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Abstract 

Motivation: Computational methods that track single-cells and quantify fluorescent 

biosensors in time-lapse microscopy images have revolutionised our approach in studying the 

molecular control of cellular decisions. One barrier that limits the adoption of single-cell 

analysis in biomedical research is the lack of efficient methods to robustly track single-cells 

over cell division events.  

Results: Here, we developed an application that automatically tracks and assigns mother-

daughter relationships of single-cells. By incorporating cell cycle information from a well-

established fluorescent cell cycle reporter, we associate mitosis relationships enabling high 

fidelity long-term single-cell tracking. This was achieved by integrating a deep-learning 

based fluorescent PCNA signal instance segmentation module with a cell tracking and cell 

cycle resolving pipeline. The application offers a user-friendly interface and extensible APIs 

for customized cell cycle analysis and manual correction for various imaging configurations. 

Availability and Implementation: pcnaDeep is an open-source Python application under the 

Apache 2.0 licence. The source code, documentation and tutorials are available at 

https://github.com/chan-labsite/PCNAdeep. 

Supplementary Information: Supplementary data are available online. 

Introduction 
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Image analysis at the single-cell level is a powerful tool to study cell-to-cell differences in a 

population, allowing the elucidation of cellular patterns invisible to population-averaged 

measurements (Skylaki et al., 2016). By combining multidimensional microscopic imaging 

with fluorescent reporters, it is now possible to study signalling processes that lead to cell 

fate decisions in detail. Among the most widely used fluorescent reporters are the human 

DNA helicase B (HDHB) (Gu et al., 2004), FUCCI (Sakaue-Sawano et al., 2008) and 

proliferative cell nuclear antigen (PCNA) (Zerjatke et al., 2017). The combination of these 

fluorescent reporters in various configurations have been used to reveal many new insights on 

the nature of cell cycle control (Barr et al., 2017; Spencer et al., 2013; Feringa et al., 2016; 

Min et al., 2020; Cappell et al., 2016; Cura Costa et al., 2021). A major challenge often faced 

when analysing these large-volume image datasets is the lack of a robust, efficient, and 

accurate cell detection & tracking solution (Skylaki et al., 2016).  

Here, we developed an application that incorporates the cell cycle phase information to 

facilitate the long-term tracking of single cells across cell division events. We utilized a 

widely available fluorescently-tagged PCNA, as an all-in-one reporter, to label cells and 

extract cell cycle information through a deep neural network Mask R-CNN (He et al., 2017). 

This allowed us to accurately detect cell division events and construct cell lineages in a 

context-aware manner. We encapsulated the above functionalities with a user-friendly 

interface for model training, evaluation and manual correction into a Python package named 

pcnaDeep. To our knowledge, pcnaDeep is the first fully automated image-to-quantification 

solution for linage tracing and interrogating cell cycle dynamics using a single fluorescence 

marker.  

Methods 

We worked on confocal microscopy images of RPE1 and MCF10A cells expressing 

endogenous mScarlet-PCNA (Supplementary Methods 1). The distinct changes in the 

PCNA fluorescence pattern during cell cycle progression faithfully report the cell cycle 

phases (Zerjatke et al., 2017). To simultaneously identify cell objects and cell cycle phase 

information, we performed instance segmentation by using a Mask R-CNN neural network. 

The model was trained on 728 images containing 34,137 cell instances, manually annotated 

with morphological labels that represent the various stages of cell cycle progression 

(Supplementary Methods 2). We used both PCNA fluorescence and brightfield (BF) images 

as the model input because the rounding of mitotic cells is easily identified on BF images 

(Supplementary Experiment 1). Cell objects were linked through the TrackPy package 

(Allan et al., 2019) which generates non-bifurcate tracks in a feature space. 

