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ABSTRACT

Motivation: We examine the effect of replication on the
detection of apparently differentially expressed genes in gene
expression microarray experiments. Our analysis is based on
arandom sampling approach using real data sets from 16 pub-
lished studies. We consider both the ability to find genes that
meet particular statistical criteria as well as the stability of the
results in the face of changing levels of replication.

Results: While dependent on the data source, our findings
suggest that stable results are typically not obtained until at
least five biological replicates have been used. Conversely,
for most studies, 10-15 replicates yield results that are quite
stable, and there is less improvement in stability as the number
of replicates is further increased. Our methods will be of use
in evaluating existing data sets and in helping to design new
studies.

Contact: ppl75@columbia.edu

Supplementary information: http://microarray.cpmc.columbia.
edu/pavlidis/pub/gxrep

INTRODUCTION

A standard approach to the problem of estimating the
statistical properties of a planned set of data is ‘power ana-
lysis’. Power analysis estimates the probability of correctly
rejecting the null hypothesis in favor of a specific alternative
while maintaining a particular Type | error rate. For the situ-
ations we consider here, the alternative hypothesis is usually
expressed in terms of ‘effect size’, the actual difference in
the group means (relative to the variance) that is desired to
be detected. A mathematical model of the data is then used
to estimate how many replicates are needed to achieve the
desired Type | and Type Il error rates. Certain parameters for
the modeled data (most critically, the expected variability) are
often estimated from real data, perhaps from a pilot study.

Although clearly a useful tool, power analysis comes with
some caveats. First, the estimated variability is critically
dependent on the assumptions of the model and the quality
of the input parameter estimates. A second set of assump-
tions enters into the statistical test that is used to evalute
the null hypothesis. In addition, for gene expression stud-
ies, power analysis is potentially extremely complex, with a
separate set of parameters for each gene, not to mention the
need to account for complex interactions among genes. To our

Replication is a straightforward method for improving the knowledge such a complete power calculation has not been
quality of inferences made from experimental studies. HOW-attempted, though some papers have used 5imp|er power ana-
ever, replication increases the cost of experiments and, typyses to study microarray expression data (Zal., 2002;
ically, the amount of material needed. In general, it makefHwanget al., 2002; Paret al., 2002).

sense to do as much replication as is necessary to achievein this paper, we study the effect of increasing (or decreas-
a desired level of sensitivity and specificity, but not muching) replication on the detection of differentially expressed
more. This trade-off between cost and statistical power arisegenes in real data sets, avoiding the assumptions required to
frequently in gene expression microarray experiments. Repsimulate data. However, because in real data sets we do not
lication is clearly necessary in this domain (L&tel., 2000;  know which genes truly show differential expression, we can-
Novak et al., 2002), but microarray experiments are costlynot directly assess power. Instead, we examine aspects of the
and involve RNA samples that are often difficult to obtain. results which are of interest to biologists and which comple-
We therefore need techniques for estimating in advance hO‘N]ent traditional power ana|y3es_ We make our findings as
many replicates should be performed in a given study. general as possible by analyzing many data sets.

We consider a simple general type of experiment, the goal
of which is to identify genes that are differentially expressed
between two experimental groups (for example, tumor and
normal tissue). The two groups each contain a number of
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replicate samples. These replicates are derived from differ- o _

ent biological sources, as opposed to so-called ‘technical (f de‘

replicates’, in which the same biological sample is tested v e
multiple times. Differentially expressed genes are identified¢ Remave

by a statistical test for group comparison (such astest), ¢

where the null hypothesis is equality of the group means. A HH

. N X ) Full data set Sample (S) Sample-test (Sieq)

p-value threshold is applied following the test to establish a 6 pergroup Spergrou

desired Type | error rate. The final result obtained from this \\

hypothetical experimentis alist of genes that are differentially g

expressed at a particular level of statistical confidence. g m!

