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ABSTRACT

We propose a simple algorithm to detect dominating synonym-
ous codon usage bias in genomes. The algorithm is based on
a precise mathematical formulation of the problem that lead
us to use the Codon Adaptation Index (CAl) as a ‘universal’
measure of codon bias. This measure has been previously
employed in the specific context of translational bias. With the
set of coding sequences as a sole source of biological inform-
ation, the algorithm provides a reference set of genes which
is highly representative of the bias. This set can be used to
compute the CAl of genes of prokaryotic and eukaryotic organ-
isms, including those whose functional annotation is not yet
available. An important application concerns the detection of a
reference set characterizing translational bias which is known
to correlate to expression levels; in this case, the algorithm
becomes a key tool to predict gene expression levels, to
guide regulatory circuit reconstruction, and to compare spe-
cies. The algorithm detects also leading—lagging strands bias,
GC-content bias, GC3 bias, and horizontal gene transfer. The
approach is validated on 12 slow-growing and fast-growing
bacteria, Saccharomyces cerevisiae, Caenorhabditis elegans
and Drosophila melanogaster.

Availability: http://www.ihes.fr/"materials.
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INTRODUCTION

et al., 1991; Shields and Sharp, 1987; Shatpal., 1988;
Stenicoet al., 1994). Three main facts support the idea of
‘translational impact’: highly expressed genes tend to use
only a limited number of codons and display a high codon
bias (Granthanet al., 1980; Sharp and Li, 1987), preferred
codons and iso-acceptor tRNA content exhibit a strong posit-
ive correlation (Ikemura, 1985; Bennetzen and Hall, 1982;
Bulmer, 1987; Gouy and Gautier, 1982), and tRNA iso-
acceptor pools affect the rate of polypeptide chain elongation
(Varenneet al., 1984).

To study the effect of translational bias on gene expres-
sion, Sharp and Li (Sharp and Li, 1987) proposed to associate
to each gene of a given genome a numerical value, called
codon adaptation index (CAl), which expresses its synonym-
ous codon bias. The idea is to computeeight (representing
relative adaptiveness) for each codon from its frequency
within a chosen small pool of highly expressed gefieand
combine these weights to define the C#)l¢alue of each
geneg in the genome. For Shaet al., the hypothesis driv-
ing the choice ofS is that, for certain organisms, highly
expressed genes in the cell have highest codon bias, and
these genes, made out of frequent codons, are representat-
ive for the bias. Based on this rationale, one can select a pool
of ribosomal proteins, elongation factors, proteins involved
in glycolysis, possibly histone proteins (in eukaryotes) and
outer membrane proteins (in prokaryotes) or other selections

The genetic code associates a set of sibling codons to tHeéom known highly expressed genes, to form the represent-
same amino acid, and some codons occur more frequentBtive setS. Then, CAl values are computed and are checked
than others in gene sequences (Grantleaah., 1980; Wada to be compatible with genes known to be highly or lowly
et al., 1990). Biased codon usage may result from a diversitgxpressed in the cell. If this is the case, then predictions are
of factors: GC-content, preference for codons with G ordrawn with some confidence on expression levels for genes
C at the third nucleotide position (Lafegt al., 1999), a and open reading frames, even with no known homologues.
leading strand richer in &T than a lagging strand (Lafay Even if conceptually clear, this framework has been misused
etal., 1999), horizontal gene transfer which induces chromoseveral times in the literature and incorrect biological con-
some segments of unusual base composition (Mostzair, sequences have been derived for gene expression levels of
1999), and in particular, translational bias which has bee®rganisms which daot display a dominant translational bias,
frequently noticed in fast growing prokaryotes and euka-as discussed in (Grocock and Sharp, 2002). This confusion

ryotes (Sharp and Li, 1987; Shasp al., 1986; Médigue motivated us to search for a methodology based on a pre-
cise mathematical formulation of the problem to detect the
existence of translational bias.
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But the main motivation for us came from the recogni- Table 1. The full set of genomes considered in this paper with their number
tion that an increasing number of genome sequences wiflf CDSs
be available for organisms for which biological knowledge

