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Abstract

Motivation: MicroRNAs (miRNAs) play pivotal roles in gene expression regulation by binding to target sites
of messenger RNAs (mRNAs). While identifying functional targets of miRNAs is of utmost importance,
their prediction remains a great challenge. Previous computational algorithms have major limitations. They
use conservative candidate target site (CTS) selection criteria mainly focusing on canonical site types, rely
on laborious and time-consuming manual feature extraction, and do not fully capitalize on the information
underlying miRNA-CTS interactions.

Results: In this paper, we introduce TargetNet, a novel deep learning-based algorithm for functional
miRNA target prediction. To address the limitations of previous approaches, TargetNet has three key
components: (1) relaxed CTS selection criteria accommodating irregularities in the seed region, (2) a
novel miRNA-CTS sequence encoding scheme incorporating extended seed region alignments, and (3)
a deep residual network-based prediction model. The proposed model was trained with miRNA-CTS pair
datasets and evaluated with miRNA-mRNA pair datasets. TargetNet advances the previous state-of-the-
art algorithms used in functional miRNA target classification. Furthermore, it demonstrates great potential
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for distinguishing high-functional miRNA targets.

Availability: The codes and pre-trained models are available at |https://github.com/mswzeus/TargetNet.
Contact: B.L. (bhlee@seoultech.ac.kr) or S.Y. (sryoon@snu.ac.kr)

1 Introduction

Gene expression regulation is a key component of biological processes.
The expression levels of different genes are controlled through several
mechanisms. MicroRNAs (miRNAs) play a pivotal role in the post-
transcriptional regulation of > 60% of human protein-coding genes
(Bartell |2009). MiRNAs are small non-coding RNAs that can bind to
the target sites of messenger RNAs (mRNAs). This binding leads to the
repression of efficient translation of mRNAs, thereby down-regulating the
expression of target genes (Garcia et al.,[2011). The effectiveness of each
target site can vary depending on the site context and the binding stability
(Grimson et al.| [2007). While identifying functional targets of miRNAs
is of utmost importance, their computational prediction remains a great
challenge (Kim et al.| [2016).

A miRNA can target multiple mRNAs by functioning as a sequence-
specific guide. The binding is primarily directed through the interaction
between the 5’ ends of a miRNA, referred to as the "seed region," and
the complementary 3’ untranslated regions (UTRs) of a target mRNA.
Previous large-scale transcriptome studies have identified several target
canonical site types that form Watson-Crick (WC) parings with the miRNA
seed region (Krek ez al.}|2005). The canonical site types include 6-mer sites
(matching miRNA nucleotides 2-7), 7-mer-m8 sites (matching miRNA
nucleotides 2-8), 7-mer-Al sites (matching miRNA nucleotides 2-7 with
an A opposite nucleotide 1), and 8-mer sites (matching miRNA nucleotides
2-8 with an A opposite nucleotide 1). More recent studies have also revealed
that target non-canonical site types with G:U wobble pairings or gaps are
also prevalent (Kim et al.||2016; Broughton et al.,2016).
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A variety of computational algorithms have been proposed for
functional miRNA target prediction (Kern et al.| 2019). Most of them
follow a similar pipeline consisting of three stages. The first stage is the
selection of candidate target sites (CTSs). Given a miRNA-mRNA pair,
computational algorithms use a sliding window to identify CTSs from 3’
UTRs of the mRNA fulfilling certain criteria. Then, in the second stage,
a prediction model is used to identify whether each miRNA-CTS pair is
functional or non-functional. Finally, in the third stage, the predictions are
post-processed to obtain a final prediction for the miRNA-mRNA pair. In
general, a miRNA-mRNA pair is predicted to be functional if there is at
least one miRNA-CTS pair predicted as functional.

