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Abstract

Motivation: Single-cell time-lapse microscopy is a ubiquitous tool for studying the dynamics of complex cellular
processes. While imaging can be automated to generate very large volumes of data, the processing of the result-
ing movies to extract high-quality single-cell information remains a challenging task. The development of soft-
ware tools that automatically identify and track cells is essential for realizing the full potential of time-lapse mi-
croscopy data. Convolutional neural networks (CNNs) are ideally suited for such applications, but require great
amounts of manually annotated data for training, a time-consuming and tedious process.

Results: We developed a new approach to CNN training for yeast cell segmentation based on synthetic data and pre-
sent (i) a software tool for the generation of synthetic images mimicking brightfield images of budding yeast cells
and (ii) a convolutional neural network (Mask R-CNN) for yeast segmentation that was trained on a fully synthetic
dataset. The Mask R-CNN performed excellently on segmenting actual microscopy images of budding yeast cells,
and a density-based spatial clustering algorithm (DBSCAN) was able to track the detected cells across the frames of
microscopy movies. Our synthetic data creation tool completely bypassed the laborious generation of manually
annotated training datasets, and can be easily adjusted to produce images with many different features. The incorp-
oration of synthetic data creation into the development pipeline of CNN-based tools for budding yeast microscopy is
a critical step toward the generation of more powerful, widely applicable and user-friendly image processing tools
for this microorganism.

Availability and implementation: The synthetic data generation code can be found at https://github.com/prhbrt/syn
thetic-yeast-cells. The Mask R-CNN as well as the tuning and benchmarking scripts can be found at https://github.
com/ymzayek/yeastcells-detection-maskrcnn. We also provide Google Colab scripts that reproduce all the results of
this work.

Contact: a.milias.argeitis@rug.nl

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

The use of time-lapse microscopy to study cellular process dynamics
at the single-cell level has become indispensable for systems biology
research. While large volumes of time-lapse microscopy data can be
generated relatively easily today, processing the resulting micros-
copy movies to extract high-accuracy single-cell information is still
challenging. Two key steps in this processing pipeline are (i) the de-
tection and outlining of each distinct cell appearing in an image (in-
stance segmentation) and (ii) the tracking of individual cells across
the frames of a microscopy movie. While genetically encoded fluor-
escent markers can greatly facilitate these tasks, they have several

drawbacks that limit their applicability (Versari et al., 2017; Vicar
et al., 2019). Therefore, label-free imaging techniques such as
brightfield are preferable wherever possible.

In the case of Saccharomyces cerevisiae (budding yeast), a model eu-
karyote of central importance both in fundamental research and appli-
cations, manual segmentation and tracking of large cell numbers in
brightfield movies is very time-consuming. For this reason, several soft-
ware tools have already been introduced to automate these tasks
(Bredies and Wolinski, 2011; Carpenter et al., 2006; Dimopoulos et al.,
2014; Gordon et al., 2007; Pelet et al., 2012; Versari et al., 2017; Wang
et al., 2009; Wood and Doncic, 2019). However, almost all of them are
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based on classical image processing techniques (such as watershed,
thresholding and contour tracing) for cell detection, and require careful
fine-tuning to perform well. Moreover, their performance may fluctuate
across datasets acquired under different imaging conditions, which lim-
its their generalizability.

Convolutional neural networks (CNNs) have clearly demon-
strated their power over traditional image processing techniques in
several types of challenging biological applications (Angermueller
et al., 2016; Moen et al., 2019). Yet, the use of CNNs for the proc-
essing of yeast microscopy movies was relatively limited until very
recently, when several promising tools based on CNNs (Dietler
et al., 2020; Lu et al., 2019; Prangemeier et al., 2020b; Salem et al.,
2021) and attention-based transformers (Prangemeier et al., 2020a)
appeared. A key advantage of these approaches over traditional
image processing methods is that they are significantly more robust
to changes in imaging conditions and experimental setups, while
their accuracy on problematic cases can still be improved by retrain-
ing with data representative of those cases. On the negative side,
these tools require large, diverse and high-quality annotated datasets
to be trained (Moen et al., 2019; Vicar et al., 2019), and model per-
formance depends heavily on the quality and size of the training
dataset. Unfortunately, these training datasets typically need to be
manually generated or curated from actual experimental data. For
example, training a CNN for yeast segmentation requires manually
drawing cell boundaries for thousands of single cells across different
microscopy images, while ensuring that no cells are missed.
Therefore, the generation of training data for such a CNN is a very
time-consuming process, which may need to be repeated whenever
the CNN has to be retrained to achieve better performance on new
imaging setups.

