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ABSTRACT
Motivation: We examine the effect of replication on the
detection of apparently differentially expressed genes in gene
expression microarray experiments. Our analysis is based on
a random sampling approach using real data sets from 16 pub-
lished studies. We consider both the ability to find genes that
meet particular statistical criteria as well as the stability of the
results in the face of changing levels of replication.
Results: While dependent on the data source, our findings
suggest that stable results are typically not obtained until at
least five biological replicates have been used. Conversely,
for most studies, 10–15 replicates yield results that are quite
stable, and there is less improvement in stability as the number
of replicates is further increased. Our methods will be of use
in evaluating existing data sets and in helping to design new
studies.
Contact: pp175@columbia.edu
Supplementary information: http://microarray.cpmc.columbia.
edu/pavlidis/pub/gxrep

INTRODUCTION
Replication is a straightforward method for improving the
quality of inferences made from experimental studies. How-
ever, replication increases the cost of experiments and, typ-
ically, the amount of material needed. In general, it makes
sense to do as much replication as is necessary to achieve
a desired level of sensitivity and specificity, but not much
more. This trade-off between cost and statistical power arises
frequently in gene expression microarray experiments. Rep-
lication is clearly necessary in this domain (Leeet al., 2000;
Novak et al., 2002), but microarray experiments are costly
and involve RNA samples that are often difficult to obtain.
We therefore need techniques for estimating in advance how
many replicates should be performed in a given study.
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†
Formerly William Noble Grundy: see www.gs.washington.edu/∼noble/

name-change.html

A standard approach to the problem of estimating the
statistical properties of a planned set of data is ‘power ana-
lysis’. Power analysis estimates the probability of correctly
rejecting the null hypothesis in favor of a specific alternative
while maintaining a particular Type I error rate. For the situ-
ations we consider here, the alternative hypothesis is usually
expressed in terms of ‘effect size’, the actual difference in
the group means (relative to the variance) that is desired to
be detected. A mathematical model of the data is then used
to estimate how many replicates are needed to achieve the
desired Type I and Type II error rates. Certain parameters for
the modeled data (most critically, the expected variability) are
often estimated from real data, perhaps from a pilot study.

Although clearly a useful tool, power analysis comes with
some caveats. First, the estimated variability is critically
dependent on the assumptions of the model and the quality
of the input parameter estimates. A second set of assump-
tions enters into the statistical test that is used to evalute
the null hypothesis. In addition, for gene expression stud-
ies, power analysis is potentially extremely complex, with a
separate set of parameters for each gene, not to mention the
need to account for complex interactions among genes. To our
knowledge such a complete power calculation has not been
attempted, though some papers have used simpler power ana-
lyses to study microarray expression data (Zienet al., 2002;
Hwanget al., 2002; Panet al., 2002).

In this paper, we study the effect of increasing (or decreas-
ing) replication on the detection of differentially expressed
genes in real data sets, avoiding the assumptions required to
simulate data. However, because in real data sets we do not
know which genes truly show differential expression, we can-
not directly assess power. Instead, we examine aspects of the
results which are of interest to biologists and which comple-
ment traditional power analyses. We make our findings as
general as possible by analyzing many data sets.

We consider a simple general type of experiment, the goal
of which is to identify genes that are differentially expressed
between two experimental groups (for example, tumor and
normal tissue). The two groups each contain a number of
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replicate samples. These replicates are derived from differ-
ent biological sources, as opposed to so-called ‘technical
replicates’, in which the same biological sample is tested
multiple times. Differentially expressed genes are identified
by a statistical test for group comparison (such as at-test),
where the null hypothesis is equality of the group means. A
p-value threshold is applied following the test to establish a
desired Type I error rate. The final result obtained from this
hypothetical experiment is a list of genes that are differentially
expressed at a particular level of statistical confidence.

To study various levels of replication, we use a random
sampling approach. Given a real data set, we simulate smal-
ler data sets of various sizes by randomly selecting samples
from it. For example, if we start with a data set containing at
least 12 replicates in each group, then we can make data sets
of any level of replication (up to 12) by randomly selecting
from the real samples (Fig. 1). We then examine properties
of each of these sampled data sets with methods described
below. We repeat this procedure on many data sets, for every
possible level of replication, for many random samples, to
generate a large set of statistics on the properties of data sets
of various sizes.

