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Abstract

Motivation: Protein phosphorylation is a ubiquitous regulatory mechanism that plays a central role in cellular signal-
ing. According to recent estimates, up to 70% of human proteins can be phosphorylated. Therefore, the characteriza-
tion of phosphorylation dynamics is critical for understanding a broad range of biological and biochemical
processes. Technologies based on mass spectrometry are rapidly advancing to meet the needs for high-throughput
screening of phosphorylation. These technologies enable untargeted quantification of thousands of phosphorylation
sites in a given sample. Many labs are already utilizing these technologies to comprehensively characterize signaling
landscapes by examining perturbations with drugs and knockdown approaches, or by assessing diverse phenotypes
in cancers, neuro-degerenational diseases, infectious diseases and normal development.

Results: We comprehensively investigate the concept of ‘co-phosphorylation’ (Co-P), defined as the correlated phos-
phorylation of a pair of phosphosites across various biological states. We integrate nine publicly available phospho-
proteomics datasets for various diseases (including breast cancer, ovarian cancer and Alzheimer’s disease) and
utilize functional data related to sequence, evolutionary histories, kinase annotations and pathway annotations to in-
vestigate the functional relevance of Co-P. Our results across a broad range of studies consistently show that func-
tionally associated sites tend to exhibit significant positive or negative Co-P. Specifically, we show that Co-P can be
used to predict with high precision the sites that are on the same pathway or that are targeted by the same kinase.
Overall, these results establish Co-P as a useful resource for analyzing phosphoproteins in a network context, which
can help extend our knowledge on cellular signaling and its dysregulation.

Availability and implementation: github.com/msayati/Cophosphorylation. This research used the publicly available
datasets published by other researchers as cited in the manuscript.

Contact: marzieh.ayati@utrgv.edu or mehmet.koyuturk@case.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Protein phosphorylation is a ubiquitous mechanism of post-
translational modification observed across cell types and species.
Recent estimates suggest that up to 70% of cellular proteins can be
phosphorylated (Wilhelm et al., 2014). Phosphorylation is regulated
by networks composed of kinases, phosphatases, and their sub-
strates. Characterization of these networks is increasingly important
in many biomedical applications, including the identification of

novel disease-specific drug targets, development of patient-specific
therapeutics and prediction of treatment outcomes (Cohen, 2001;
Rikova et al., 2007).

Phosphorylation is particularly important in the context of cancer,
as the down-regulation of tumor suppressors and the up-regulation of
oncogenes (often kinases themselves) by dysregulation of the associated
kinase and phosphatase networks are shown to have key roles in tumor
growth and progression (Halim et al., 2013). To this end, the charac-
terization of signaling networks enables the exploration of the
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interconnected targets (Yılmaz et al., 2021) and the identification of
causal pathways (Babur et al., 2021), leading to the development of
kinase inhibitors to treat a variety of cancers (Butrynski et al., 2010;
Zhou et al., 2011). Disruptions in the phosphorylation of various sig-
naling proteins have also been implicated in the pathophysiology of
various other diseases, including Alzheimer’s disease (Neddens et al.,
2018) and Parkinson’s disease (Koyano et al., 2014). As a consequence,
there is increased attention to cellular signaling in biomedical applica-
tions, motivating researchers to study phosphorylation at larger scales
(Hernandez-Armenta et al., 2017).

In response to the growing need for large-scale monitoring of
phosphorylation, advanced mass spectrometry (MS)-based phospho-
proteomics technologies have exploded. These technologies enable
simultaneous identification and quantification of thousands of phos-
phopeptides and phosphosites from a given sample (Yates III et al.,
2014). These developments result in the generation of data repre-
senting the phosphorylation levels of hundreds of thousands of
phosphosites under various conditions across a range of biological
contexts, including samples from human patients, cell lines, xeno-
grafts and mouse models (Liu and Chance, 2014). As compared to
the widespread availability and sharing of genomic and transcrip-
tomic data, public repositories of phosphoproteomic data are sparse,
but growing. As a consequence, secondary or integrative analyses of
phosphoproteomic data are less common. Despite tremendous
advances in the last decade, a majority of the human phosphopro-
teome has not been annotated to date (Needham et al., 2019).
Technical issues such as noise, lower coverage, lower number of
samples and low overlap between studies further complicate the
analysis of phosphoproteomic data from a systems biology perspec-
tive (Liu and Chance, 2014).