Contrary to datasets constructed from real-world data, synthetic
datasets are generated algorithmically. Compared to the time and ef-
fort required to generate manually annotated datasets, the automat-
ic generation of large volumes of synthetic training data for CNNs is
extremely time-efficient and requires only minimal human input. A
synthetic dataset does not need to be a faithful reproduction of the
real-world data, as long as it can reproduce key features of these
data. Moreover, the annotation of synthetic data is fully accurate by
construction. Synthetic data have already been used to create well-
understood training datasets for various CNN applications such as
3D object segmentation (Danielczuk et al., 2019), text detection
(Gupta et al., 2016), segmentation of agar plates (Andreini et al.,
2020) and crop seed instance segmentation (Toda et al., 2019).
Despite the relative simplicity of yeast cell shapes, synthetic gener-
ation of yeast microscopy images and the use of these images for
CNN training has not been tried yet. Such an approach could greatly
accelerate the development of deep learning-based tools for yeast
microscopy.

In this work, we present a versatile tool for the automatic cre-
ation of synthetic brightfield images of yeast-like objects, together
with a Mask R-CNN (He et al., 2020) trained on a synthetic dataset
to perform cell segmentation. Despite the fact that our Mask R-
CNN was only trained on synthetically generated data, it is able to
segment yeast cells on actual brightfield microscopy images with re-
markable accuracy. By feeding the output of the Mask R-CNN into
a density-based spatial clustering algorithm (DBSCAN; Ester et al.,
1996), we were able to automatically and accurately track individ-
ual yeast cells across microscopy movies. Synthetic data creation
completely bypasses the laborious generation of manually annotated
datasets, and can be easily adjusted to produce images with many
different features.

We demonstrate the applicability of our approach by segmenting
and tracking yeast cells grown inside a microfluidic device with
pillar-like structures (Lee et al., 2012), as well as cells grown under
agarose pads in two different microscopy setups. Using benchmark-
ing datasets from the Yeast Image Toolkit (YIT; Versari et al., 2017;
http://yeast-image-toolkit.biosim.eu/), we compare the performance
our the Mask R-CNN to that of two recently presented CNNs:
YeaZ (Dietler et al., 2020; the current state-of-the-art in the field)
and YeastNet2 (Salem et al., 2021). The Mask R-CNN performed
very similarly to YeaZ and better than YeastNet2, even though the

last two tools were trained on large, manually annotated datasets.
Our results demonstrate that the incorporation of synthetic data
into the development pipeline of CNN-based tools for budding yeast
microscopy is an important step toward the generation of more
powerful, widely applicable and user-friendly image processing
tools.

2 Materials and methods

2.1 Synthetic training data generation
We focused on the generation of synthetic images of cells imaged in
white light with brightfield microscopy, since brightfield imaging
avoids phototoxicity and photobleaching artifacts, does not require
genetic engineering of the cells, and can be readily acquired in every
widefield microscopy setup.

We used OpenCV to draw random ellipses with blurred dark
and bright boundaries to create slightly out-of-focus cell-like
objects. To mimic the noisy background and cell interior, we used
NumPy to create Gaussian random fields whose standard deviations
were estimated based on real data. Finally, the image dataset was
augmented using the PiecewiseAffine transformation of the imgaug
image augmentation library (https://imgaug.readthedocs.io/), which
slightly deformed the ellipsoidal cell-like objects.