We consider two qualities of each sampled data set. The
first and most important is the ability to obtain any results at
all, that is, to find genes that meet our statistical criteria. We
refer to this property as ‘apparent power’ to distinguish it from
power in the strict sense. Because increasing sample size will
essentially always increase power, it might be reasonable for
an experimenter to choose a level of replication that is suf-
ficient to yield ‘enough’ high-confidence candidates, where
‘enough’ must be defined by the needs of the experiment.

The second quality that we consider is the stability of the
results. Note that stability is only meaningful if some genes
have met our statistical criteria. We define stability as the
tendency for the results to remain the same as the replication
level is changed. We define two metrics of stability, which
differ in their stringency. First, we consider the stability of
the identities of the genes that meet the statistical criteria.
Second, we consider the rank order of those genes. Details of
our metrics are provided in the methods section, below.

Our goal is to identify, for each data set, a level of replica-
tion that yields good performance according to our metrics,
but without requiring an unreasonably large number of rep-
licates. We wish to ask, ‘Can we find useful results with only
a few replicates?’ and at the other extreme, ‘Do we need
30 replicates?’ Although the experimental design used here is
simple—identifying differentially expressed genes across two
conditions—the techniques that we describe could be applied
to a wide range of situations.

Our results suggest that while statistical power is a critical
consideration in experimental design, researchers should also
consider the stability of the results they obtain. While the spe-
cific findings are data dependent, we found that good apparent
power and stability can usually be obtained with fewer than
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Fig. 1. Outline of methods. A schematic of the methods used in this
study. The data sets are depicted as collections of data from individual
microarrays (indicated by grey bars). In this simple experiment, there
are two types of tissues, X (light grey) and Y (dark grey), which
were tested with the goal of identifying genes that are differentially
expressed between groups X and Y. (A) The sampling procedure. The
ovals indicate procedures that are repeated during the experiment. To
create a sampleS of sizer, arrays are removed (indicated by blanks)
at random from the full data set. The properties of this data set are
tested by comparison to a test sample (SampletestorStest), generated
by removing one additional sample at random from each group. Up
to 10 Stests are made randomly from eachS (innermost loop) to
establish stability measures forS. (B) Outline of the statistical testing
procedure, starting with the output of a single sampling trial as shown
in (A). First, at-test is used to generate a ranking of the genes in the
two data sets. Then a statistical threshold is applied to select genes.
As indicated by the dashed line, the results fromS are compared to
Stest. See text and Figure 2 for further details.

15 replicates, and often with fewer than 10. On the other hand,
using fewer than five replicates almost always results in poor
apparent power and low stability. The methods we present can
be used in study design, by researchers who have pilot data and
wish to estimate the benefits of performing more experiments,
and for evaluating the reliability of existing data.

METHODS
Data sets
We used microarray gene expression data sets from publically
available sources, as summarized in Table 1. If the original
data set included more than two types of samples, we gener-
ally chose the two groups with the largest number of replicates
for further study. If necessary, for some cDNA data sets we
imputed missing data points as the mean of the values for the
gene, and genes that were missing more than 20% of the data
were not used. We did not attempt to replicate precisely the
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Table 1. Data sets used in this study

