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Abstract

Summary: Principal component analysis (PCA) is widely used in analyzing single-cell genomic data.
Selecting the optimal number of PCs is a crucial step for downstream analyses. The elbow method is most
commonly used for this task, but it requires one to visually inspect the elbow plot and manually choose
the elbow point. To address this limitation, we developed six methods to automatically select the optimal
number of PCs based on the elbow method. We evaluated the performance of these methods on real
single-cell RNA-seq data from multiple human and mouse tissues. The perpendicular line method with
20 PCs has the best overall performance, and its results are highly consistent with the numbers of PCs
identified manually. We implemented the six methods in an R package, findpPc, that objectively selects
the number of PCs and can be easily incorporated into any automatic analysis pipeline.

Availability and Implementation: findPC R package is freely available at

https://github.com/haotian-zhuang/findPC
Contact: zhicheng.ji@duke.edu

1 Introductions

Principal Component Analysis (PCA) is a fundamental dimension
reduction technique in analyzing single-cell genomic data. It maps the
cells with high-dimensional and noisy genomic information to a low-
dimensional and denoised principal component space. The principal
components (PCs) are then used to group cells into clusters [1], identify
continuous cell trajectories [2], or serve as the basis of other dimension
reduction techniques such as t-SNE [3] and UMAP [4]. The number of
PCs plays a critical role in downstream analyses. With too many PCs,
PCs with the smallest variations may represent the noise in the data and
dilute the signal. With too few PCs, the essential information in the data
may not be captured. An optimal number of PCs should keep the essential
information in the data while filtering out as much noise as possible.

The elbow method is most commonly used to determine the number of
PCsinsingle-cell analysis literature. It starts from a scatterplot where the y-
axis shows the standard deviations of PCs and the x-axis shows the numbers
of PCs. Since the PCs are ordered decreasingly by their standard deviations,

the scatterplot usually presents a monotonically decreasing curve that
sharply descends for the first several PCs and gradually flattens out for the
subsequent PCs. The optimal number of PCs is then visually identified as
the elbow point where the curve bends from steep to flat descent. However,
visual identification of elbow points requires manual work and cannot
be incorporated into an automatic pipeline. Plus, the results may not be
reproduced by different researchers for PCs with ambiguous elbow points.

To address these issues, we propose six methods to automatically
identify the elbow point, thus the number of PCs in single-cell analysis.
We applied these methods to real single-cell RNA-seq data from multiple
human or mouse tissues and evaluated their performance using the elbow
points manually annotated by us. The results show that the method based
on perpendicular lines with 20 PCs has the best overall performance. We
implemented these functions in a user-friendly R package, findPC, that is
freely available on Github.
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2 Methods

We developed six methods to computationally identify elbow points based
on different heuristics (Figure 1A-1F). The details of these methods are
included in Supplementary Materials. The input to these methods is a
vector of standard deviations of the first /N PCs with the largest standard
deviations. NV has different choices of 20, 30, 40, 50.

Method 1 fits a series of continuous piecewise linear models with two
pieces to the scatterplot and chooses the PC with the best fit (Figure 1A).
Method 2 chooses the last PC whose absolute value of the first derivative on
the elbow plot is larger than a cutoff learned from data (Figure 1B). Method
3is similar to Method 2, except it depends on the second derivatives (Figure
1C). Method 4 fits a linear regression line using the last few PCs and
calculates the residual of the preceding PC. It iterates through all possible
PCs and chooses the last PC with preceding residual larger than a cutoff
learned from data (Figure 1D). Method 5 chooses the PC with the longest
perpendicular line to the line passing the two points of the first and last PCs
on the elbow plot (Figure 1E). Method 6 groups all PCs into two clusters
based on their standard deviations and chooses the first PC in the cluster
with a smaller averaged standard deviation (Figure 1F).

To evaluate the performance of the six methods, we collected single-
cell RNA-seq data of 65 human tissues from Human Cell Landscape [5]
and 54 mouse tissues from Mouse Cell Atlas [6]. For each tissue, we used
standard Seurat pipeline [1] to process the data, perform PCA analysis,
and obtain the standard deviation of each PC. We then visually inspected
the elbow plot for each tissue, selected 25 human tissues and 21 mouse
tissues with clear elbow points, and identified the position of the elbow
point for each tissue.

3 Results

For each selected human or mouse tissue, elbow points were automatically
chosen by the six methods and compared to the visually identified elbow
point. Figure 1G shows an example elbow plot with visually identified
elbow point (6 PCs) in human fetal brain tissue, the same tissue used in
Figure 1A-1F. Figure 1H shows the elbow points identified by different
methods and using different total numbers of PCs (V). Elbow points
identified by most methods agree with the visually identified elbow pointin
this specific tissue. The elbow plots and visually or automatically identified
elbow points for all selected tissues are included in Supplementary Figure
1 for human tissues and Supplementary Figure 2 for mouse tissues. Figure
11 shows the overall performance of different methods, where root-mean-
square errors (RMSEs) are calculated between visually identified elbow
points and automatically chosen elbow points across all human and mouse
tissues for each method. Method 5 (Perpendicular line) with top 20 PCs has
the best overall performance, with RMSE 0.79. In almost all tissues, elbow
points identified by Method 5 with top 20 PCs either agree with or are very
close to elbow points identified visually (Figure 1J). Supplementary Figure
3 shows the comparisons of visually and automatically identified elbow
points for all six methods and with different total numbers of PCs (IV).

4 Implementations

We developed an R package, £indPC, that implements the six methods.
The R package has one function, £indPC, that accepts a numeric vector
of standard deviations of PCs as input and by default returns an integer
value of the automatically selected elbow point as output. Based on the
evaluations, we choose Method 5 (Perpendicular line) with top 20 PCs as
the default method.

The following R command runs £indPC with the default settings:

> findPC (sdev = sdev)

>
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Fig. 1. A-F. Demonstration of the six methods that automatically identify the optimal
number of PCs. The elbow plot is obtained using the human fetal brain tissue. The top 20
PCs are shown. The blue dashed vertical line shows the elbow point chosen by each method.
G. Elbow plot for the human fetal brain tissue. The top 50 PCs are shown. The visually
identified elbow point (6 PCs) is shown as the blue dashed vertical line. H. Number of PCs
chosen by six methods using different total numbers of PCs (V) for the human fetal brain
tissue. I. Overall performance of six methods using different total numbers of PCs (IN),
measured by RMSE across all selected tissues. J. Number of PCs chosen manually (y-axis)
or by perpendicular line with 20 PCs (x-axis). Numbers in the colored squares represent
the numbers of tissues.

This function returns an integer value of number of PCs selected by
Method 5 (Perpendicular line) with top 20 PCs. It can be directly fed
into downstream analyses or incorporated in an automatic pipeline for
analyzing single-cell genomic data. Users can also run £indPC for one
or multiple methods with different total numbers of PCs (V), or get a
comprehensive list of results for all combinations of six methods and total
numbers of PCs. The £indPC function also supports the aggregation of
results from multiple methods and total numbers of PCs by taking the
average, the median, or the mode. For users who want to visually inspect
the results, £indPC can also display the elbow plot with the automatically
identified elbow points. All these functionalities are described in detail in
the package vignette of £indPC.
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