In order to facilitate large-scale utilization of phosphoproteomic
data, we introduced the notion of co-phosphorylation (Co-P) (Ayati
et al., 2019). The motivation behind this approach is to represent phos-
phorylation data in the form of relationships between pairs of phospho-
sites. Defining Co-P as the correlation between pairs of phosphosites
across a range of biological states within a given study, we alleviate
such issues as batch effects between different studies and missing identi-
fications, while integrating phosphorylation data across multiple stud-
ies. Recently, we applied Co-P to the prediction of kinase-substrate
associations (KSAs) (Ayati et al., 2019) and unsupervised identification
of breast cancer subtypes (Ayati et al., 2020), showing that Co-P ena-
bles the effective integration of multiple datasets and enhances the re-
producibility of predictions. In this article, we present a more
comprehensive approach to investigate the functional information pro-
vided by Co-P, by focusing on multiple types of functional association
among phosphorylation sites, considering a large number of datasets
spanning multiple phenotypes, and assessing the value of integrating
Co-P across different datasets.

Co-P is similar in spirit, but distinct and complementary to the
notion of co-occurrence (Li et al., 2017). Co-occurrence qualitative-
ly assesses the relationship between the identification patterns of
phosphosites in a broad range of studies. Co-P, on the other hand,
quantitatively assesses the relationship between the phosphorylation
levels of sites across a set of biological states (within a single study
or by integrating different studies). Thus, co-occurrence captures
high-level functional associations among phosphosites, whereas Co-
P can also discover context-specific associations and provide insights
into the dynamics of signaling interactions.

An important benefit of Co-P-based analysis is that it allows in-
tegration across datasets in a rather straightforward way as com-
pared to direct integration. To directly integrate different datasets
(where the unit of analysis is individual sites), normalization, stand-
ardization and correction for batch effects and other artifacts are
needed, which significantly complicate the analysis. In contrast, by
focusing on pairs of sites as units of analysis, we here accomplish
cross-dataset integration by correcting for the number of different
number of dimensions (samples) in different datasets.

In this article, we comprehensively characterize the relationship
between Co-P and functional associations/interactions among pro-
tein phosphorylation sites. For this purpose, we systematically com-
pare Co-P networks to networks that represent other functional

relationships between proteins and phosphosites. These analyses
serve two purposes: (i) validation of Co-P as a relevant and useful
tool for inferring functional relationships between proteins and (ii)
generation of knowledge on the basic principles of post-
translational regulation of proteins and the functional relationships
between them.

2 Materials and methods

2.1 Phosphoproteomic datasets
We analyze nine different MS-based phosphoproteomics data repre-
senting cancer and non-cancer diseases.

• BC1 (breast cancer): Huang et al. (2017) used the isobaric tags

for relative and absolute quantification (iTRAQ) to identify

56 874 phosphosites in 24 breast cancer PDX models.
• BC2 (breast cancer): This dataset was generated to analyze the

effect of delayed cold ischemia on the stability of phosphopro-

teins in tumor samples using quantitative LC-MS/MS. The phos-

phorylation level of the tumor samples was measured across

three time points (Mertins et al., 2014). The dataset includes

8150 phosphosites mapping to 3025 phosphoproteins in 18

breast cancer xenografts.
• BC3 (breast cancer): The NCI Clinical Proteomic Tumor

Analysis Consortium (CPTAC) conducted an extensive MS-

based phosphoproteomics analysis of TCGA breast cancer sam-

ples (Mertins et al., 2016). After selecting the subset of samples

to have the highest coverage and filtering the phosphosites with

missing intensity values in those tumors, the remaining data con-

tained intensity values for 11 018 phosphosites mapping to 8304

phosphoproteins in 20 tumor samples.
• OC1 (ovarian cancer): This dataset was generated by the same

study as BC2, using the same protocol. The dataset includes

5017 phosphosites corresponding to 2425 phosphoproteins in 12

ovarian tumor samples.
• OC2 (ovarian cancer): The Clinical Proteomic Tumor Analysis

Consortium conducted an extensive MS-based phosphoproteo-

mic of ovarian HGSC tumors characterized by The Cancer

Genome Atlas (Zhang et al., 2016). We filtered out the phospho-

sites with missing data and also selected a subset of tumors to

maximize the number of phosphosites. This resulted in a total of

5017 phosphosites from 2425 proteins in 12 tumor samples.
• Colorectal cancer (CRC): Abe et al. (2017) performed immobi-

lized metal-ion affinity chromatography-based phosphoproteo-

mics and highly sensitive pY proteomic analyses to obtain data

from four different colorectal cancer cell line. The dataset

included 5357 phosphosites with intensity values across 12

different conditions. These phosphosites map to 2228

phosphoproteins.
• Lung cancer (LC): Wiredja (2018) performed a time course

label-free phosphoproteomics on non-small lung cancer cell lines

across 1, 6 and 24 h after applying two different treatments of

PP2A activator and MK-AZD, resulting in total of six samples.