Reference Replicates Genes Type Description

Allanderet al. (2001) 6 1987 cDNA Sarcoma (GIST versus spindle cell carcinoma)
Hedenfalket al. (2001) 7 3226 cDNA Breast cancer (BRCA1 versus BRCA2)
Callow et al. (2000) 8 6384 cDNA Knockout mice (apoIA-/- versus control)
Huanget al. (2001) 8 12 558 oligo Thyroid cancer (papillary tumor versus normal)
Luo et al. (2001) 9 2303 cDNA Prostate (cancer versus BPH)
Ramaswamyet al. (2001) 10 16 063 oligo Cancer (breast versus prostate adenocarcinoma)
Eaveset al. (2002) 12 39 114 oligo Mouse (spleen versus thymus)
Shippet al. (2002) 19 7129 oligo Lymphoma (DLBCL versus FL)
Khanet al. (2001) 20 2303 cDNA Sarcoma (EWS versus RMS)
Armstronget al. (2002) 20 12 582 oligo Leukemia (MLL versus ALL)
Alon et al. (1999) 22 2000 oligo Colon cancer (tumor versus normal)
Golubet al. (1999) 25 7129 oligo Leukemia (ALL-Bcell versus AML)
Yeohet al. (2002) 27 12 625 oligo Leukemia (E2APBX versus TEL AML).
Gruvbergeret al. (2001) 28 3389 cDNA Breast cancer (ER+ versus ER−)
Garberet al. (2001) 32 22 115 cDNA Lung cancer (adenocarcinoma versus other)
Singhet al. (2002) 50 12 600 oligo Prostate (tumor versus normal)

Summary of the 16 data sets used to study the effect of replication. The table lists the largest number of replicates we used, which is not necessarily the complete published data set.
The number of genes (or, more precisely, the number of array elements) is also indicated. The ‘Type’ column refers to the type of array which was used in the study, either ‘cDNA’ for
data that was collected using two-color cDNA microarrays, ‘oligo’ for Affymetrix-type oligonucleotide arrays. The last column description of the experiment and the comparison we
studied. For details, see the web supplement. Abbreviations: apoIA, apolipoprotein IA; E2APBx, GIST, gastrointestinal stromal tumor; ER, estrogen receptor; AML, acute myeloid
leukemia; BPH, benign prostate hyperplasia; DLBC, diffuse large B cell lymphoma; FL, follicular lymphoma; EWS, Ewing’s sarcoma; RMS, rhabdomyosarcoma; MLL, mixed
lineage leukemia; ALL, acute lymphoblastic leukemia; AML, acute myeloid leukemia.

analysis of interest in the original study. For example, in one
case (Eaveset al., 2002), we examine a distinction (spleen
versus thymus) that was not examined in the original public-
ation. Therefore, our study should not taken as an evaluation
of the quality of the original work. Details on the data sets as
used in our study are available on our web site.

Gene evaluation
To evaluate the significance of a gene, we use the Student’s
t-test. This test is performed on each gene in the data set, in
each case testing the null hypothesis that the mean expression
level for the gene is equal in the two groups of samples. Our
use of thet-test implies assumptions about the distribution of
the data, namely normality and homoscedasticity, which may
or may not be valid in various cases. Thet-test is a reasonable
choice because it is simple to perform, and commonly used in
published microarray studies. Our basic findings are unlikely
to be dramatically affected by the exact choice of test, and this
is supported by preliminary results with the Mann–Whitney
‘U ’ test (see the web supplement).

Multiple test correction
To set appropriate statistical thresholds for each trial, account-
ing for the multiplicity of testing thousands of genes in each
data set, we use a method that controls the false discovery rate
[FDR; Benjamini and Hochberg (1995)]. The false discovery
rate is the number of null hypotheses that can be expected
to be falsely rejected (that is, false positives) expressed as a
fraction of the total number of genes selected. For a desired

FDR (e.g. 0.05), we identify at-testp-value threshold using
the method of Benjamini and Hochberg (1995).