To study various levels of replication, we use a random  sampe :

l

t

Sample-selected (Ssel)

sampling approach. Given a real data set, we simulate smal- """
ler data sets of various sizes by randomly selecting samples

from it. For example, if we start with a data set containing at

least 12 replicates in each group, then we can make data sets P =g S
of any level of replication (up to 12) by randomly selecting ~ Samletest (i) o

from the real samples (Fig. 1). We then examine properties

of each of these sampled data sets with methods described
below. We repeat this procedure on many data sets, for evefig. 1. Outline of methods. A schematic of the methods used in this

possible level of replication, for many random samples, tostudy. The data sets are depicted as collections of data from individual
generate a large set of statistics on the properties of data séficroarrays (indicated by grey bars). In this simple experiment, there
of various sizes. are two types of tissues, X (light grey) and Y (dark grey), which

We consider two qualities of each sampled data set Thyere tested with the goal of identifying genes that are differentially

. . . o . expressed between groups X and&) The sampling procedure. The
first and most important is the ability to obtain any results atovals indicate procedures that are repeated during the experiment. To

all, that 'S_' to find genes that meet our statls_tlgal Crlter_la. Wecreate a samplg of sizer, arrays are removed (indicated by blanks)
refer to this property as ‘apparent power’ to distinguish it fromat random from the full data set. The properties of this data set are
power in the strict sense. Because increasing sample size Willsted by comparison to a test samplerpleiesiOr Sies), generated
essentially always increase power, it might be reasonable fady removing one additional sample at random from each group. Up
an experimenter to choose a level of replication that is sufto 10 Siess are made randomly from each(innermost loop) to
ficient to yield ‘enough’ high-confidence candidates, whereestablish stability measures f&r(B) Outline of the statistical testing
‘enough’ must be defined by the needs of the experiment. Procedure, starting with the output of a single sampling trial as shown
The second quality that we consider is the stability of the/ (A)- First, ar-testis used to generate a ranking of the genes in the
results. Note that stability is only meaningful if some genestwo data sets. Then a statistical threshold is applied to select genes.

have met our statistical criteria. We define stability as theS ndicated by the dashed line, the results fr§rare compared to
; %est. See text and Figure 2 for further details.

tendency for the results to remain the same as the replicatio
level is changed. We define two metrics of stability, which

differ in their stringency. First, we consider the stability of 15 replicates, and often with fewer than 10. On the other hand,
the identities of the genes that meet the statistical criteriausing fewer than five replicates almost always results in poor
Second, we consider the rank order of those genes. Details %parent power and low stability. The methods we present can
our metrics are provided in the methods section, below.  pe ysed in study design, by researchers who have pilotdata and
Our goal is to identify, for each data set, a level of replica-yish to estimate the benefits of performing more experiments,

tion that yields good performance according to our metricsgnq for evaluating the reliability of existing data.
but without requiring an unreasonably large number of rep-

licates. We wish to ask, ‘Can we find useful results with °”'yMETHODS

a few replicates?’ and at the other extreme, ‘Do we need

30 replicates?’ Although the experimental design used here i@ata sets

simple—identifying differentially expressed genes across twdNe used microarray gene expression data sets from publically

conditions—the techniques that we describe could be appliedvailable sources, as summarized in Table 1. If the original

to a wide range of situations. data set included more than two types of samples, we gener-
Our results suggest that while statistical power is a criticaklly chose the two groups with the largest number of replicates

consideration in experimental design, researchers should alfor further study. If necessary, for some cDNA data sets we

consider the stability of the results they obtain. While the speimputed missing data points as the mean of the values for the

cific findings are data dependent, we found that good apparegene, and genes that were missing more than 20% of the data

power and stability can usually be obtained with fewer thanwere not used. We did not attempt to replicate precisely the

Comparisons for stability determination
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Table 1. Data sets used in this study

Reference Replicates Genes Type Description

Allanderet al. (2001) 6 1987 cDNA Sarcoma (GIST versus spindle cell carcinoma)
Hedenfalket al. (2001) 7 3226 cDNA Breast cancer (BRCA1 versus BRCA2)
Callowet al. (2000) 8 6384 cDNA Knockout mice (apolA-/- versus control)
Huanget al. (2001) 8 12558 oligo Thyroid cancer (papillary tumor versus normal)
Luoet al. (2001) 9 2303 cDNA Prostate (cancer versus BPH)

Ramaswamyt al. (2001) 10 16063 oligo Cancer (breast versus prostate adenocarcinoma)
Eaveset al. (2002) 12 39114 oligo Mouse (spleen versus thymus)