While previous computational algorithms differ in CTS selection
criteria and prediction models, they share certain major limitations. They
generally use conservative CTS selection criteria which mainly focus on
canonical site types. Because these conservative criteria only allow a
limited number of non-canonical site types with few irregularities, they
cannot capture the complete picture of functional miRNA target prediction
(Kertesz et al., 2007). In addition, the majority of prediction models
are based on feature extraction followed by application of conventional
machine learning classifiers (e.g., linear regression and support vector
machines). They rely on the discovery of new hand-crafted features, and
often exploits additional information such as site location, accessibility,
or minimum free energy (Kern et al} [2019). Nevertheless, manual
feature extraction requires laborious and time-consuming processes. This
inevitably impedes the improvement of prediction models in terms of both
efficiency and performance (Min ez al.|[2017).

Several studies have recently proposed deep learning-based prediction
models (Lee et al.,2016; |Pla ef al.}[2018)). They eliminate manual feature
extraction and use deep neural networks to automatically learn effective
features. However, they still have not fully capitalized on information
underlying miRNA-CTS interactions. Even though the CTS selection
stage provides information on how each CTS forms pairings, mismatches,
or gaps to bind with the miRNA seed region, previous studies only
used miRNA-CTS sequences for their prediction models. This leaves
considerable room for improvement and development of a more effective
data-driven computational algorithm.

In this paper, we introduce TargetNet, a novel deep learning-based
algorithm for functional miRNA target prediction (Figure[T). To address
the previous limitations, TargetNet has three key components. First,
TargetNet uses relaxed CTS selection criteria. Employing a sliding
window, we align the extended seed region of a miRNA to the UTRs
of a target mRNA. Then, we consider those aligned regions with at least 6
WC or wobble base pairings as the CTSs. Second, TargetNet uses a novel
encoding scheme for miRNA-CTS sequences to incorporate extended seed
alignment information. This makes it easier for the deep neural network
to learn features from the bindings formed by a miRNA-CTS pair. Third,
TargetNet uses a deep residual network (ResNet) with one-dimensional
convolutions as its prediction model (He er al.| 2016a). Compared to
previously used multilayer perceptrons and recurrent neural networks
(RNN:Ss), it can be more effective for RNAs where local nucleotide motifs
often have significant implications.

We used experimentally verified public datasets for empirical
validations (Pla er al.| [2018} |Grimson et al., 2007} |Paraskevopoulou
et al) 2018). TargetNet was trained with miRNA-CTS pair datasets,
and evaluated using miRNA-mRNA pair datasets. Leveraged by these
three key components, TargetNet demonstrates significant performance
improvement in functional miRNA target classification over previous
state-of-the-art algorithms. Furthermore, top-ranked TargetNet prediction
scores exhibit a considerable association with the level of miRNA-mRNA
expression down-regulation, which demonstrates its great potential for
distinguishing high-functional miRNA targets.

Candidate Target Site Selection

Candidate Target Site (40nt)

RNA 3 "
m
LLLLL ILDLULULLLLLLLL
miRNA 5 ““l 3’
Sliding Window -
~—

Extended Seed (10nt)

CTS, CTS,
miRNA | |miRNA

CTSy
miRNA

Prediction Model

— "

Input Encoding

—

Residual Network

—

[ Score, ] [ Score, ] e oo [ScoreN]

Post-processing

Score = Max(Score, : Scorey)

l

Functional / Non-functional

Fig. 1. Schematic of TargetNet for functional microRNA target prediction.

2 Background
2.1 Candidate target site selection

Since a miRNA partially forms WC pairings to its cognate target mRNAs,
it is important to search for CTSs based on their binding characteristics in
order to reduce the search space of a prediction algorithm.

In the literature, researchers search for CTSs that contain predefined
site patterns as follows: [Kertesz et al.| (2007) considered (a) 7-mer of a
mRNA that forms complete WC parings to a miRNA starting at nucleotide
1 or 2 and (b) a region that contains at least seven WC parings to a miRNA
starting at nucleotide 1.|Agarwal et al.|(2015) considered (a) 6-mer of a
mRNA that forms complete WC parings to a miRNA starting at nucleotide
2, (b) 4-mer of a mRNA that forms three consecutive complete WC parings
to amiRNA starting at nucleotide 13, and (c) 12-mer of a mRNA that forms
eleven consecutive complete WC parings to a miRNA starting at nucleotide
4.|Pla et al.| (2018)) considered (a) a region that contains at least six WC
parings to a miRNA at the nucleotides 1-10, (b) a region which contains at
least seven WC parings to a miRNA at nucleotides 1-10, and (c) a region
containing at least seven WC parings to a miRNA at nucleotides 2—10.