Experimental design
Our testing procedure for each data set is illustrated in
Figure 1. This entire procedure is repeated for each data set
listed in Table 1. Each data set originally contains two groups
of samples with sizen andn′ (n ≤ n′). The largest data set
we consider in a simulation is of size 2n. From the full data
set, a number of replicatesr (3 ≤ r ≤ n) is chosen. By
randomly choosingr samples (microarrays) from each exper-
imental group, a new data set called aSample (abbreviatedS)
is created. Up to 100 such randomly generated pseudo data
sets are created for each value ofr, though only the possible
distinct subsamples of the data are studied if this is fewer
than 100. For eachS, multiple test data setsStest are created
by randomly removing one sample from each group (Fig. 1A).
Thus, if S contains four per group, thenStest contains three
replicates per group. We test up to 10 randomly createdStests
for eachS (whenr = 3, only nine differentStests are pos-
sible). The stability statistics (see below) for the 10Stests are
averaged to yield measures of stability forS. This procedure
is repeated for each value ofr. For r = n in data sets where
n = n′, there is only one possibleS; thus, in this situation
we instead create up to 100 randomStest data sets instead of
just 10 to help ensure that we collect sufficient samples to get
good statistics. This procedure of removing a single replic-
ate is similar in character to a jackknife sampling (Efron and
Tibshirani, 1998). However, unlike the jackknife, we do not
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attempt to assess the effect of all possible sample removals
because usually these are too numerous. Another difference
from a jackknife sample is that, in order to keep our experi-
ments simple, for each trial, we remove one sample from each
group—two samples in total—instead of a single sample.

ForS andStest, a Student’st-test is performed on each gene.
This generates a ranking of the genes in each data set, where
the highest ranked genes are most likely to exhibit changes in
expression. A statistical threshold based on FDR (described
earlier) is then applied to both ranked lists. The ranking and
the selected genes in eachStest are compared to the ranking
and selected genes inS using the metrics described above.
The median and interquartile range of the stability and power
metrics for all psuedo data sets is determined for eachr.

Measuring stability and power
As outlined above, we developed three metrics for assessing
the apparent power and stability of each data setS. We refer
to the genes selected inS at a given FDR asSsel (for ‘genes
Selected from Sample’). The ‘apparent power’ is the size of
Ssel. This metric indicates how many replicates are needed
before genes begin to meet a particular statistical threshold.
Apparent power is expressed in units of genes selected, unlike
power in the strict sense, which is expressed as a value between
0 and 1, because we do not know how many genes actually
show changed expression.

The two stability metrics involve comparing the ranked list
of genes selected fromS to the ranking obtained when one rep-
licate is removed (Stest). A simple example illustrating how
both stability metrics operate is shown in Figure 2. The first
metric is the fraction of genes inStestsel that are also inSsel.
We refer to this metric as ‘recovery’; it ranges from 0.0 (none
of the genes inStestsel are inSsel) to 1.0 (all are inSsel).
For example, a value of 0.5 means that when one replicate is
removed (yieldingStest), some genes still meet the statistical
criterion, but only half of them met the criterion before (inS).
Thus, this measure captures an important aspect of data sta-
bility: in a data set with a high recovery score, the identities of
the genes that are selected by the statistical test would likely be
similar if an additional replicate experiment were performed.

The second stability metric measures the degree to which the
ordering of genes selected fromS andStest is preserved. The
test statistic is the Spearman rank correlation of the rankings
for genes that occur in bothStestsel andSsel. This ‘order’ met-
ric varies from−1.0 (exactly reversed order) to 1.0 (exactly the
same order). The ‘order’ measure captures a more subtle but
still important aspect of data stability than ‘recovery’: in a data
set with a high order score, the relative ranking of the selected
genes would not change dramatically if an additional replicate
experiment were performed. Note that neither stability metric
is intended to measure the correctness of the results.

When apparent power is zero, the stability metrics cannot
be computed becauseStestsel contains no genes. We report
recovery and order statistics for a givenp-value threshold only

...

Stest

...

S

Apparent power = 4
Recovery = 2/3
Order = 1.0

(1000 total genes)

{Ssel } Stestsel

Fig. 2. Metrics. A toy example illustrating the metrics used in this
study. Genes are indicated by bars, and the vertical order indicates the
statistical ranking. In this example, there are 1000 genes, of which
only the top ranked are shown. InS, four genes are selected (indicated
by four differently shaded bars) at a given threshold (indicated by
the dotted line). InStest (which contains one fewer replicate thanS),
only three genes are selected at the same threshold; the genes that
were selected inS now have the locations shown. The values of the
three metrics we used are shown on the right. The ‘apparent power’ is
simply the number of genes above the threshold inS. The ‘recovery’
score is 2/3, because of the three genes selected inStest, two of them
were selected inS. The ‘order’ score is 1.0, because the two genes
that appear in both selected sets occur in the correct relative order;
that is, the top gene is still ranked higher than other selected genes.
See text for details.

if the number of ‘successful’ tests was at least 10, sufficient
to collect reasonable statistics. In addition, when only small
numbers of genes are selected, both ‘order’ and ‘recovery’ can
only attain a very restricted set of values, and will be highly
variable. To help limit these effects, we only show results for
a given FDR if at least two genes were selected on average for
that setting.