Shippet al. (2002) 19 7129 oligo Lymphoma (DLBCL versus FL)

Khanet al. (2001) 20 2303 cDNA Sarcoma (EWS versus RMS)

Armstronget al. (2002) 20 12582 oligo Leukemia (MLL versus ALL)

Alon et al. (1999) 22 2000 oligo Colon cancer (tumor versus normal)

Golubet al. (1999) 25 7129 oligo Leukemia (ALL-Bcell versus AML)

Yeohet al. (2002) 27 12625 oligo Leukemia (E2APBX versus TEL AML).
Gruvbergeet al. (2001) 28 3389 cDNA Breast cancer (ERversus ER-)

Garberet al. (2001) 32 22115 cDNA Lung cancer (adenocarcinoma versus other)
Singhet al. (2002) 50 12600 oligo Prostate (tumor versus normal)

Summary of the 16 data sets used to study the effect of replication. The table lists the largest number of replicates we used, which is not necesspléliethublished data set.
The number of genes (or, more precisely, the number of array elements) is also indicated. The ‘Type’ column refers to the type of array which wasstisey] #ither ‘cDNA’ for
data that was collected using two-color cDNA microarrays, ‘oligo’ for Affymetrix-type oligonucleotide arrays. The last column descriptioxjpétimeent and the comparison we
studied. For details, see the web supplement. Abbreviations: apolA, apolipoprotein IA; E2APBX, GIST, gastrointestinal stromal tumor; EReesiptgre AML, acute myeloid
leukemia; BPH, benign prostate hyperplasia; DLBC, diffuse large B cell ymphoma; FL, follicular lymphoma; EWS, Ewing’s sarcoma; RMS, rhabclomeyob#rl, mixed
lineage leukemia; ALL, acute lymphoblastic leukemia; AML, acute myeloid leukemia.

analysis of interest in the original study. For example, in oneéFDR (e.g. 0.05), we identify atest p-value threshold using
case (Eavest al., 2002), we examine a distinction (spleen the method of Benjamini and Hochberg (1995).

versus thymus) that was not examined in the original public-

ation. Therefore, our study should not taken as an evaluatiofXperimental design

of the quality of the original work. Details on the data sets aOur testing procedure for each data set is illustrated in
used in our study are available on our web site. Figure 1. This entire procedure is repeated for each data set
. listed in Table 1. Each data set originally contains two groups
Gene evaluation of samples with size andn’ (n < n’). The largest data set

To evaluate the significance of a gene, we use the Studentise consider in a simulation is of size: 2From the full data
t-test. This test is performed on each gene in the data set, iet, a number of replicates(3 < r < n) is chosen. By
each case testing the null hypothesis that the mean expressimamdomly choosing samples (microarrays) from each exper-
level for the gene is equal in the two groups of samples. Ouimental group, a new data set calle8amnple (abbreviated)

use of the-test implies assumptions about the distribution ofis created. Up to 100 such randomly generated pseudo data
the data, namely normality and homoscedasticity, which magets are created for each valuerpthough only the possible

or may not be valid in various cases. Titest is areasonable distinct subsamples of the data are studied if this is fewer
choice because itis simple to perform, and commonly used ithan 100. For eacl, multiple test data set$st are created
published microarray studies. Our basic findings are unlikelyby randomly removing one sample from each group (Fig. 1A).
to be dramatically affected by the exact choice of test, and thihus, if S contains four per group, thefiest contains three

is supported by preliminary results with the Mann—Whitneyreplicates per group. We test up to 10 randomly cresieg

‘U’ test (see the web supplement). for eachS (whenr = 3, only nine differentSi,ss are pos-
. . sible). The stability statistics (see below) for the ;s are
Multiple test correction averaged to yield measures of stability §rThis procedure