They enable a target prediction algorithm to reduce false positives
by pre-processing CTSs based on empirical observations; however, they
cannot capture non-canonical site patterns (Kim et al.,|2016). To address
this limitation, we used relaxed site patterns for searching CTSs.
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2.2 Prediction model

In this paper, we categorized miRNA target prediction models into two
types: feature extraction-based and deep learning-based models. For
example, PITA (Kertesz et al. |2007), mirSVR (Betel et al| [2010),
miRDB (Wong and Wang| [2015)), and TargetScan (Agarwal et al.} 2015)
are feature extraction-based models, while deepTarget (Lee et al.| [2016)
and miRAW (Pla et al.| 2018) are deep learning-based models.

2.2.1 Feature extraction-based models

Itis known that > 96 features contribute to miRNA target binding (Liu and|
‘Wang| [2019). Existing feature extraction-based models utilize different
features from each other. PITA utilizes site accessibility to compute
a dynamic programming-based score. mirSVR utilizes sequence and
contextual features to train a regression model. miRDB utilizes seed
conservation features to train a support vector machine model. TargetScan
utilizes seed conservation and structural features to train a regression
model. Each hand-crafted feature engineering procedure depends on the
research design; hence, it is difficult to define a consistent strategy.

2.2.2 Deep learning-based models

Some of the deep learning-based models use manually extract features as
inputs for amodel (Cheng et al.}|2015). In this study, we considered models
that utilize raw sequences. deepTarget allows some non-canonical site
types and utilizes RNN-based auto-encoders to learn features; however, it
utilizes simulated training data to compensate for the number of negative
pairs. miRAW utilizes multi-layer perceptron networks to learn features;
however, it requires additional information, including binding and site
accessibility energies. Although both models exploit CTSs to reduce the
search space of their algorithms, they ignore the information underlying
CTSs such as how each CTS forms pairings, mismatches, or bulges. To
fully utilize the information underlying CTSs, we proposed a novel input
encoding scheme for miRNA-mRNA pairs.

3 Methods
3.1 Candidate target site selection

Given a miRNA-mRNA pair, TargetNet first identifies CTSs that have
the potential to be binding sites. We utilized a sliding window to scan
through 3° UTRs of the mRNA (Figure[T). Since nucleotides beyond the
seed are also important for miRNA-CTS interaction (Sheu-Gruttadauria
et al.,[2019), we set the sliding window length to 40 nucleotides and its
step length as 1 nucleotide. For each step, the sliding window produces
a potential miRNA-CTS pair that is checked against the CTS selection
criteria. In the following, miRNA and CTS sequences are denoted as:

miRNA __ ¢ miRNA miRNA
S = (s )

y S i
mi

b
CTS CTS CTS miRNA _CTS
Si = (81 »80.40), S 85 €1{a,U,G,C},

where SMRNA gnd SETS are in the 5’-to-3’ and 3’-to-5’ directions,
respectively. We use subscript ¢ to indicate multiple CTSs for a given
miRNA-mRNA pair. S™RNA has a variable length, L., which is 22
nucleotides on average while SETS has a fixed length of 40 nucleotides.

TargetNet adopts relaxed CTS selection criteria similar to those used
in miRAW. First, we divide the S™RNA into sub-sequences as:

SmlRNA — <Sm1RNA-ES’ SmlRNA—DS>’

miRNA-ES miRNA miRNA
S :(51 y" 5810 )y

miRNA-DS __ ¢ _miRNA miRNA
S _(sll y TS )7

mi

where SMIRNAES apq GmRNA-DS denote the extended seed region and

downstream nucleotides of a miRNA sequence, respectively. Similarly,

we divide SCTS into sub-sequences as:
CTS CTS-DS oCTS-ES oCTS-US
S i = <S [ ’ S i ’ S 1 >7
CTS-DS _ (CTS CTS
S *(51,1 y 845 )s

CTS )7 SiCTS_US — ( CTS CTS )7

CTS-ES __ (_CTS
S = (51,6 ) 554,15 0,160 """ » 57,40

where SiCTS'DS , SZCTS-ES

, and SZ.CTS'US denote the downstream, extended
seed region, and upstream nucleotides of a CTS sequence, respectively.
Note that since SZ.CTS isin a 3’-to-5’ direction, the former sub-sequence is
toward the 3’ end, and hence, it is called SZ.CTS'DS.