RESULTS
We study the effect of replication in 16 published data sets. We
present only a portion of our results in detail here; full results
for all data sets are available on our web site (microarray.
cpmc.columbia.edu/pavlidis/pub/gxrep). We focus on results
at one false discovery rate setting, 0.05, which is the third-most
stringent we used. Figure 3 summarizes the main results for all
16 data sets. Figure 4 shows more detailed graphs for selected
data sets. In our presentation of the results, we first consider
apparent power and then each stability measure in turn.

Apparent power
As expected, when the number of replicates is small, the
apparent power is low. In some data sets containing many rep-
licates, many genes are assignedp-values of 10−10 or smaller.
However, when the number of replicates is reduced to a low
level, smallp-values become rare. Using multiple testing cor-
rection based on FDR, often few or no genes are selected from
data sets containing five or fewer replicates (Fig. 3A). This is
true even at the most lax FDR we tested (0.1; see web site).

By definition, increasing the number of replicates increases
statistical power (in the strict sense). Similarly, if we examine
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Fig. 3. Summary of results. Each line represents results for one data set shown in Table 1, at an FDR of 0.05. Not all of the 16 data sets are
illustrated on these graphs, because some failed to meet criteria at this FDR (see our web site for more results). The plots are of the median
values for all trials. Error bars are omitted for clarity. The dashed lines in (B) and (C) indicate the 0.8 and 0.9 levels. (A) Plot of the number of
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how many genes areactually selected as replicates increase
(apparent power), then we observe a steady increase, with
little leveling off (Figs. 3A and 4A; note the logarithmic scale).
This effect illustrates that, for the available data, there is no
obvious point at which all differentially expressed genes have
been statistically detected.

The apparent power is expected to be inversely proportional
to the subtlety of the biological effect under investigation as
well as inversely proportional to the amount of experimental
noise. Not surprisingly, given the variety of data sets we ana-
lyzed, we observe a wide range in apparent power. Table 2
summarizes this range, listing the apparent power for each
data set when using all available replicates. For some data
sets, apparent power at the threshold we focus on (0.05) is as
much as 35% of the genes on the array (Table 2). This is not
only an effect of the different maximal levels of replication
among the data sets. Even if we look at a single level of rep-
lication across multiple data sets, a similarly wide range of
numbers of genes are selected (Table 3; see also Fig. 3A).

Our stability results (below) must be viewed in the context
of the effect of replication on apparent power. In fact, for most
data sets, at very low levels of replication and at higherp-value
thresholds, the stability metrics cannot be used because no
genes are found. This result suggests that when very few rep-
licates are available, power is too low for simple statistical
criteria to be of much use in detecting differential expression.

Stability
The two stability metrics, recovery and order, are illustrated in
Figures 3 and 4, C and D, respectively. Unlike apparent power,
both stability metrics tend to level off past a certain number of
replicates. Thus, increasing the number of replicates beyond
a certain value yields a relatively small increase in stability.
For most data sets, the change in recovery score slows at
approximately 8–12 replicates; some reach this level with as
few as 6 replicates (Fig. 3C; Fig. 4C, Eaves). In general, the
recovery metric levels off with scores of 0.8–0.95. Increases
in the more stringent order metric continue until at least 10
or 15 replicates are used (Fig. 4D), although as few as eight
replicates are necessary for some data sets. Maximal order
stability scores are typically 0.8–0.9.

For some of the smaller data sets (less than 10 replicates
available), we are unable to observe any leveling off of the
stability metrics. We consider the results for these data sets
(in particular, the Huang, Callow and Hedenfalk data sets) to
be inconclusive, because we do not know how many replicates
would be required to obtain stability.