To set appropriate statistical thresholds for each trial, accounts repeated for each value of Forr = n in data sets where
ing for the multiplicity of testing thousands of genes in eachn = n’, there is only one possibl&; thus, in this situation
data set, we use a method that controls the false discovery ratee instead create up to 100 randdigs; data sets instead of
[FDR; Benjamini and Hochberg (1995)]. The false discoveryjust 10 to help ensure that we collect sufficient samples to get
rate is the number of null hypotheses that can be expectegbod statistics. This procedure of removing a single replic-
to be falsely rejected (that is, false positives) expressed asate is similar in character to a jackknife sampling (Efron and
fraction of the total number of genes selected. For a desirediibshirani, 1998). However, unlike the jackknife, we do not
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attempt to assess the effect of all possible sample removals S Stest
because usually these are too numerous. Another difference Seel — — } Stesisel
from a jackknife sample is that, in order to keep our experi- == o )

—3 —

ments simple, for each trial, we remove one sample from each —
group—two samples in total—instead of a single sample. = == /pparentpower=4
. — — Recovery = 2/3
For S andSest, a Student’s-test is performed on each gene. [— E=  Order=1.0

This generates a ranking of the genes in each data set, where =

the highest ranked genes are most likely to exhibit changes in
expression. A statistical threshold based on FDR (described, ] ] ) ) o
earlier) is then applied to both ranked lists. The ranking and'9: 2 Metrics. A toy example illustrating the metrics used in this
the selected genes in eaSfas;are compared to the ranking study. Genes are indicated by bars, and the vertical order indicates the

d selected & using th trics d ibed ab statistical ranking. In this example, there are 1000 genes, of which
and selected genes musing the metrics described above. only the top ranked are shown.$nfour genes are selected (indicated

The median and interquartile range of the stability and powepy, four differently shaded bars) at a given threshold (indicated by
metrics for all psuedo data sets is determined for each the dotted line). ISt (Which contains one fewer replicate ths

. - only three genes are selected at the same threshold; the genes that
Measuring Stab'“ty and power were selected i now have the locations shown. The values of the
As outlined above, we developed three metrics for assessirigree metrics we used are shown on the right. The ‘apparent power’ is
the apparent power and stability of each dataSsé¥e refer ~ simply the number of genes above the thresholfi ifihe ‘recovery’

to the genes selected fhat a given FDR assel (for ‘genes ~ Score is 23, be(_:ause of the three genes selectefki two of them
Selected from Sample’). The ‘apparent power is the size ofvere selectgd i. The ‘order’ score is 10 because the twg genes
Ssel. This metric indicates how many replicates are neede(t‘{::at appear in both selected sets occur in the correct relative order;
before genes begin to meet a particular statistical threshol at is, the top gene is still ranked higher than other selected genes.
Apparent power is expressed in units of genes selected, unlike"® text for detals.

power inthe strict sense, whichis expressed as avalue between .
0 and 1, because we do not know how many genes actual f the number of ‘successful’ tests was at least 10, sufficient

show changed expression. o collect reasonable statistics. In addition, when only small
The two stability metrics involve comparing the ranked list "UMbers of genes are selected, both ‘order’ and ‘recovery’ can
of genes selected frofito the ranking obtained when one rep- only attain a very_re_strlcted set of values, and will be highly
licate is removed $es). A simple example illustrating how var_lable. To help limit these effects, we only show results for
both stability metrics operate is shown in Figure 2. The first® 9iven FDR if at least two genes were selected on average for

metric is the fraction of genes Siesse! that are also ifsel.  hat setting.

We refer to this metric as ‘recovery’; it ranges from 0.0 (none

of the genes irSwesssel are inSsel) to 1.0 (all are inSsel). RESULTS

For example, a value of 0.5 means that when one replicate ig/e study the effect of replication in 16 published data sets. We

removed (yieldingStes), Some genes still meet the statistical present only a portion of our results in detail here; full results

criterion, but only half of them met the criterion before fln  for all data sets are available on our web site (microarray.