2.2 Instance segmentation
To arrive at our final choice of instance segmentation model, we
compared two alternatives: U-Net (Ronneberger et al., 2015) and
Mask R-CNN (He et al., 2020).

A key challenge of U-Net is that it performs semantic segmenta-
tion for two or more classes, but does not separate instances, pro-
ducing a single probability map instead. This in turn implies that a
significant amount of post-processing is necessary to locate individ-
ual cells. In our tests with U-Net, we identified connected compo-
nents as separate instances. Since the connected components do not
accurately segment each cell, we used seam carving (Avidan and
Shamir, 2007) to trace paths across the black and white rings on the
cell boundary using a polar coordinate system centered on the cen-
troid of each connected component, and determined the cell bound-
ary as the average of these two paths. Still, U-Net detected many
false positives, which required training a simple classifier on manu-
ally labeled detections based on features such as path circularness,
the distance between the path endpoints and the enclosed area. Due
to the high number of false positives and the large amount of post-
processing required at the U-Net output, we did not further explore
the use of U-Net.

Contrary to U-Net, Mask R-CNN directly performs segmenta-
tion of individual instances by applying a region proposal technique
with many false positives to find potential bounding boxes for
objects, and estimating the probability of each bounding box con-
taining an object or nothing. Since we were interested in detecting
yeast cells, we only had to estimate the probabilities pbackground and
pyeast cell for each bounding box. Yeast cells were then detected based
on a threshold on pyeast cell, e.g. pyeast cell �0.8. Further technical
details on the Mask R-CNN implementation used here can be found
in Supplementary Section S1.

2.3 Tracking
To track a segmented cell across the frames of a microscopy movie,
we used the DBSCAN algorithm (Ester et al., 1996) to cluster to-
gether cell detections across frames. DBSCAN is a widely used clus-
tering algorithm that allows transitive clustering of cell detections
over long time spans whenever intermediate detections have enough
overlap. DBSCAN was chosen because it operates in an intuitive
manner, using quantities such as the minimum number of detections
required to start tracking a cell, and the minimum required overlap
to consider two detections close enough to belong to one cell.
Contrary to clustering methods that optimize cluster compactness
(such as k-means), DBSCAN favors cluster separation instead. Since
cells in most imaging setups are not fully restricted, can move over
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time and are present throughout a movie, cluster compactness can-
not be expected. Instead, given that cells do not move much between
frames relative to the space they occupy, distinguishing individual
cells in adjacent frames by their lack of overlap is always possible,
unless the frame rate is too low to permit reliable tracking.

To determine whether detected objects across adjacent or nearby
frames correspond to the same cell, we defined a distance measure
based on the amount of overlap [intersection over union (IoU)] of
the objects and the time difference between frames. Our distance
measure assigns infinite distance to (i) detections more than Dtmax

frames apart, (ii) detections which have no mutual overlap between
two frames and (iii) detections in the same frame. All detections
with non-infinite distance were assigned a distance equal to one
minus IoU

d x; yð Þ ¼ 1� area x \ yð Þ
area x [ yð Þ

" #
;

where x and y denote the objects detected at frames tx and ty;
respectively.

Based on this distance metric, DBSCAN determines dense
regions of a given set based on the parameters e and min_samples.
More specifically, a set of cell detections with at least min_samples
members that overlap at least e with one member is considered a
dense region and will belong to the same cluster. Dense regions that
overlap at least e, as well as all detections that overlap at least e with
one of the dense region members, are also considered to be the same
cluster. In this way, clusters are first defined by their dense regions,
and then nearby detections are added. Since the goal of our cluster-
ing method is not cluster compactness, detections with infinite dis-
tance over more than one frame can be assigned to one cluster via
detections at intermediate frames. Finally, DBSCAN identifies out-
liers as detections which do not overlap enough with any cell of any
dense region, and ignores them.