Details of four data sets
As mentioned, we observe a range of behaviors for individual
data sets, and it is informative to examine the results in detail.
Here we discuss the four data sets shown in Figure 4, which
cover a wide range of the behaviors we observed. They were
selected for display in part because they have many replicates,

Table 2. Number of genes selected at each FDR (apparent power), when
using all replicates

Data set 0.0125 0.025 0.05 0.1 Fract.

Callow — — 4 10 0.0006
Huang 15 32 53 127 0.0042
Hedenfalk — 3 18 91 0.0056
Alon 12 14 24 68 0.0120
Armstrong 222 309 478 820 0.0380
Gruvberger 80 123 184 298 0.0543
Shipp 104 190 391 755 0.0548
Khan 101 139 192 283 0.0834
Garber 833 1309 2112 3403 0.0955
Golub 300 460 708 1092 0.0993
Yeoh 1342 1551 1833 2252 0.1452
Allander 137 213 328 472 0.1651
Singh 619 954 2091 4402 0.1660
Luo 319 488 741 1169 0.3218
Eaves 10 183 11 738 13 666 16 286 0.3494
Ramaswamy 1764 3598 5797 8041 0.3609

The fraction of the genes on the array that are selected at a FDR of 0.05 is shown in the
last column. See Table 1 for the microarray sizes. A ‘—’ indicates that too few genes
met criteria for inclusion in the study (<2 on average). A plot of the data in this table is
given in Figure 3A.

Table 3. Number of genes selected at each FDR (apparent power), when
using 10 replicates

Data set 0.0125 0.025 0.05 0.1 Fract.

Alon — — — 8 —
Singh — 6 8 20 0.0006
Garber 11 29 34 166 0.0015
Golub 8 8 16 40 0.0022
Armstrong 12 15 31 87 0.0025
Gruvberger 5 6 10 13 0.0030
Shipp 7 12 22 54 0.0031
Khan 25 33 49 82 0.0213
Yeoh 327 450 615 876 0.0487
Eaves 8556 10 095 11 929 14 491 0.3050
Ramaswamy 1764 3598 5797 8041 0.3609

The fraction of the genes on the array that are selected at a FDR of 0.05 is shown in the
last column. See Table 1 for the microarray sizes. A ‘—’ indicates that too few genes
met the threshold for inclusion (<2 genes on average). Only data sets containing at least
10 replicates could be included in this table.

so we can make relatively confident conclusions about the
results.

The Eaves data set is somewhat unusual, first because unlike
most of our data sets it comes from mouse, and second
because of the large difference between the tissues we com-
pared (spleen and thymus). We reiterate that this comparison
was not the one of primary interest to Eaveset al. (2002)
who were interested in the (relatively very small) differences
between defined groups of samples within each tissue type.
The number of replicates for those comparisons was only four,
so we did not attempt to study them. Using all 12 replicates, the
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apparent power represents thousand of genes (out of≈40 000
on the array). This data set also shows high stability at low
numbers of replicates compared to many of the cancer data
sets: even the order stability metric reaches 0.8 with only six
replicates.

The Shipp, Armstrong and Yeoh data sets all involve com-
paring different tumor types. The Armstrong and Shipp data
sets have lower apparent power than Yeoh, even when many
replicates are used, suggesting that the biological distinction
for those data sets is relatively subtle. For the Yeoh data set, we
compared E2APBx with TEL AML (acute myeloid leukemia),
which differ in characteristic chromosomal rearrangements,
though both are B-cell lineage leukemias (Yeohet al., 2002).
Using all 27 replicates, nearly 2000 genes show significant
differences in expression at a FDR of 0.05. Recovery stability
was high even with only five or six replicates; order stabil-
ity is over 0.8 once nine replicates are used. The full data set
shows very high stability, among the highest we measured in
this study. Several other cancer data sets seemed similar in
character, including those of Khan, Golub, Luo and Allander,
though not all showed as strikingly high apparent power.