Thus, this measure captures an important aspect of data sigpmc.columbia.edu/pavlidis/pub/gxrep). We focus on results

bility: in a data set with a high recovery score, the identities ofat one false discovery rate setting, 0.05, which is the third-most

the genes that are selected by the statistical test would likely b&tringent we used. Figure 3 summarizes the main results for all

similar if an additional replicate experiment were performed.16 data sets. Figure 4 shows more detailed graphs for selected
The second stability metric measures the degree to which thgata sets. In our presentation of the results, we first consider

ordering of genes selected frafnand Stestis preserved. The  apparent power and then each stability measure in turn.

test statistic is the Spearman rank correlation of the rankings

for genes that occur in bofessel andSsel. This ‘order' met-  APparent power

ricvaries from—1.0 (exactly reversed order) to 1.0 (exactly the As expected, when the number of replicates is small, the

same order). The ‘order’ measure captures a more subtle bapparent power is low. In some data sets containing many rep-

stillimportant aspect of data stability than ‘recovery’: in a datalicates, many genes are assigpedalues of 101% or smaller.

set with a high order score, the relative ranking of the selectetiowever, when the number of replicates is reduced to a low

genes would not change dramatically if an additional replicatéevel, smallp-values become rare. Using multiple testing cor-

experiment were performed. Note that neither stability metriaection based on FDR, often few or no genes are selected from

is intended to measure the correctness of the results. data sets containing five or fewer replicates (Fig. 3A). This is
When apparent power is zero, the stability metrics cannotrue even at the most lax FDR we tested (0.1; see web site).

be computed becausk.ssel contains no genes. We report By definition, increasing the number of replicates increases

recovery and order statistics for a givetrvalue threshold only  statistical power (in the strict sense). Similarly, if we examine

* (1000 total genes) :
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Fig. 3. Summary of results. Each line represents results for one data set shown in Table 1, at an FDR of 0.05. Not all of the 16 data sets are
illustrated on these graphs, because some failed to meet criteria at this FDR (see our web site for more results). The plots are of the media
values for all trials. Error bars are omitted for clarity. The dashed lines in (B) and (C) indicate the 0.8 and 0.9A¢Ritst ¢f the number of

genes selected (apparent power, the siz&sef). Note that the scale is logarithmi@) Recovery stability. C) Order stability. Values below

zero are not shown. Larger versions of this and the other figures are available as supplementary data.
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Fig. 4. Detailed results for four data sets. The plots show detailed results for four of the data sets illustrated in Figure 3. The FDR is 0.05. The
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(C) Order stability.
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how many genes aractually selected as replicates increase Ta_ble 2. Number of genes selected at each FDR (apparent power), when
(apparent power), then we observe a steady increase, witt§ind all replicates
little leveling off (Figs. 3A and 4A; note the logarithmic scale).

This effect illustrates that, for the available data, there is n@ata set 0.0125 0.025 0.05 0.1 Fract.
obvious point at which all differentially expressed genes have
been statistically detected. Callow — — 4 10 0.0006
The apparent power is expected to be inversely proportiondfuang 15 32 53 127 0.0042
to the subtlety of the biological effect under investigation asHIEde”fa'k T 1:’ 21513 381 ggfzf’g
We_II as inversely proportipnal to the gmount of experimenta[ir(rj:stmng 222 309 478 820 0.0380
noise. Not surprisingly, given the variety of data sets we anagruvberger 80 123 184 208 0.0543
lyzed, we observe a wide range in apparent power. Table 2hipp 104 190 391 755 0.0548
summarizes this range, listing the apparent power for eackhan 101 139 192 283 0.0834
data set when using all available replicates. For some daf32e" 833 1309 2112 3403 0.0955
. Golub 300 460 708 1092  0.0993
sets, apparent power at the threshold we focus on (0.05) is gs,,, 1342 1551 1833 2252 0.1452
much as 35% of the genes on the array (Table 2). This is nQtjjanger 137 213 328 472 0.1651
only an effect of the different maximal levels of replication Singh 619 954 2091 4402 0.1660
among the data sets. Even if we look at a single level of repLuo 1031153 . 14;328 1;226 112226 0-3232%4
inati i i ; aves .
lication across multiple data sets, a similarly wide range oféamaswamy 1764 2008 e 2041 0.3609

numbers of genes are selected (Table 3; see also Fig. 3A).

Our Stab”'ty reSL_JItS _(beIOW) must be viewed in the COmeXtThe fraction of the genes on the array that are selected at a FDR of 0.05 is shown in the
of the effect of replication on apparent power. In fact, for mostiast column. See Table 1 for the microarray sizes. A ‘—' indicates that too few genes
datasets. at very low levels of replication and at highaalue met criteria for inclusion in the study<(2 on average). A plot of the data in this table is

! - . I,(];iven in Figure 3A.

thresholds, the stability metrics cannot be used because o
genes are foun_d- This result S_UQQEStS that W_hen very feW r'€Rable 3. Number of genes selected at each FDR (apparent power), when
licates are available, power is too low for simple statisticalusing 10 replicates
criteria to be of much use in detecting differential expression.