Then, we conduct a sequence alignment of the extended seed regions:

SmlRNA-ES7 SZCTS-ES — Ahgn(smlRNA-ES7 SiCTS_ES).

We find their best global alignment using a Biopython pairwise2 package
(Cock et al., 2009). The scoring matrix for the alignment is defined to
produce a score of 1 for WC and wobble pairings, and a score of O for the
other pairings and gaps. If there are multiple best alignments, we use the

first one obtained from the package. The alignment results, SMIRNA-ES

and gCTS-ES

, are composed of s € {A,U,G,C,~-} representing four
nucleotides and a gap. The relaxed CTS selection criteria are met if the
alignment score is at least 6. It makes minimal assumptions regarding
miRNA-CTS interactions; hence, it can accommodate a wide range of

non-canonical sites, as well as canonical sites.

3.2 Input encoding

The most distinguishing component of TargetNet which separates it from
other deep learning-based methods is the way it encodes a miRNA-CTS
pair. Once the CTS selection is completed, the previous works use one-
hot encoding to convert only sequences into numerical representations. In
contrast, we propose a novel encoding scheme to incorporate additional
information on how the extended seed regions of a miRNA-CTS pair are
aligned and form bindings (Figure EKA)).

TargetNet input encoding takes the alignment results of the extended
seed regions (i.e., GmIRNA-ES 514 ngS’ES) in addition to the miRNA-CTS
sequences (i.e., S™MRNA and SETS). Specifically, we replace the extended
region sequences, SMRNAES and SETS'ES, with their alignment results,
GmiRNA-ES gETSES

and , and convert them using one-hot encoding:

EmiRNA — Encode( <§miRNA»ES , SmiRNA-DS ) )

— <er1niRNA, .

)

miRNA
’ eLm )

CTS CTS-DS QCTS-ES qCTS-US
E; "> = Encode((S; ,S; , S5 ))

_ /aCTS CTS
= <ei,1 )t 7ei,LC>7
where e?‘iRNA and eg:gs are 5-dimensional one-hot vectors indicating that
,

the position is one of the 5 possible characters, {A,U,G,C,-}. Both
EMRNA and EICTS have variable lengths (i.e., L, and L) due to possible
gaps in the alignment results.

Finally, we perform position-wise concatenation of E™RNA and E?TS
with additional zero-padding 0% € R5*X as:

E;, = Concat(ﬁmiRNA, ESTS),

~ miRNA i _ ~ CTS
E — <057Em1RNA,045 Lm>7 E; —

T = (RETS, 050 Le),

Zero-paddings are used (1) to align the positions of the extended seed
regions and (2) to make E; be a 10-by-50 sized vector. The advantage of the
proposed input encoding is that it makes easier for the following ResNet
to fully capitalize on information underlying miRNA-CTS interactions.
The input vector is now able to represent not only the miRNA-CTS
sequences but also how pairings, mismatches, or gaps are formed within
their extended seed regions.
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Fig. 2. Overview of TargetNet prediction model. (A) Input encoding. (B) ResNet architecture.

3.3 Residual Network

Motivated by the recent successes of ResNets in computer vision problems
(He et al}2016a), we use a ResNet as a prediction model for TargetNet
(Figure |ZKB)). To the best of our knowledge, this is the first work to use
the ResNet for functional miRNA target prediction.