Given that each cluster of detections forms a single-cell trajec-
tory, a trajectory could contain two detections at one time frame,
e.g. when a cell gets assigned two detection masks due to a segmen-
tation error. When this occurred, we only selected the most likely
detection according to the Mask R-CNN and used it for the evalu-
ation of tracking performance. At the same time, the additional
detections were penalized as false positives for tracking.

2.4 Test set description
We evaluated the performance of our Mask R-CNN trained on our
synthetic dataset using benchmark data from the YIT , a publicly
available evaluation platform for comparing segmentation and
tracking performance on yeast microscopy images (Versari et al.,
2017). This platform provides 10 test sets of budding yeast micros-
copy movies with annotated ground-truth data (cell center locations
and unique cell labels throughout each movie). We chose the seven
test sets (TS1–7) that contain brightfield images to evaluate the seg-
mentation and tracking performance of the Mask R-CNN and
DBSCAN, as described below. TS1–2 contain isolated single cells
and small growing colonies, whereas TS3–7 show larger, heavily
clustered and merging colonies. Although our Mask R-CNN was
trained on synthetic images with relatively sparse cell arrangements,
TS3–7 were included in the tests to show how our algorithm gener-
alizes to this type of data.

Besides the YIT datasets, we also used the brightfield images of
wild-type cells from the YeaZ dataset (https://www.epfl.ch/labs/
lpbs/data-and-software/) obtained at the lowest exposure level.
These images contain pixel-level ground-truth annotations of cell
masks, which were used to evaluate the quality of cell masks pro-
duced by the Mask R-CNN and compare it with the quality of YeaZ
segmentations. We did not use images of mutant cells, as these cells
have shapes that were not included in our synthetic training set.

2.5 Performance metrics
To assess the performance of the Mask R-CNN and the DBSCAN
algorithm on the YIT datasets, we considered the different types of

outcomes that these two algorithms can produce. A detailed descrip-
tion of these outcomes and the types of errors that they generate can
be found in the Supplementary Sections S3 and S4 and Figures S2
and S3.

The performance of the Mask R-CNN and DBSCAN was
assessed via the F1-score and an accuracy measure defined in Dietler
et al. (2020) for each of these two tasks and YIT test set. For the def-
inition of the F1-score, the use of precision and recall is required, as
shown below:

Precision ¼ TP=ðTPþ FPÞ;

Recall ¼ TP=ðTPþ FNÞ:

F1 ¼ 2 � ðPrecision � RecallÞ=ðPrecision þ RecallÞ;

where TP: true positive detections; FP: false positive detections; and
FN: false negatives. Intuitively, recall reveals whether actual cells
are missed, and precision whether noise is falsely picked up as a cell.
The accuracy measure was defined as

Accuracy ¼ TP=ðTPþ FNþ FPÞ:

The F1-score ranges between 0 and 1, and is equal to the har-
monic mean of the precision and recall. This means that high preci-
sion and recall are required to obtain an F1-score close to 1. On the
other hand, the accuracy measures the total number of correct detec-
tions versus the sum of the correct, incorrect and missed detections.

Segmentation quality on the YeaZ dataset was calculated via the
IoU between detected objects and ground-truth cell masks.

3 Results

3.1 Synthetic training dataset description
The generation of our training data was based on the observation
that the geometry of a budding yeast cell in a brightfield image is
relatively simple and can therefore be reproduced synthetically. As
Figure 1 shows, budding yeast cells imaged by brightfield micros-
copy appear as ellipsoids with a relatively narrow range of sizes,
which display a specific light-dark pattern on their periphery. The
range of sizes and the maximum eccentricity of our synthetic cell-
like objects were based on rough estimates from real data.

Since synthetic cells are positioned independently of each other
and overlaps are allowed, we selected the number of objects per
frame to balance two conflicting requirements: on the one hand, a
large amount of overlap between nearby objects is unrealistic and
gives rise to label noise, which implies that synthetic cells should not
overlap too much. On the other hand, having many objects in a
frame allows the network to learn more from that frame, which
increases training efficiency. We found that 100 synthetic cells per
frame achieve a good balance between these two objectives.