They reported phosphorylation levels for 5068 phosphosites,

which map to 2168 proteins.
• Alzheimer’s disease (AD): LC-MS/MS phosphoproteomics was

performed on eight individual AD and eight age-matched control

postmortem human brain tissues. The dataset contains 5569

phosphosites mapping to 2106 proteins (Dammer et al., 2015).
• Retinal pigmented epithelium (RPE): MS-based phosphoproteo-

mics was performed on three cultured human-derived RPE-like

ARPE-19 cells which were exposed to photoreceptor outer seg-

ments (POS) for different time periods (0, 15, 30, 60, 90 and 120
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min) (Chiang et al., 2017). The dataset contains 1016 phospho-

sites mapping to 619 proteins in 18 samples.

The overlap between the sites identified in these nine datasets is
shown in Supplementary Figure S1. As seen in the figure, the pair-
wise overlap between the breast cancer datasets is relatively higher
as compared to the overlap between breast cancer datasets and other
datasets, while one breast cancer dataset (BC3) also shares a high
degree of overlap with an ovarian cancer dataset (OV2). This is
expected as the mechanistic overlap between breast cancer and ovar-
ian cancer is well established. Interestingly, however, we do not ob-
serve significant overlap between the two ovarian cancer datasets,
demonstrating that the dropouts in proteomics may lead to a quite
incomplete view of the phosphorylation events in the context of a
specific phenotype.

2.2 Functional networks
To assess the functional relevance of Co-P, we use networks of func-
tional relationships/associations between pairs of phosphorylation
sites. For this purpose, we consider four types of functional
networks:

Kinase-substrate associations. We use PhosphoSitePLUS (PSP)
(Hornbeck et al., 2015) as a gold-standard dataset for KSAs. PSP
reports 9699 associations among 347 kinases and 6906 substrates.
We use these associations to construct a ‘shared-kinase network’ of
phosphorylation sites, in which nodes represent phosphosites and
edges represent the presence of at least one kinase that phosphory-
lated both sites. The associations obtained from PSP lead to a
shared-kinase network of 6906 phosphosite nodes and 881 685
shared-kinase edges.

Protein–protein interaction. Protein–protein interaction net-
works (PPI) encode physical and functional associations among pro-
teins and thus have been used commonly for various inference tasks
in cellular signaling. These tasks include the identification of signal-
ing pathways (Wagner et al., 2019), identification of pathways that
are mutated in cancers (Ruffalo et al., 2015), prediction of the effect
of mutations on protein interactions (Rodrigues et al., 2019) and
prediction of KSAs (Horn et al., 2014). Here, we use the PPIs that
are provided in STRING database (Szklarczyk et al., 2014) with
high confidence (combined score �0.95). Overall, there are 61 452
high-confidence interactions among 8987 proteins. For each of the
nine datasets, we use these PPIs to construct an interaction network
among the sites identified in that dataset. In this network, each node
represents a phosphosite and each edge represents an interaction be-
tween the two proteins that harbor the respective sites.

Evolutionary and functional associations. PTMCode is a data-
base of known and predicted functional associations between phos-
phorylation and other post-translational modification sites
(Minguez et al., 2015). The associations included in PTMCode are
curated from the literature, inferred from residue co-evolution, or
are based on the structural distances between phosphosites. We util-
ize PTMcode as a direct source of functional, evolutionary and
structural associations between phosphorylation sites. In the
PTMcode network, there are 96 519 phosphosite nodes and
4 661 285 functional association edges between these phosphosites.