Let fj,», be a one-dimensional convolution layer, where k and n denote
the filter lengths and the number of filters, respectively. The filters are
convolved along the length axis and learned to find motifs. Compared
to other layers, it can be more effective for RNAs where motifs have
significant implications. Furthermore, the filters can also be understood to
be learnable position-weighted matrices used in conventional techniques
(Min et al.||2017). Each convolution layer is followed by a rectified linear
unit (ReLU) activation function and dropout regularization (Srivastaval
et al.,2014)). We use zero-paddings to keep the output sizes unchanged.

First, our model has an input stem (denoted as Stem) which takes the
encoded miRNA-CTS vector as input:

H; 1 = Stem(E;) = f5,16(f5,16(Ei, W1), W),

Then, its output is feed into the two residual blocks (denoted as
ResBlock; and ResBlocks), each consisting of two convolution layers:

H; > = ResBlocki (H;,1) = H; 1 + f3,16(f3,16(Hi,1, W3), Wy),
H; 3 = ResBlocka(H; 2) = H; 2 + f3,32(f3,32(H; 2, W5), Wg),

where W, is the learnable parameters of the {-th layer. Let 7 (X) be an
optimal function to be learned by a group of layers. While standard layers
(e.g., input stem) are formulated to learn F (X) directly, residual blocks are
reformulated with skip connections to learn its residual function, R (X) :=
F(X) — X. It has been shown to ease learning by enabling us (1) to pre-
condition F(X) to be closer to an identity mapping and (2) to directly
propagate forward and backward signals (He ez al., 2016b).

Finally, we compute the output score 0 < p‘i“iRNA’CTS < 1, which
indicates how likely a given miRNA-CTS pair is functional. H; 3 is fed
into a max-pooling layer and a dense layer (denoted as MaxPool and

2 345 6 7 8 91011121314 1516 17 18 19 20

18 19 20

Conv [3 x 1, 16]
Conv [3 x 1, 16]

Conv [3 x 1, 32]

Conv [3 x 1, 32]

MaxPool [3 X 1]

18 49 50
-
Zero-padding

Output

Dense, respectively) as:

pRRNA-CTS — Dense(MaxPool(H; 3), Wr),

where W7 denotes the learnable parameters of the dense layer. The max-
pooling layer reduces the output sizes by computing the channel-wise
maximum value for non-overlapping windows of size 3. We use a sigmoid
function as an activation function for the dense layer.

For training of the ResNet prediction model, we use binary cross-
entropy objective function defined as:

miRNA—CTS) 4 ( (1 _ pmiRNA—CTS)),

L = —(ylog(p 1 —y)log
where y € {0, 1} specifies the label for a given miRNA-CTS pair. Note
that we use miRNA-CTS pair datasets to train the prediction model rather
than miRNA-mRNA pair datasets (Section[d.1.2). We use Adam optimizer
(Kingma and Ba}|2014), a training epoch size of 50, a mini-batch size of
256, a learning rate of 0.001, and a dropout probability of 0.5.

3.4 Post-processing

In the final stage, the output scores are post-processed to obtain a final score
for a miRNA-mRNA pair. We use the maximum value from the scores for
each miRNA-CTS pair. Formally, if there are NV CTSs in a mRNA, we get
output scores pTiRNA'CTS, ceey pT\}RNA’CTS for each CTS. The final score
pMIRNA-mRNA 61 3 miRNA-mRNA pair is reported by:

pMIRNA-mRNA miRNA-CTS _ .
b b

= max(p] PRIVACTS),

This results in the prediction of a miRNA-mRNA pair as functional if there
is at least one functional miRNA-CTS pair. For the binary classification
of functional targets, we used a threshold of 0.5 to binarize the final score
pMRNA-mRNA “Niote that in contrast to miRAW, we do not exploit any
additional filters based on site accessibility or minimum free energy.
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Table 1. Comparison of functional miRNA target classification performance