Stability Data set 0.0125 0.025 0.05 0.1 Fract.
The two stability metrics, recovery and order, are illustrated iny - o - s _
Figures 3and 4, C and D, respectively. Unlike apparent powekingh — 6 8 20  0.0006
both stability metrics tend to level off past a certain number ofGarber 11 29 34 166 0.0015
replicates. Thus, increasing the number of replicates beyongolub 8 8 16 40 0.0022

; ; ; ; ; i, Armstrong 12 15 31 87 0.0025
a certain value yields a relatively small increase in stability.
For most data sets, the change in recovery score slows Gﬁwberger > 6 10 18 0.0030

, » the 9 y WS &hipp 7 12 22 54 0.0031
approximately 8—12 replicates; some reach this level with agnan 25 33 49 82 0.0213
few as 6 replicates (Fig. 3C; Fig. 4C, Eaves). In general, th&eoh 327 450 615 876  0.0487
recovery metric levels off with scores of 0.8-0.95. Increase&aves 8556 10095 11929 14491 0.3050
in the more stringent order metric continue until at least 10%@maswamy 1764 3598 5797 8041 0.3609

or 1_5 repllcates are used (Flg' 4D)’ althoth as fevy as elghfﬁ'le fraction of the genes on the array that are selected at a FDR of 0.05 is shown in the

rephcates are necessary for some data sets. Maximal Ordﬁgt column. See Table 1 for the microarray sizes. A ‘—’ indicates that too few genes

stability scores are typically 0.8—-0.9. met the threshold for inclusior{(2 genes on average). Only data sets containing at least
For some of the smaller data sets (less than 10 replicatel§ "erlicates could be included in this table.

available), we are unable to observe any leveling off of the

stability metrics. We consider the results for these data setso we can make relatively confident conclusions about the

(in particular, the Huang, Callow and Hedenfalk data sets) toesults.

be inconclusive, because we do not know how many replicates The Eaves data setis somewhat unusual, first because unlike

would be required to obtain stability. most of our data sets it comes from mouse, and second
] because of the large difference between the tissues we com-
Details of four data sets pared (spleen and thymus). We reiterate that this comparison