Phosphosite-specific signaling pathways. We use PTMsigDB as
a reference database of site-specific phosphorylation signatures of
kinases, perturbations and signaling pathways (Krug et al., 2019).
While PTMSigDB provides data on all post-translational modifica-
tions, we here use the subset that corresponds to phosphorylation.
There are 2398 phosphosites that are associated with 388 different
perturbation and signaling pathways. We represent these associa-
tions as a binary network of signaling-pathway associations among
phosphosites, in which an edge between two phosphosites indicates
that the phosphorylation of the two sites is involved in the same
pathway. The resulting network contains 6276 edges between 2398
phosphosite nodes.

For each functional network, the number of nodes/edges that
overlap with our nine phosphoproteomic datasets are shown in
Table 1. Supplementary Figure S1 also shows the number of com-
mon phosphosites among the datasets.

2.3 Assessment of Co-P
For a given phoshoproteomic dataset, we define the vector contain-
ing the phosphorylation levels of a phosphosite across a number of
biological states as the phosphorylation profile of a phosphosite. For

a pair of phosphosites, we define the Co-P of the two sites as the
statistical association of their phosphorylation profiles. To assess

statistical association, we refer to the rich literature on the assess-
ment of gene co-expression based on mRNA-level gene expression
(Carter et al., 2004), and consider Pearson correlation (Ballouz

et al., 2015), biweight-midcorrelation (Song et al., 2012) and mutual
information (Meyer et al., 2008). Since our experiments suggest that

the different measures of association lead to similar results (data not
shown), we use Pearson correlation as a simple measure of statistical
association in our experiments.

We use the datasets described in the previous section to charac-
terize Co-P in relation to the functional, structural and evolutionary

relationships between sites and proteins encoded in the functional
networks. For this analysis, we investigate the correspondence be-

tween Co-P in each individual MS-based phosphoproteomics dataset
and each functional network.

2.4 Predicting functional association using Co-P
2.4.1 Integration of Co-P networks across datasets

Since Co-P can potentially capture context-specific, as well as uni-

versal functional relationships among phosphorylation sites, we also
investigate the functional relevance of Co-P across different datasets.
While integrating Co-P across multiple datasets, the number of sam-

ples (i.e. the number of dimensions used to compute the correlation)
in each dataset is different. For this reason, we use the adjusted

R-squared (Miles, 2014) (denoted R2
d) to remove the effect of

number of dimensions from dataset-specific Co-P between pairs of
phosphosites:

R2
dði; jÞ ¼ 1� nd � 1

nd � 2
1� cdði; jÞ2
� �

: (1)

Here, cdði; jÞ denotes the Co-P (measured by Pearson correlation)
in dataset d 2 D with nd samples.

In mass-spectrometry-based phosphoproteomics, the overlap be-
tween the phosphorylation sites that are identified across different
studies is usually low and drop-outs can be common (Liu and

Chance, 2014). Specifically, for the nine datasets we use in our com-
putational experiments, there are only 17 phosphosites that are

identified in all studies. Consequently, to preserve the scope of our
cross-dataset analysis, we use all sites that are identified in at least
one study. For this purpose, we develop a measure of cross-dataset

Co-P that can integrate the Co-P scores computed on an arbitrary
number of datasets. The principle behind our formulation of an inte-

grated Co-P score is that Co-P witnessed by multiple datasets should
be rewarded, but site pairs should not be penalized for lack of wit-
nesses. Thus, to handle missing data without introducing bias, we

set R2
dði; jÞ ¼ 0 if phosphosite i or phosphosite j is not present in

dataset d. Subsequently, we compute the integrated Co-P between

sites i and j as follows:

cintegratedði; jÞ ¼ 1�
Y
d2D

ð1� R2
dði; jÞÞ: (2)

Observe that, 0 � cintegratedði; jÞ � 1, where the minimum value
is realized if the two sites are never identified in the same dataset or
their phosphorylation levels have zero correlation if they are identi-

fied together. If the phosphorylation levels of two sites exhibit per-
fect correlation in at least one dataset, then cintegrated ¼ 1. Finally, as

the number of datasets on which both sites are identified goes up,
cintegrated also tends to go up. Thus, cintegrated can be thought of as a
measure of both co-occurrence (Li et al., 2017) and Co-P (Ayati

et al., 2019), since it captures both the tendency of the sites being
identified in similar contexts, as well as the relationship between
their dynamic ranges of phosphorylation.
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2.4.2 Prediction of functional associations

While constructing the Co-P networks, we compute a Co-P score for
each pair of phosphosites, namely cdði; jÞ for individual dataset d
and cintegratedði; jÞ for the integrated network. We then sort the pairs
according to this Co-P score and apply a moving threshold to
generate a series of Co-P networks with increasing number of edges.
We use recall and precision to evaluate the prediction performance.
In this context, recall is the defined as the fraction of edges in the
corresponding functional network that also exist in the Co-P net-
work, whereas precision is defined as the fraction of edges in the
Co-P network that also exist in the functional network. To provide
a baseline for the predictive ability of the Co-P network, we also
visualize the mean precision and 95% confidence interval for given
recall for a random ranking of phosphosite pairs across 20 runs.