To successfully train a model that generalizes to real data, we
created 20.000 512�512 images, each with 100 randomly arranged
synthetic cells. For each cell, the boundary pattern was created by
arranging a black elliptical ring within a white one. The width of
these rings, their arrangement (outer-black, inner-white or vice
versa) and the amount of Gaussian blurring were adjusted to mimic
actual yeast images. Since real yeast cells are not perfect ellipses, we
deformed the generated elliptical objects by applying a randomly
generated piecewise affine transformation (cf. Supplementary
Section S2). To simulate the effect of out-of-focus noise-like features
seen in real images, we used a Gaussian random field with the stand-
ard deviation of the spatial correlation set to 2 pixels. Since there are
more noise-like features in the cell interiors compared to the back-
ground, we scaled the standard deviation of the noise to 0.002 out-
side and 0.03 inside the cells, respectively, based on rough estimates
obtained from a small sample of real images. Finally, we set the
average background grayscale intensity to 0.4. The cell areas used to
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train our instance segmentation model were defined by the inner
boundary of each synthetic object, but their specification can be eas-
ily adapted to different imaging setups. Even though the resulting
synthetic objects do not precisely mimic real yeast cells, they still
capture important aspects of actual yeast images (size, ellipticity,
membrane patterns, etc.), which can be learned by an instance seg-
mentation algorithm. The generation of the dataset described above
took 70 min on a 40-core machine, without significant code
optimization.

In addition to generating cell-like objects, synthetic data creation
algorithms can simulate the appearance of different features of the
microfluidic chip in which the cells are cultured. These features are
typically found in microfluidics containing single-cell traps
(Prangemeier et al., 2020b) or pads under which a small number of
cells can be trapped (Lee et al., 2012). Such microstructures are vis-
ible in the same field of view with the cells that need to be tracked,
and can confuse CNNs unless they are explicitly accounted for in
the training (Prangemeier et al., 2020b). Since our group works with
such a microfluidics chip for long-term imaging of cells under con-
stant nutrient conditions (Lee et al., 2012), we included the pillar-
like structures of our chip in the synthetic images that we created for
training of our Mask R-CNN. In this way, the Mask R-CNN was
trained to ignore these structures to avoid false positives. Two sam-
ples of the resulting synthetic images with cell-like objects and the
microfluidic chip structures are shown in Figure 1. More examples
of the types of images that can be generated by tuning the parame-
ters described above can be found on the corresponding GitHub
page. Further technical details on synthetic image generation can be
found in Supplementary Section S2 and Figure S1.

3.2 Hyperparameter tuning
We tested how the performance of our segmentation and tracking
algorithms varies with respect to three key hyperparameters: (i) the
segmentation threshold (pthr) of the Mask R-CNN, (ii) the epsilon
hyperparameter (e) of DBSCAN and (iii) the maximum allowed sep-
aration between frames in the DBSCAN distance function (Dtmax).
To investigate the effect of these hyperparameters on segmentation
and tracking performance, we plotted the different performance
metrics as a function of the hyperparameter values for the brightfield
datasets from the YIT. With the resulting calibration curves, we
tuned the Mask R-CNN and DBSCAN parameters to optimize the
F1-score of segmentation and tracking, respectively.

3.2.1 Segmentation threshold tuning

By design, our Mask R-CNN generates 2000 region proposals,
along with a probability estimate for each region. This probability
expresses how likely it is that the region corresponds to a yeast cell
(pyeast cell) or not (pbackground ¼ 1� pyeast cell). From this large number
of proposals, false positives need to be filtered out by choosing pro-
posals for which pyeast cell is larger than a user-defined threshold pthr.
With this threshold, one can choose to maximize precision (higher
pthr), recall (lower pthr) or F1-score (intermediate pthr). Higher
thresholds make it less likely that detected objects are false positives,
while lower thresholds allow more low-confidence cells to be
detected. The choice of pthr can be made for a particular dataset by
scanning through a range of threshold values and picking the one
that performs best according to user objectives. This scanning is
enabled by the fact that our image processing pipeline (Mask R-
CNNþDBSCAN) achieves very fast runtimes. A detailed break-
down of running times for the YIT datasets can be found in
Supplementary Table S1.