 To construct cell lineages with mitosis events, pcnaDeep first identifies mitosis events in 

TrackPy outputs. We developed a Greedy Phase Searching (GPS) algorithm (Supplementary 

Methods 3) to detect targeted phases in a noisy background. Tracks with detected mitosis 
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phase are broken into mother and daughter tracks at the frame of maximum velocity, as an 

approximation of cytokinesis. These separated tracks are put into a pool of potential mother-

daughter tracks together with orphan tracks that have M phase labels at the terminal. Mother-

daughter relationships are joined from this pool using a spatial-temporal thresholding 

algorithm. For filtered tracks, a score is calculated based on the linear sum of spatial and 

temporal penalties, which generates a cost matrix for one-mother-to-two-daughter 

assignments. The cost matrix is solved by Hungary algorithm (Kuhn, 1955) to find valid 

mother-daughter pairs. 

 To quantify other cell cycle phase transitions and durations, tracks are analyzed 

individually. An assumption was made that the cell cycle transition of individual tracks 

should proceed in the following order: M-G1-S-G2-M. We applied GPS to search for S phase 

under the background of G1/G2 labels. The rest G1/G2 labels are resolved based on their 

temporal locations relative to S and M phases. An overview summarising the analytical 

workflow of pcnaDeep is shown in Figure. 1. A detailed description of the software 

architecture is available in the attached supplementary information (Supplementary 

Methods 3). 

Results 

  We annotated the instance segmentation and cell cycle ground truth of six time-lapse 

videos to evaluate pcnaDeep (Supplementary Methods 4, Supplementary Experiments 

2~4). The weighted-average F1 score (wmF1) across cell cycle phase transitions or complete 

phase categories were adopted as major evaluation metrics. (1) To benchmark against 

TrackMate (Tinevez et al., 2017), we substituted tracking and mitosis association steps with 

TrackMate linear assignment problem (LAP) tracker. Compared with TrackMate, pcnaDeep 

shows much higher accuracy in determining cell cycle phase transitions (pcnaDeep wmF1: 

0.93±0.02; TrackMate: 0.64±0.11; mean±s.d., 6 videos) and cell cycle phase detection 

(pcnaDeep: 0.90±0.03; TrackMate: 0.39±0.12). (2) A grid search of thresholds for mitosis 

association showed low parameter sensitivity, with optimal configurations resulting in a 

mitosis phase detection accuracy of 0.94, recall of 0.81 and F1 of 0.87. (3) Down-sampling 

videos by half did not influence the performance with accordingly scaled parameters. (4) The 

frame error of cell cycle phase transition and duration was similar to a panel of human 

labellers. 

 The efficient Mask R-CNN model and downstream designs enable pcnaDeep to process 

hundreds of image frames with high cell density within minutes (Supplementary 

Experiments 5). By analyzing the cell cycle feature, mitosis tracks can be accurately 

associated, demonstrating the usefulness of this cellular context in cell tracking. Moreover, 

the output of pcnaDeep is importable into Fiji ImageJ (Schindelin et al., 2012) for 
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visualization and quantification. If required, manual correction can be done through a 

command-line interface.  

Conclusion 

We present pcnaDeep as an application that automatically segments the nucleus and tracks 

the cells in a context-aware manner, providing a flexible output mask useful for quantifying 

cellular dynamics of molecules in long-term live imaging experiments. pcnaDeep 

significantly saves time by removing the requirement for human manual tracking and 

annotation of single-cell tracks that take ~3 days/100 cells to several minutes. The accuracy 

of pcnaDeep is comparable to human annotations and do not suffer from human experimental 

bias, making this an attractive cell cycle profiling approach. Importantly, fluorescently tagged 

PCNA have been successfully introduced into a variety of biological systems using transient 

and stable transfection methods (Leonhardt et al., 2000; Kisielewska et al., 2005; Zerjatke et 

al., 2017; Icha et al., 2016; Barr et al., 2017). This makes pcnaDeep a powerful and flexible 

tool to accurately track and generate nuclear masks of cells in a variety of experimental 

settings that require single-cell linage tracing. 
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Figure 1. Overview of the stages in pcnaDeep main application. Mask-RCNN identifies cell 

nucleus instances and their morphological labels on PCNA fluorescence (PCNA FL) plus 

bright-field (BF) composite videos. TrackPy links objects into single tracks. Mitosis 

relationships are predicted for candidate tracks through thresholding, which link tracks into 

lineages. Cell cycle phases are resolved for each lineage using the GPS algorithm. 
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