As mentioned, we observe a range of behaviors for individualvas not the one of primary interest to Eawtsal. (2002)
data sets, and it is informative to examine the results in detailvho were interested in the (relatively very small) differences
Here we discuss the four data sets shown in Figure 4, whichetween defined groups of samples within each tissue type.
cover a wide range of the behaviors we observed. They wer€he number of replicates for those comparisons was only four,
selected for display in part because they have many replicateso we did not attempt to study them. Using all 12 replicates, the
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apparent power represents thousand of genes (eed0000  to directly address questions of power, we base our observa-
on the array). This data set also shows high stability at lowtions entirely on realistic situations. Power analysis, on the
numbers of replicates compared to many of the cancer datather hand, directly estimates power, but its ability to do so
sets: even the order stability metric reaches 0.8 with only sixs contigent on the realism of the model used. Interestingly,
replicates. these two different approaches yield results that are generally
The Shipp, Armstrong and Yeoh data sets all involve comin agreement. For example, Ziehal. (2002) suggest that
paring different tumor types. The Armstrong and Shipp datél5 or more replicate samples are needed to be able to detect
sets have lower apparent power than Yeoh, even when marigirly large changes in expression (3-fold) with good power
replicates are used, suggesting that the biological distinctio(>0.8), using models based on five data sets. In another study,
forthose data sets is relatively subtle. For the Yeoh data set, wglwanget al., 2002) suggest that eight replicates should be
compared E2APBx with TEL AML (acute myeloid leukemia), sufficient to detect an effect of size 2 for one particular data
which differ in characteristic chromosomal rearrangementsset (that of Goluket al., 1999) at 0.95 power and 0.95 confid-
though both are B-cell lineage leukemias (Yebhl., 2002). ence (Hwangt al., 2002). Paret al. (2002) found that eight
Using all 27 replicates, nearly 2000 genes show significanteplicates were needed to detect an effect of size 3 with power
differences in expression at a FDR of 0.05. Recovery stabilityd.8 in a rat radiolabeled microarray data set.
was high even with only five or six replicates; order stabil- If the above results are accepted as broad guidelines, then
ity is over 0.8 once nine replicates are used. The full data setwould seem that most published studies probably have very
shows very high stability, among the highest we measured ifittle power. In fact, even doing three replicates has only
this study. Several other cancer data sets seemed similar iacently become common, and other than cancer studies, we
character, including those of Khan, Golub, Luo and Allanderare aware of very few studies that do as many as five. How-
though not all showed as strikingly high apparent power.  ever, a brief review of the literature reveals dozens of papers
Like Yeohet al. (2002), Armstronggt al. (2002) studied that use hardly any replication if any, yet appear to yield at
leukemia, and compared acute lymphoblastic leukemia (ALL)east some results of value. Why do researchers find poorly
with a subtype that involve particular chromosome translocareplicated experiments useful? The simple explanation is that
tions (mixed-lineage leukemia, MLL). It required somewhathigh power is not always necessary to yield some useful res-
more replicates than Yeoh to reach our stability threshold otilts from a microarray study. The usefulness of a microarray
0.8. The Garber and Ramaswamy data sets showed similatudy is often gauged bdyow many high quality differentially
behavior. expressed genes are obtained, not byfthetion of all such
Shippetal. (2002) compared diffuse large B-cell lymphoma genes that are detected (which is generally unknowable any-
with follicular lymphoma. This data set required more replic- way). The latter requires high power; the former only requires
ates to reach stability (10-15) than the Yeoh and Armstronghat some of the expression changes be robust enough to be
data sets. The Alon and Singh data sets showed similar beheeliable. Even with no replication, some of the most striking
vior. The samples used for these data sets may have greafardings are likely to be ‘real’.
heterogeneity than the Yeoh data set, for example. Giventhat a statistical approach breaks down in the presence
of few replicates, a ‘fold change’ or other heuristic method
must be adopted to select genes from such data. The cost
DISCUSSION of such an approach is that very stringent criteria need to be
Our results show that in most cases, using fewer than fivapplied, and the results must be confirmed with an alternat-
replicates results in rather poor results in a statistical anave method. This approach is unlikely to be effective if the
lysis, both in terms of apparent power and in stability. Forexpected expression changes are subtle and are restricted to
most data sets, near-maximal levels of stability are obtained small number of genes—a common situation, as shown in
between eightand 15 replicates, with most of the improvemernitable 2. In particular, specificity would likely be very low.
occurring by ten replicates. This is also the range of replicin many cases, the ‘fold change’ method will yield so many
ate levels that typically result in the detection of differential erroneous results as to be of highly questionable use. We note
expression at quite high levels of statistical confidence (FDRhat our methods can easily be extended to an examination of
0.05 or lower). Even with the most stringent measure of stafold change’, a topic we leave for further study.
bility (order), using more than 15 replicates has a diminishing Our methods can be readily applied to new data sets to
effect for most data sets where we could test this. These nunassess their reliability. First, assessing apparent power obvi-
bers are naturally quite data-dependent. Therefore, planningusly does not require a sampling approach: lack of apparent
a future experiment would require looking at apparent powepower will be obvious if no genes meet reasonable statistical
and stability scores for data sets that are likely to have similacriteria. For the recovery and order metrics, the situation is
properties to the proposed study. equivalent to the trials in our experiments when all replicates
We developed these methods to complement power analysése being used. The random sampling would be applied (or,
by more familiar methods. While in our studies we are unablereferably and if computationally feasible, a full jackknife
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sampling) to generate pseudo data sets containing one fewdedenfalk,l., Duggan,D., Chen,Y., Radmacher,M., Bittner,M.,

replicate, and our stability metrics applied. Simon,R., Meltzer,P., Gusterson,B., Esteller,M., Kallioniemi,O.P.
etal. (2001) Gene-expression profiles in hereditary breast cancer.
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