3 Results and discussion

3.1 Statistical significance of Co-P
To understand whether the notion of Co-P is biologically relevant,
we first investigate the distribution of Co-P levels across all pairs of
phosphosites identified within a study. The results of this analysis
for nine datasets are shown in Figure 1. As seen in the figure, Co-P
follows a normal distribution with mean close to zero (as would be
expected if phosphorylation levels were drawn from a normal distri-
bution) and the distribution is narrower (and likely less noisy) if
more biological states (dimensions) are available. Based on the
premise that Co-P can capture functionally relevant relationships,
we hypothesize that the distribution of Co-P on real datasets would
contain more positively and negatively correlated phosphosite pairs
than would be expected at random. To test this hypothesis, we con-
duct permutation tests by permuting phosphorylation levels across
the entire data matrix and compute the Co-P distribution on these
randomized datasets. As seen in the figure, Co-P is concentrated
more on strongly positive or strongly negative correlation levels for
all datasets. For all datasets, the Kolmogorov–Smirnov (KS) test
P-values for the difference between the observed Co-P distribution
and permuted Co-P of distribution are � 1E� 9. Similarly, the
t-test P-values for the difference between the means of these

distributions are � 1E� 9 for all datasets except CRC. The mean
difference and the 95% confidence interval for each dataset are
provided below the histograms in the figure.

Furthermore, for most datasets (BC2, BC3 and OC1), we ob-
serve that the mean Co-P is clearly shifted to the right, as also indi-
cated by the effect size and the significance of the t-statistic. For
other datasets (BC1 and CRC), the difference between the means is
close to zero and the corresponding t-statistics are less significant.
However, even for these datasets, the KS-test indicates that the dif-
ference between the distributions is significant, and visual inspection
of the histograms suggests that the histogram for observed Co-P val-
ues is always more spread. This observation suggests that these data-
sets also contain a large number of site pairs with negatively
correlated phosphorylation levels. Clearly, as with a positive correl-
ation, a negative correlation can also be indicative of a functional
relationship between two phosphorylation sites.

Taken together, for all studies considered, there are more pairs
of phosphosites with (positively or negatively) correlated phosphor-
ylation levels than would be expected at random—hence a large
fraction of these strong correlations likely stem from functional or
structural relationships between the phosphosites.

3.2 Co-P of intra-protein sites
Results of previous studies indicate that the phosphorylation of dif-
ferent sites of the same protein can lead to different functional out-
comes (Nishi et al., 2014, 2015). Here, with a view to characterizing
the functional diversity of the phosphorylation sites on a single pro-
tein, we compare the Co-P distribution of pairs of phosphosites that
reside on the same protein (intra-protein sites) against the Co-P dis-
tribution of pairs of phosphosites that reside on different proteins
(inter-protein sites). We also investigate the effect of proximity be-
tween phosphorylation sites on the functional relationship between
the sites. The results of this analysis are shown in Figure 2.

As seen in Figure 2a, the distribution of Co-P for pairs of intra-
and inter-protein sites are significantly different for most of the data-
sets (the mean differences and confidence intervals are provided in
the figure, the P-values for the t-test as well as the KS-test are �
1E� 9 for all datasets except RPE). We consistently observe that
the Co-P of intra-protein sites (orange histogram) is shifted towards

