCE to a pan-glioma dataset obtained by merging all lower-grade glioma (510 samples)
and glioblastoma (338 samples) tumours (Supplementary Figure S21). We then mapped the samples of
the distinct subtypes onto the evolution model inferred with our approach. Importantly, the HESBCN
model highlights the presence of subtype-specific non-overlapping evolutionary trajectories. More in detail,
consistently with [51], JHDI-mutant cancers are found to be enriched for lower-grade gliomas and to be
involved in two major trajectories: the first one presenting additional mutations in TP53 and ATRX genes
(CIMP subtypes [13]) and the second one involving mutations in CIC and NOTCH1 (codel subtype [13]).
IDH]1 wild-type cancers [13] are instead mostly glioblastomas and are characterized by molecular evolutionary
trajectories involing mutations in EGFR, NF1, PTEN or RB1 genes.

We also analyzed the HESBCN model inferred from colorectal adenocarcinoma samples, by focusing on
the two known molecular subtypes, i.e. microsatellite stable (MSS, 396 samples) and microsatellite instable
(MSI, 62 samples). The HESBCN model associates canonical colorectal cancer drivers such as mutations
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of APC, TP53 and KRAS to MSS cancers, while MSI tumours show a broad range of driver mutations
comprising molecular trajectories involving DMD, SPTA1, FBXW7 and KMT2D (see the Supplementary
Figure S22). Collectively, these results demonstrate the effectiveness of PMCE in representing different
molecular subtypes within a unique evolution model.

4 Discussion

The possibility of exploiting sequencing data to reliably predict the likely clinical outcome of a given cancer
patient, and possibly intervene to halt or slow down the disease progression, may have an important impact
on downstream clinical practices and therapeutic strategies.

In this regard, we have shown that cancer progression models, even when inferred from low-resolution
(binarized) mutational profiles of cross-sectional samples, may deliver accurate predictions on patients’ sur-
vival. Accordingly, targeted sequencing of specific gene panels might be a viable and cost-effective strategy to
position a given patient onto the expected cancer progression route at diagnosis time, possibly anticipating
the next evolutionary steps.

Clearly, the problem is far from being solved. From the computational perspective, one limitation is that
structural learning of Bayesian networks is an extremely hard task and there is no guarantee of converging
or reaching global optima via MCMC search schemes [42,/44].

We also note that important results on the inference of the temporal ordering of genetic lesions in
single tumours were achieved by estimating cancer timelines from Variant Allele Frequency profiles of single
patients, via league model analysis and subclonal deconvolution [24]. However, as PMCE pools together
data from multiple patients and drops Variant Allele Frequency information, it cannot — by construction
— shed any light on the temporal evolution sequence that holds for a specific patient. Instead, PMCE
allows one to infer a statistically robust population-level estimator of cancer evolution. Ideas from these
two complementary approaches might lead to a more comprehensive characterization of tumours timelines,
which we leave for future works.

A further pitfall of approaches processing low-resolution (binarized) data from bulk samples is due to the
impact of intra-tumor heterogeneity, which is a major cause of therapy failure and relapse [48] and which can
undermine the accuracy of any population model. As a consequence, many new methods attempt to deliver
cancer evolution models at the resolution of the single tumor [26]143,58], taking advantage of the recent
advances in single-cell DNA sequencing techniques and, more recently, of the opportunity of calling variants
from RNA-sequencing data [34], despite the typically high levels of technical and biological noise [3§].

In this respect, it would be interesting to investigate how to combine single-tumor models within com-
prehensive predictive population models as here proposed, for instance by employing transfer learning to
find patterns of repeated evolution [11]. In addition, the rise of longitudinal sequencing experiments, e.g.
from patient-derived organoids, may allow one to assess the impact of selected therapeutic strategies on the
predicted evolution [40], with important translational repercussions.
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