Method F1 Score Accuracy Precision Recall Specificity Negative Precision
PITA 0.2162 0.5053 0.5196 0.1365 0.8741 0.5030
miRDB 0.2110 0.5373 0.7135 0.1239 0.9507 0.5205
miRanda 0.3568 0.5001 0.4997 0.2775 0.7226 0.5001
TargetScan 0.4712 0.5577 0.5852 0.3945 0.7208 0.5436
deepTarget 0.4904 0.6521 0.8332 0.3477 0.9354 0.6064
miRAW 0.7289 0.7055 0.6749 0.7923 0.6186 0.7493
TargetNet (canonical) 0.5205 0.6228 0.7136 0.4099 0.8358 0.5862
TargetNet (non-canonical) 0.7736 0.7248 0.6570 0.9405 0.5091 0.8958
TargetNet (all) 0.7739 0.7251 0.6572 0.9411 0.5091 0.8966

4 Experiments
4.1 Datasets

4.1.1 miRNA-mRNA pair datasets

The complete TargetNet algorithm was evaluated with two types of
experimentally verified miRNA-mRNA pair datasets, (1) miRAW and (2)
log fold change (LFC) test datasets.

First, we used miRAW test datasets with binary labels indicating
functional and non-functional targets (Pla et al.| 2018). They originated
from DIANA-TarBase (Vlachos ef al.||2015) and MirTarBase (Chou et al.|
2016) databases. After removing duplicated samples, they consisted of
309,912 positive and 1,096 negative miRNA-mRNA pairs. Then, they
were split in half and used for the train-validation (Section[d.1.2) and test
datasets, respectively. The authors generated ten randomly sampled test
datasets, each of which consisted of 548 positive and 548 negative pairs.
The miRAW test datasets can help us evaluate the functional miRNA target
classification performance of TargetNet.

Second, we used eleven microarray and two RNA-seq LFC test
datasets with real-valued labels indicating the level of functionality of
miRNA targets (Grimson et all [2007} [Paraskevopoulou er al.| [2018).
In each microarray and RNA-seq dataset, a miRNA was individually
transfected into HeLa and HEK329 cells, respectively. Then, the log fold
change of mRNA expression was measured. More negative labels indicate
more functional miRNA-mRNA pairs, which strongly down-regulate the
targeted genes. The LFC test datasets can help us to evaluate how well
TargetNet distinguishes high-functional miRNA targets.

4.1.2 miRNA-CTS pair datasets

The prediction model of TargetNet was trained with miRAW miRNA-CTS
pair datasets. To obtain miRNA-CTS pairs from the excluded miRNA-
mRNA pairs, the authors pre-processed the positive pairs in two ways. One
was cross-referencing with binding sites from PAR-CLIP (Grosswend
et al.} 2014) and CLASH (Helwak ef al.} 2013), and keeping miRNA-
CTS pairs that form stable duplexes. The other was cross-referencing
with conserved sites from TargetScanHuman (Agarwal et al.,[2015). The
negative pairs were pre-processed using a sliding window to identify
miRNA-CTS pairs that also form stable duplexes. The stability was
measured with RNACofold (Lorenz et al.| |2011) by checking whether
their secondary structures produce negative free energy.

Since the miRAW dataset split was based on miRNA-mRNA pairs
(Sectionm, similar miRNAs can be distributed in both train-validation
and test datasets. Thus, we intended to use independent LFC test datasets to
further evaluate generalization performance in terms of different miRNAs.
For this end, we filtered out miRNA-CTS pairs so that no two miRNAs
from the miRAW train-validation and LFC test datasets have Levenshtein
edit distance lower than 7. Then, we randomly selected 20 miRNAs and
used corresponding 2,385 positive and 2,264 negative miRNA-CTS pairs

Table 2. miRNA target classification results with different CTS selection criteria

Criteria Method F1 Score Precision Recall
. miRAW 0.7289 0.6749 0.7923
MIRAW-6-L10 o roetNet 0.7491 0.7277 0.6945
S 7 miRAW 07069 07188 0.6956
MIRAW-7-1:10° o oetNet 0.7388 0.7242 0.7014
S 7 miRAW 07222 07193 07255
MIRAW-7-2:10  roetNet 0.7422 0.7282 0.7056
-T_aI_et_SC_an_ © miRAW 05325 07859  0.4029
g TargetNet 0.6747 0.6923 0.7155
'P_IT;_ © 7 miRAW 05694 07654 04537
TargetNet 0.6901 0.6979 0.7081

as a validation set. The remaining pairs containing 26,803 positive and
27,341 negative pairs were used as a training set.