Table 1. Descriptive statistics of the phosphoproteomic datasets used in our computational experiments and their overlap with functional

networks

Descriptive statistics Overlap with functional networks

Dataset No. of samples No. of

phosphosites

No. of proteins Shared kinase PPI PTMCode PTMSigDB

BC1 24 15 780 4539 805 7632 4437 138

27 791 142 077 15 335 2547

BC2 18 8150 3025 243 1639 1007 54

2723 16 541 1811 429

BC3 20 11 472 3312 553 4491 3014 119

13 123 45 911 9127 2226

OC1 12 5017 2425 414 2450 1318 74

7174 17 584 2580 1032

OC2 12 4802 2230 157 818 510 32

1114 4764 685 158

CRC 12 5352 2228 320 1663 1240 51

6237 17 573 2715 421

LC 6 5068 2168 380 2036 1238 64

6493 17 884 2919 588

AD 8 5569 1559 238 1743 941 44

3637 19 075 3182 228

RPE 18 1016 619 120 371 193 31

931 1667 320 216

Note: For each dataset, the number of samples, the number of phosphorylation sites that were identified and the number of proteins that are spanned by these

sites are shown. For each dataset and functional network pair, the number in the first row shows the number of sites with at least one interaction in the functional

network and the second row shows the number of interactions in the functional network with both sites present in the corresponding dataset.
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high Co-P values. In other words, the phosphorylation levels of sites
on the same protein are substantially more positively correlated as
compared to the phosphorylation levels of sites on different pro-
teins. While this observation can be partially explained by the im-
pact of protein expression levels, a recent study showed that the
protein abundance is overall not a strong indicator of phosphoryl-
ation fold changes (Arshad et al., 2019). Thus, we hypothesize that
intra-protein pairs exhibit higher Co-P because those pairs are more
likely to be targeted by the same kinase/phosphates, or that they are
more likely to be functionally associated by being part of the same
signaling pathways.

Note that, the differences between the datasets in terms of the
difference of intra- and inter-protein pairs are highly pronounced
(e.g. we observe strong difference for BC1, BC3, OC1 while the dif-
ference is more modest for BC2, CRC and AD). While there can be
biological reasons for this difference, it is important to note that
each of these datasets come from different platforms, different sam-
ple types (e.g. patient-derived xenografts versus cell lines), different
data collection procedures (e.g. protein degradation due to proteases
in the sample) and are highly divergent in terms of availability of
data (number of identified sites and number of samples). For this
reason, the observed differences between the datasets can also be
attributed to experimental, technological or statistical reasons.
Further investigation is needed to elucidate potential biological dif-
ferences between the systems that are represented by these datasets.

Next, we investigate whether the proximity on the protein se-
quence has any effect on the Co-P between two intra-protein sites.
Since previous studies suggest that closely positioned sites tend to be
phosphorylated by the same kinase (Schweiger and Linial, 2010),
we expect a positive relation between sequence proximity and Co-P
(i.e. we expect higher Co-P between close sites). To investigate this,
we plot the relationship between the sequence proximity of intra-
protein sites, and their Co-P. Figure 2b shows that the closely posi-
tioned intra-protein sites have higher Co-P. Thus, we observe that as

the phosphosites get far away from each other, their Co-P typically
reduces.

3.3 Co-P and functional association
Li et al. (2017) show that phosphorylation sites that are modified to-
gether tend to participate in similar biological processes. Here,
focusing on the dynamic range of phosphorylation, we hypothesize
that phosphosite pairs with correlated phosphorylation profiles are
likely to be functionally associated with each other. To test this hy-
pothesis, we investigate the relationship between Co-P and a broad
range of functional associations. Since our results in Figure 2 suggest
that there is a considerable difference between intra-protein and
inter-protein sites in terms of their Co-P, we perform stratified anal-
yses for intra- and inter-protein pairs. The results of this analysis are
shown in Figure 3.

Shared-kinase pairs. First, we consider the Co-P of the sub-
strates of the same kinase (i.e., shared-kinase pairs) as annotated by
PhosphositePlus. As seen in Figure 3a, in all datasets, the Co-P distri-
bution of shared-kinase pairs is significantly shifted upwards, i.e.,
sites that are targeted by the same kinase are likely to exhibit stron-
ger correlation of phosphorylation as compared to arbitrary pairs.
While this difference is more pronounced for intra-protein pairs, it is
also evident for inter-protein pairs. AD and RPE have the largest
positive shift in the Co-P distributions (0.37 and 0.43 respectively).
This observation is also in line with previous findings in the litera-
ture (Arshad et al., 2019; Ayati et al., 2019). In Ayati et al. (2019),
they used this characteristic to predict KSAs.