Supplementary Figure S4 shows the performance metrics of our
Mask R-CNN with respect to pthr for datasets TS1–7 from the YIT.
As can be observed, the F1-score for TS1 and TS2 is maximized for
threshold values around 0.97, as lower threshold values lead to a de-
crease in precision due to false positive detections. On the other
hand, the F1-score for TS3–7 drops at threshold values close to 1
due to the decrease in recall. When the threshold is lowered to
around 0.8; however, the F1-score becomes largely independent of
the precise threshold value. To be able to use a common threshold
of 0.8 for both sparse (TS1–2) and dense (TS3–7) YIT sets, we
implemented a simple post-processing step to remove false positive
detections based on their size. This was possible because the vast
majority of false positives correspond to objects that are much
smaller than cells and the smallest detectable buds. As shown in
Supplementary Figure S5, use of a size threshold between 20 and
100 pixels greatly improved model precision for TS1 and TS2, while
leaving model performance on TS3–7 unaffected. By implementing
this simple filtering step using a size threshold of 50, we were able to
make the performance of the Mask R-CNN largely independent of
the threshold on all YIT datasets (Supplementary Fig. S5).

3.2.2 DBSCAN tuning

The min_samples parameter was set to 3 in all DBSCAN runs. To
tune the other DBSCAN parameters (e and Dtmax), we evaluated the
tracking performance of the clustering algorithm for a range of par-
ameter values for all YIT datasets (TS1–7). The calibration results
(Supplementary Figs S6–S12) show that e ¼ 0:6 and Dtmax ¼ 1 pro-
vide good F1-score performance across all tested YIT datasets.

3.3 Benchmarking
We compared the segmentation and tracking performance of our
Mask R-CNN with two recently presented networks based on the
U-Net architecture: YeaZ (Dietler et al., 2020) and YeastNet2
(Salem et al., 2021). For the comparison, we used the seven datasets
from the YIT described above (TS1–7). We did not carry out a com-
parison with YeastSpotter (Lu et al., 2019), another Mask R-CNN

Fig. 1. Actual versus synthesized microscopy images. (A; left) Brightfield image of

budding yeast cells grown inside a microfluidic device with pillar-like rectangular

structures (Lee et al., 2012). Cells get trapped and grow underneath these structures,

while growth medium flows continuously through the device. Small cells, as well as

cells that get dislodged from underneath the pillars, get washed away. (Right)

Brightfield image of yeast cells growing inside a microfluidic device without micro-

structures. This image was taken from test set 3 (TS3) of the YIT. In both panels,

image contrast was adjusted to improve their appearance in this figure. (B) Two syn-

thetically generated images from the dataset used to train our Mask R-CNN. Each

image contained 100 cell-like objects placed at random positions which allow over-

lap. The image background also contained the pillar-like structures of our microflui-

dic device. Cell-like objects were placed over the whole image area, to help the

Mask R-CNN identify cells over the whole image and not only at specific locations.

On each synthetic image, the pixels belonging to each cell-like object were anno-

tated and used to train the Mask R-CNN for instance segmentation
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for budding yeast, since this tool was not trained on yeast cell
images and its performance appears inferior to YeaZ (Dietler et al.,
2020). All evaluation scripts are provided in our GitHub repository.