4.2 Test results on miRNA-mRNA pair datasets

4.2.1 Classification of functional and non-functional targets

First, we compared functional miRNA target classification performance
of six different prediction algorithms: PITA (Kertesz et al.}2007), miRDB
(Wong and Wang| [2015), miRanda (Betel et al. [2010), TargetScan
(Agarwal et al| 2015), deepTarget (Lee ef all|2016) and miRAW (Plal
et al.| |2018). We excerpted the results of compared methods from the
previous work (Pla et al.}|2018), where the optimal reported configuration
for each algorithm was employed.

Table |I| presents the averaged classification performance of ten test
datasets. We used the miRAW test datasets, each of which consisted
of 548 positive and 548 negative pairs (Section ET.I). The results
demonstrated that TargetNet considering both canonical and non-canonical
sites outperforms the other state-of-the-art algorithms in terms of general
performance measures, namely, F1 score and accuracy. The F1 score and
accuracy differences between TargetNet and the second best algorithm,
miRAW, were statistically significant with p-values of 1.1 x 1072 and
2.1 x 1073, respectively. For the evaluation of statistical significance,
we used the two-sample Kolmogorov-Smirnov test (Massey Jr;[1951). Its
rejected null hypothesis is that the two independent groups of samples
(e.g., F1 scores obtained from TargetNet and miRAW) are from the same
distributions.

While the other prediction models, PITA, miRDB, miRanda,
TargetScan, and deepTarget, exhibited high specificity, they failed to
correctly classify a large number of functional miRNA targets. This is
largely due to their conservative CTS selection criteria, which neglect
the majority of non-canonical site types. By comparing the performance
of TargetNet for canonical and non-canonical sites, we could observe
that non-canonical sites resulted in a significantly higher recall. It
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Fig. 3. Performance of prediction algorithms on distinguishing high-functional targets. Mean log fold changes of miRNA-mRNA expression down-regulation of the top-ranked targets
were plotted. We used unified sets of eleven microarray (A-B) and two RNA-seq LFC (C-D)vudt datasets, in which a miRNA was individually transfected into HeLa and HEK329 cells,
respectively. (A) and (C) compare TargetNet with other state-of-the-art algorithms. (B) and (D) show the effect of CTS selection for TargetNet in distinguishing high-functional targets.

once again showed that accommodating non-canonical sites is vital for
the classification of functional targets. Since TargetNet and miRAW
share similar CTS selection criteria and the same training dataset, their
comparison can illustrate the effectiveness of the prediction model. The
performance improvement indicates that the proposed input encoding
scheme and ResNet architecture can better capture the information
underlying miRNA-CTS interactions.

We investigated more closely how the CTS selection affect
classification performance on miRAW test datasets. First, we compared the
performance of TargetNet with and without the CTS selection. While they
provided similar F1 scores (0.7739 vs. 0.7752), the latter took twice more
time due to the additional non-filtered pairs. The results showed that the
CTS selection is not required, but it can accelerate TargetNet by eliminating
numerous negative pairs. Then, while keeping the other stages intact,
we evaluated miRAW and TargetNet using five different CTS selection
criteria (Table@). Note that miRAW-6-1:10 is identical to the one used in
TargetNet, except that it uses a sliding window step length of 5 nucleotides.
We can make the following observations from the results. First, regardless
of the CTS selection criteria, TargetNet consistently outperformed miRAW
in terms of the F1 score. This once again demonstrated the effectiveness
of the proposed model. Second, using more conservative criteria generally
deteriorates the classification performance of both miRAW and TargetNet.
It filters out most of the candidate targets before using the prediction
models, thus resulting in significant drops of recall and F1 score.