Like Yeoh et al. (2002), Armstronget al. (2002) studied
leukemia, and compared acute lymphoblastic leukemia (ALL)
with a subtype that involve particular chromosome transloca-
tions (mixed-lineage leukemia, MLL). It required somewhat
more replicates than Yeoh to reach our stability threshold of
0.8. The Garber and Ramaswamy data sets showed similar
behavior.

Shippet al. (2002) compared diffuse large B-cell lymphoma
with follicular lymphoma. This data set required more replic-
ates to reach stability (10–15) than the Yeoh and Armstrong
data sets. The Alon and Singh data sets showed similar beha-
vior. The samples used for these data sets may have greater
heterogeneity than the Yeoh data set, for example.

DISCUSSION
Our results show that in most cases, using fewer than five
replicates results in rather poor results in a statistical ana-
lysis, both in terms of apparent power and in stability. For
most data sets, near-maximal levels of stability are obtained
between eight and 15 replicates, with most of the improvement
occurring by ten replicates. This is also the range of replic-
ate levels that typically result in the detection of differential
expression at quite high levels of statistical confidence (FDR
0.05 or lower). Even with the most stringent measure of sta-
bility (order), using more than 15 replicates has a diminishing
effect for most data sets where we could test this. These num-
bers are naturally quite data-dependent. Therefore, planning
a future experiment would require looking at apparent power
and stability scores for data sets that are likely to have similar
properties to the proposed study.

We developed these methods to complement power analysis
by more familiar methods. While in our studies we are unable

to directly address questions of power, we base our observa-
tions entirely on realistic situations. Power analysis, on the
other hand, directly estimates power, but its ability to do so
is contigent on the realism of the model used. Interestingly,
these two different approaches yield results that are generally
in agreement. For example, Zienet al. (2002) suggest that
15 or more replicate samples are needed to be able to detect
fairly large changes in expression (3-fold) with good power
(>0.8), using models based on five data sets. In another study,
(Hwanget al., 2002) suggest that eight replicates should be
sufficient to detect an effect of size 2 for one particular data
set (that of Golubet al., 1999) at 0.95 power and 0.95 confid-
ence (Hwanget al., 2002). Panet al. (2002) found that eight
replicates were needed to detect an effect of size 3 with power
0.8 in a rat radiolabeled microarray data set.

If the above results are accepted as broad guidelines, then
it would seem that most published studies probably have very
little power. In fact, even doing three replicates has only
recently become common, and other than cancer studies, we
are aware of very few studies that do as many as five. How-
ever, a brief review of the literature reveals dozens of papers
that use hardly any replication if any, yet appear to yield at
least some results of value. Why do researchers find poorly
replicated experiments useful? The simple explanation is that
high power is not always necessary to yield some useful res-
ults from a microarray study. The usefulness of a microarray
study is often gauged byhow many high quality differentially
expressed genes are obtained, not by thefraction of all such
genes that are detected (which is generally unknowable any-
way). The latter requires high power; the former only requires
that some of the expression changes be robust enough to be
reliable. Even with no replication, some of the most striking
findings are likely to be ‘real’.

Given that a statistical approach breaks down in the presence
of few replicates, a ‘fold change’ or other heuristic method
must be adopted to select genes from such data. The cost
of such an approach is that very stringent criteria need to be
applied, and the results must be confirmed with an alternat-
ive method. This approach is unlikely to be effective if the
expected expression changes are subtle and are restricted to
a small number of genes—a common situation, as shown in
Table 2. In particular, specificity would likely be very low.
In many cases, the ‘fold change’ method will yield so many
erroneous results as to be of highly questionable use. We note
that our methods can easily be extended to an examination of
‘fold change’, a topic we leave for further study.

Our methods can be readily applied to new data sets to
assess their reliability. First, assessing apparent power obvi-
ously does not require a sampling approach: lack of apparent
power will be obvious if no genes meet reasonable statistical
criteria. For the recovery and order metrics, the situation is
equivalent to the trials in our experiments when all replicates
are being used. The random sampling would be applied (or,
preferably and if computationally feasible, a full jackknife
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sampling) to generate pseudo data sets containing one fewer
replicate, and our stability metrics applied.
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