To run YeastNet2, we followed the instructions provided by the
authors in their GitHub repository (https://github.com/kaernlab/
YeastNet). YeaZ (downloaded from https://github.com/lpbsscient
ist/YeaZ-GUI and run without the GUI here) contains a tunable de-
tection threshold parameter which operates at the pixel level before
detected objects are separated, rather than the instance level, as the
Mark R-CNN parameter does. While the YeaZ threshold mostly
affects cell outlines and not false positive or false negative rates, a
scan over different threshold values showed that YeaZ performance
improves slightly at threshold values close to 1. We therefore per-
formed all tests with YeaZ using a threshold of 0.95, noting that
YeaZ developers use a default threshold of 0.5. Finally, for our
Mask R-CNN, we chose a threshold value of 0.8 and a pixel area
threshold of 50, as described in Section 3.2. The results of the com-
parison are displayed in Table 1. As can be seen, our Mask R-CNN
outperforms YeastNet2 and performs similarly to YeaZ, even
though the latter tool was trained on more than 10 000 high-quality
segmented yeast cells (Dietler et al., 2020).

More specifically, the Mask R-CNN achieved similar F1- and ac-
curacy scores with YeaZ for all test sets with regard to segmentation
(Table 1) and tracking (Table 2). False negatives in tracking are
mostly due to the propagation of a segmentation error, which sug-
gests that accurate segmentation is the main determinant of tracking
accuracy. A detailed breakdown of the causes of false negatives and
false positives in tracking is provided in Supplementary Table S2.

Since the YIT does not provide annotated cell areas but only cen-
troid coordinates for the detected cells, it was necessary to further
evaluate the quality of the segmentation achieved by our Mask R-
CNN. Visual inspection of segmentations across different imaging
setups (Fig. 2) showed that the Mask R-CNN is able to accurately
detect cell boundaries in the majority of cases, even in crowded con-
ditions. Besides, the addition of the pillar-like structures in the syn-
thetic training data allowed the Mask R-CNN to ignore the
structures of the microfluidic chip in the real images and to precisely
segment cells that are very close to the edges of the pillars (Fig. 2C
and D).

Accuracy in cell area estimation is needed in several applications
of yeast time-lapse microscopy, such as the calculation of cell
growth rates (Ferrezuelo et al., 2012), or the estimation of fluores-
cent protein abundance over time (Cookson et al., 2010). Examples
of cell area time series obtained from the Mask R-CNNþDBSCAN
and their comparison with manually curated results from BudJ

(Ferrezuelo et al., 2012), a segmentation and tracking plugin of
ImageJ, can be found in Supplementary Figure S11. To evaluate the
segmentation accuracy of the Mask R-CNN in more quantitative
terms, we used the annotated brightfield images of wild-type cells
provided on the YeaZ website. The results presented in Table 3
show that the segmentation quality achieved by the Mask R-CNN is
comparable to that of YeaZ. Visual comparisons of the YeaZ and
Mask R-CNN output with the ground truth are provided in
Supplementary Figures S12–S14.

4 Conclusions

Given the key role that budding yeast still plays in basic biological
research and synthetic biology, the availability of robust and precise
tools for automatic yeast cell segmentation and tracking is crucial
for obtaining a better understanding of fundamental cellular proc-
esses such as growth, division and aging. Here, we presented a high-
ly customizable software tool for the creation of synthetic images
that mimic budding yeast cells imaged with brightfield microscopy.
Using a dataset created by this tool, we trained a Mask R-CNN to
segment the synthetically generated objects and tested its perform-
ance on actual microscopy images of yeast cells. Our Mask R-CNN
performed exceptionally well on the actual images, despite not hav-
ing been trained on them. The good quality of segmentation further
allowed us to track yeast cells across microscopy movies by imple-
menting a DBSCAN. The segmentation and tracking performance of
the resulting combination of Mask R-CNN and DBSCAN were
similar to that of YeaZ, the current state-of-the-art tool in the field.
Moreover, the extracted area profiles of the segmented cells com-
pared favorably with high-quality area profiles of the YeaZ dataset,
confirming that the proposed combination of Mask R-CNN with
DBSCAN can be used to automatically extract single-cell informa-
tion from time-lapse microscopy movies.