Phosphorylation sites on interacting proteins. It is well-
established that proteins that are coded by co-expressed genes are
likely to interact with each other (Ramani et al., 2008). Here, we
compare the PPI network and Co-P network to investigate the pat-
tern of Co-P of pairs of phosphosites on interacting proteins. Note
that, by definition, we only have this type of functional interaction

Fig. 1. Statistical significance of co-phosphorylation. Each panel compares the distribution of co-phosphorylation computed on a specific dataset against that computed on ran-

domly permuted data for each dataset. The blue histogram shows the distribution of co-phosphorylation (the correlation between the phosphorylation levels) of all pairs of

phosphosites identified in the corresponding study, the pink histogram in each panel shows the average distribution of co-phosphorylation of all pairs of phosphosites across

100 permutation tests. The permutation tests are performed by randomly permuting all entries in the phosphorylation matrix. The difference between the means of each pair

of distributions is given on the colored boxes below. The 95% confidence intervals for the difference are provided in brackets (A color version of this figure appears in the on-

line version of this article.)
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for inter-protein sites. As seen in Figure 3b, in most of the datasets
we consider (including BC1, BC3, OC1, OC2, LC and RPE), there is
a clear upward shift of Co-P for sites on interacting proteins. OC1
and BC1, with 0.1 and 0.09 movement, have the largest shift among
the datasets. This suggests that sites on interacting proteins are likely
to be co-phosphorylated. Identification of the specific PPIs that are
associated with Co-P can be potentially useful in elucidating the
mechanisms of these PPIs.

Co-evolution of phosphorylation sites. The conservation status
of the phosphosites has been used as a tool to measure PTM activity
(Boekhorst et al., 2008). It has been shown that co-evolving PTMs
are likely to be functionally associated (Minguez et al., 2012). Here,
we investigate the relationship between co-evolution and Co-P of
phosphosites. The results of this analysis are shown in Figure 3c. As

seen in the figure, the association between co-evolution and Co-P is
relatively weak compared to the association of Co-P with other
functional networks. For some datasets such as BC1, OC1 LC and
RPE, we observe that the co-evolving phosphosites on different pro-
teins are more likely to have a higher Co-P. However, in some data-
sets such as BC2, CRC and AD the co-evolving phosphosites that
are residing on the same proteins have higher Co-P.

Phosphorylation sites with common signaling pathways.
Identifying the signaling pathways that are dysregulated in any per-
turbation and disease is crucial for understanding the underlying
mechanism of diseases. Using PTMsigDB, we investigate the Co-P of
phosphosites that are involved in the same pathway. As seen in
Figure 3d, there is a considerable difference between the Co-P distri-
bution of the phosphosites that are involved in the same signaling

Fig. 2. Co-phosphorylation of phosphorylation sites on the same protein. (a) Comparison of the distribution of Co-P for all site pairs that are on the same protein (left histo-

gram) versus Co-P for all pairs of sites on different proteins (right histogram). Each violin plot represents a different dataset. Colored boxes below indicate the mean difference

between the intra-protein pairs and inter-protein pairs. Within brackets, 95% confidence intervals for the mean Co-P difference are provided. (b) The relationship between

Co-P and sequence proximity for pairs of sites that reside on the same protein. Each panel shows a different dataset, the x-axis in each panel shows the distance between sites

on the protein sequence (in terms of number of residues) and the y-axis shows the co-phosphorylation between pairs of sites in close proximity (up to the corresponding

distance in x-axis). The curve and shaded area respectively show the mean Co-P and its 95% confidence interval (A color version of this figure appears in the online version of

this article.)
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pathway as compared to that of other phosphosite pairs. Similar to
the results for shared-kinase pairs, this difference is more pro-
nounced for intra-protein sites. PTMsigDB is a sparse database, and
according to Table 1, there are not too many overlapping sites be-
tween PTMsigdb and these phosphoproteomics dataset. RPE and
LC have the biggest shift, 0.51 and 0.55, respectively. However,
there are just 588 and 216 phosphosites with annotations in the
PTMsigDB for these datasets. BC1 and BC3 have the largest overlap
with PTMsignDB with 2547 and 2226 phosphosites, and we observe
a great positive shift among the intra-protein sites (0.12 and 0.11). It
may suggest that the intra-protein phosphosites that are involving
on the same pathways are more likely to have a higher Co-P com-
pare to other phosphosites.