4.2.2 Distinguishing high-functional targets

Next, we examined the association between the level of expression down-
regulation and the top-ranked prediction scores. We used independent
eleven microarray and two RNA-seq LFC datasets that do not contain
any miRNAs similar to those in the miRAW train-validation dataset.
We compared TargetNet with two sets of state-of-the-art algorithms. For
the microarray datasets, we compared with miRDB, TargetScan, PITA,
miRanda, deepTarget, and miRAW. We used publicly available codes to
obtain prediction results for each algorithm. If an algorithm produces
scores for each miRNA-CTS pair, we used the maximum value for
summarizing them into scores for each miRNA-mRNA pair. For the RNA-
seq datasets, we compared with microCLIP (Paraskevopoulou et al.l,
TargetScan, MiIRZA (Khorshid et all2013), PARma (Erhard e7 al}[2013),
and microMUMMIE with posterior and Viterbi decoding

Table 3. Ablation studies on the prediction model of TargetNet

Alignment Skip Number of Widening

Encoding  Connection Blocks Factor ~ F1 Score

BASE TRUE TRUE 2 1 0.8230
" (A) FALSE  TRUE 2 1 07204

(B) TRUE FALSE 2 1 0.7743
""" TRUE ~ TRUE 2 05 0795

(C) TRUE TRUE 2 2 0.8102

TRUE TRUE 4 1 0.7362

[2013). We excerpted the results of compared methods from the previous
work (Paraskevopoulou ez al |, 20T8).

Figure E| presents the mean expression log fold changes of the top-
ranked targets for microarray (A-B) and RNA-seq (C-D) datasets. We
ranked each miRNA-mRNA pair from the LFC datasets according to the
target prediction scores of each algorithm. Then, from the top-ranked

target predictions, the averages of their expression log fold change values
were plotted over a broad range of thresholds. First, we compared the
performance of TargetNet for canonical and non-canonical sites allowed
in the relaxed CTS selection criteria (Figure E| (B) and (D)). While
accommodating the non-canonical sites was vital in the classification of
functional targets, it showed negative impacts for distinguishing high-
functional targets. The results demonstrated that canonical sites with
extensive seed binding are more crucial for the high-functional targets
(Agarwal et al] 2015). Note that although the functionality of non-
canonical sites is usually much weaker than those of canonical sites, they
have been repeatedly validated through independent wet-lab analyses
[2016). It suggests that non-canonical sites are also likely to have
biological roles and classifying all the functional targets is still important
(Sectionm4 Next, we compared TargetNet for canonical sites with other
state-of-the-art algorithms ((Figure E| (A) and (C)). In both microarray
and RNA-seq datasets, top TargetNet predictions were considerably

associated with the level of target expression down-regulation. As we
select a smaller number of top-ranked predictions from TargetNet, we can
observe more repressed, thus, more functional targets. Even though the
proposed algorithm does not exploit any expression training data, it shows
comparable performance compared to the other state-of-the-art algorithms
trained with expression data.
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4.3 Ablation Studies

Table [3] presents the results of the ablation studies to better understand
TargetNet prediction models. We varied the components of the base model
and measured the classification performance on the miRAW validation set.
In row (A), we can observe that disregarding the proposed alignment
input encoding significantly degrades the model performance. This
suggests that incorporating extended seed region alignments provides
invaluable information for functional miRNA prediction. In row (B),
we replaced our ResNet model with a conventional convolutional neural
network by removing the skip connections. Note that the compared
model has the same number of parameters as the base model. Thus,
the performance drop confirms that the residual connection enables more
efficient training of the model. Finally, in rows (C), we varied the number
of blocks and the number of filters by a widening factor. While doubling the
number of filters produced similar results to the base model, other model
complexity alterations resulted in inferior classification performance.

5 Concluding Remarks

We proposed a deep learning-based algorithm for functional miRNA
target prediction. TargetNet adopts relaxed CTS selection criteria to
accommodate a variety of non-canonical and canonical site types. We
introduced a novel input encoding scheme to embrace both miRNA-
CTS sequences and how their extended seed regions form bindings.
Then, we used ResNet to capture the information underlying miRNA-
CTS interactions. Our experimental results supported that TargetNet not
only demonstrates significant performance improvements in functional
miRNA target classification, but also its top-ranked prediction scores show
a considerable association with the level of miRNA-mRNA expression
down-regulation.
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