We believe that synthetic training dataset generation for the task
proposed here is an important methodological advance compared to
previous approaches. Deep learning methods for image processing
require very large amounts of high-quality annotated data, and
neural networks for yeast cell segmentation are no exception. The
generation of these training datasets in turn requires a considerable
amount of time and experience from human annotators. Moreover,
the annotation process has to be carried out whenever the neural
network has to be retrained on new data types, such as altered imag-
ing conditions. Synthetic data can be generated with minimal effort
and can be easily adapted to reflect different imaging setups. To
demonstrate this flexibility, our synthetic training images contained

Table 1. Segmentation performance metrics for Mask R-CNN, YeaZ and YeastNet2 evaluated on the brightfield test sets of the YIT

Note: Highlighted cells denote the tool with the highest performance for each test set.
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features of a microfluidic chip used in our experiments, and the in-
clusion of these features prevented the Mask R-CNN from incor-
rectly recognizing the chip features.

Several future improvements and extensions will make synthetic
data generation even more powerful, leading to further improve-
ments in segmentation and tracking performance. For example, the
recall of the Mask R-CNN and the detection of small growing buds
in dense cell configurations can be improved by generating densely
packed cell-like objects to mimic the appearance of crowded micros-
copy fields. Such configurations are difficult to obtain with our cur-
rent data creation tool due to the fact that object positions are
generated independently at random. More realistic synthetic data

could be produced using an algorithm for the generation of dense
object packings (Delaney et al., 2005), or by simulating the growth
of yeast microcolonies using existing physics-based simulators

(Jönsson and Levchenko, 2005; Wang et al., 2017). In the latter
case, CNNs such as TrackR-CNN (Voigtlaender et al., 2019) could
be trained to simultaneously perform cell segmentation and tracking

using synthetically generated microscopy movies. Additional steps
to improve data realism could include the generation of non-random

internal structures inside the cell-like objects (e.g. vacuoles), as well
as cell objects mimicking budding cells. At the same time, the gener-
ation of synthetic images that imitate other transmitted light imag-

ing modalities, e.g. phase contrast and differential image contrast,
can further expand the range of applicability of our Mask R-CNN.
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Table 2. Tracking performance metrics for Mask R-CNN, YeaZ and YeastNet2 evaluated on the brightfield test sets of the YIT

Note: Highlighted cells denote the tool with the highest performance for each test set.

Fig. 2. Segmentation of yeast cells in different imaging setups. (A) Large, dense col-

ony growing under a nutrient-infused agarose pad in our imaging setup. Cells in the

center of the colony have been pushed vertically and are largely out of focus.

Despite the large amount of crowding, our Mask R-CNN was able to accurately de-

tect the majority of cells, even though it was not trained on such dense images.

Objects detected by the neural network are marked with magenta outlines. Cells

that were not detected do not carry an outline. (B) Cells growing inside the micro-

fluidic device used in Uhlendorf et al. (2012). (C) Cells growing inside the microflui-

dic device used in our group. In such sparse cell configurations, our Mask R-CNN is

able to detect a wide range of cell sizes, from large, aged mother cells, to young

growing buds. (D) Inset showing close-up views of cell boundaries detected by the

Mask R-CNN. In all panels, contrast was adjusted to improve their appearance in

this figure; no contrast adjustments were made to the images that were provided to

the Mask R-CNN

Table 3. Average IoU of true positive instances in the annotated

brightfield images of wild-type cells from the YeaZ dataset

Test set wtF2BF wtF3BF wtF4BF wtF5BF wtF6BF

Mask R-CNN 81.6 82.0 84.6 84.5 81.2

YeaZ 85.8 85.3 87.2 88.0 84.2

Test set wtF7BF wtF8BF wtF9BF wtF10BF wtF11BF

Mask R-CNN 81.7 78.7 75.7 79.8 84.5

YeaZ 81.8 82.9 80.2 85.3 85.8

Test set wtF12BF wtF13BF wtF14BF wtF15BF

Mask R-CNN 78.9 84.0 83.4 83.8

YeaZ 84.2 86.0 86.4 86.0

Note: The YeaZ dataset contains images obtained at six different exposure

levels. For all the tests performed here, the lowest exposure level was used.

The two models were run using the same threshold values as in the YIT tests.
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