3.4 Predictive power of Co-P
Our results indicate that phosphosites involved in a common path-
way or targeted by a common kinase are likely to be co-
phosphorylated across different biological states. Motivated by this
observation, we quantitatively assess the effectiveness of Co-P in
predicting shared-kinase and shared-pathway associations between
phosphorylation sites. While doing so, we also assess the contribu-
tion of Co-P evidence supported by multiple datasets to the reliabil-
ity of predictions on functional association. For this purpose, we
assess the predictive ability of Co-P computed using each individual
dataset as well as the integrated Co-P computed using cross-dataset
analysis. The results of this analysis are shown in Figure 4.

In the left panel of Figure 4, the precision-recall curves for the
ability of the integrated network in predicting shared-kinase interac-
tions (top-left panel) and shared-pathway interactions (bottom-left

panel) are shown. As seen in the figure, the precision provided by
the Co-P network is significantly higher than random ordering for
both functional networks. We also observe that Co-P delivers higher
precision for the shared-pathway network as compared to the
shared-kinase network. This is likely because the information in
PTMSigDB is sparser than the information in PhosphositePLUS.

The right panel of Figure 4 shows the odds ratio of a pair of sites
being connected in the functional network as a function of the number
of edges in the Co-P network. Namely, in these plots, a point on the x-
axis corresponds to a Co-P network with a given number of edges. For
this network, the value on the y-axis shows the odds ratio of the event
that two sites are connected in the functional network given that they
are connected in the Co-P network, as compared to a random pair of
sites. As seen in the figure, for both shared-kinase and shared-pathway
networks, the odds ratio provided by the integrated Co-P network is
consistently higher than that provided by any individual network.
While the odds ratio of sharing a kinase goes up to 100 and the odds
ratio of being involved in the same pathway goes up to 30 for pairs of
sites with Co-P, these odds ratios respectively converge to 4 and 2 as
more edges are added to the integrated Co-P network. Overall, these
results suggest that Co-P networks provide valuable information on
the functional association of phosphorylation sites and this informa-
tion becomes more reliable as Co-P information from more datasets
are included in the Co-P network.

4 Conclusion

Mass-spectrometry techniques are advancing and more MS-based
quantitative phosphoproteomics data are generated at high volumes.

Fig. 3. The relationship between co-phosphorylation and functional association between pairs of phosphorylation sites. In each panel, the violin plots compare the distribution

of Co-P for phosphosite pairs with an edge in the respective functional association network (colored histograms) against all phosphosite pairs (gray-colored histograms), across

the nine datasets that are considered. For each dataset, the left/right violin plots respectively show intra-/inter-protein pairs. The black horizontal lines show the mean Co-P for

all (intra- or inter-protein) phosphosite pairs, the colored horizontal lines show the mean Co-P for functionally associated pairs. The four type of functional association net-

works that are considered are illustrated on the right side of the corresponding violin plot. On the rightmost side, the colored tables show the mean difference between func-

tionally associated pairs and all phosphosite pairs (corresponding to the gap between colored and black horizontal lines in the violin plots) for nine datasets and four

functional networks. In each cell, the 95% confidence intervals for the mean difference are given within brackets (A color version of this figure appears in the online version of

this article.)
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However, integration of these data may be challenging since the
data are generated in different labs and in different contexts. By
focusing on the relationships between pairs of phosphosites as
opposed to their individual phosphorylation levels, Co-P networks
can alleviate the dependency of computational and statistical meth-
ods on these factors. In this article, we systematically investigated
the relationship between Co-P and broad range of known functional
associations between proteins and phosphorylation sites. Our results
showed that the sites that are functionally associated tend to exhibit
higher levels of Co-P. Our results also showed that the integration of
Co-P networks across different datasets can improve the predictivity
of Co-P, as compared to analyzing the datasets in isolation.

Although these results provide considerable novel insights, there
are still some limitations to the power of Co-P. For example, Co-P
can be reliably assessed for datasets with a relatively high number of
samples (e.g. six) (Ayati et al., 2019). Moreover, the limited overlap
between LC/MS studies poses significant challenges to the integra-
tion of phosphorylation data from different studies. However, as
our results show, Co-P can be a useful tool for integrating multiple
datasets and increasing the reliability of functional association that
is inferred from Co-P patterns. In addition, most of the datasets uti-
lized in this study come from studies that aim to investigate a specif-
ic disease. While differential network analysis between Co-P and
non-disease-specific Co-P may provide further insight into the rewir-
ing of cellular signaling networks, additional non-disease-specific
datasets are needed for this purpose. Therefore, as the scale and
scope of LC/MC studies grow, the application of Co-P will become
more valuable.
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