consists merely of a sketched morphological and ecologicaltycoplasma pulmonis 480 SG
description. For these organisms, it might not be evident howlycobacterium tuberculosis 4187 SG
to define the reference s&tor how to identify a reliable test- I{;Fi’ggsgc‘?efa“'g‘r‘im iggé 22
ing §et which can ensure that prgdlctlons mget a satlgflablgsw domnasp;'erugmom 5567 sG
confidence level. Still, one would like to detect if translational gorefia burgdorferi 1638 sSG
bias holds for these genomes and if so, to predict their gengaemophilus influenzae 1709 FG
expression levels. If not, one would like to know the origin of Saimonella enterica 4600 FG
their dominating bias. f‘:gzzg)ci‘l’fscl‘ixreus gég Eg

We propose an algorithm that_ uses the notion Qf CAl as &_ 1 subtilis 4100 FG
measure to detect the most dominant codon bias in the genegherichia coli 4289 EG
ome, regardless of whether this bias is translational or not. Saccharomyces cerevisiae 6305 LE
The algorithm screens all genes of an organism asaldtts  Caenorhabditis elegans 17078 HE
a reference sef which scores the highest values in the CAl Drosophilamelanogaster 14146 HE

scale. A screening of the genes in the set allows to identif)é , , , , _
. . . . G, slow-growing bacteria; FG, fast-growing bacteria; LE, lower eukaryotes; HE, higher
the kind of synonymous codon usage bias which drives the aryotes.
genome under examination. $f contains proteins involved
in translation and glycolysis, then one derives that the bias is
translational, and that CAl values can be safely correlated to
gene expression levels. If no translational bias is present, it MATERIALS AND METHODS
then possible to successfully correlate CAl values to GC conSequence data

tent, GC3 bias, GC skew bias, leading-lagging strand biasgpe \yhole genomes along with gene annotation were retrieved
and so on. We discuss some examples later. __ from the Genomes directory of GeneBank FTP (Table 1 and
The algorithm is based on no biological assumption, ing,nniementary material). All sequences marked as CDS were
particular concerning the biological functions of the organ-cqnsjgered, including those annotated as hypothetical and
ism. The key point is that dominant codon bias in a set okyose predicted by computational methods only. From each
codmg sequences s a notion Wh}ChHmdependgnt Of bio- coding sequence, we excluded initiation and stop codons.
logical knowledge. It can be precisely formalized in purely Transcriptional data fdaccharomyces cerevisiaeare taken
mathematical terms and used to detect a representative setf ., ihe study reported in (Holstegeal., 1998) and based on
sequences which lead the dominating bias. It is important tg_gensity oligonucleotide arrays technology (downloaded
stress though, that a biological evaluation of the reference sgfg http://www.wi.mit.edu/young/expression.html in 1999,

is a crucial step to use it appropriately. _ now available at http://www.ihes.fihaterials). They concern
One novel technical aspect of our analysisiegsed defin- 5 oot of 4849 genes.

ition of CAl that allows the automatic detection of dominant
codon bias for both prokaryotic amdkaryotic genomes. For ] ] o
these latter, it has been noticed (Duret and Mouchiroud, 199gpPace of coding sequences and visualization

that gene length in the genomes@denorhabditis elegans, A coding sequence is represented by a 64-dimensional vector,
Drosophila melanogaster andArabidopsisthalianadisplaysa  whose entries correspond to the 64 relative codon frequencies
strong negative correlation with codon usage bias. This mearin the sequence. (The entries for codons UAA, UAG, UGA,
that a careless selection along the iteration of the algorithnrdGG, AUG could be discharged: UGG, AUG have no syn-
of short and long genes might yield a Sewvith aheterogen-  onymous codons and UAA, UAG, UGA are stop codons and
eous codon distribution (where rare codons appear with highthey do not code for amino acids. Considering 59 dimen-
frequency in certain long genes), and consequently, to thsions instead of 64 would not make any substantial difference
calculation of a codon adaptation index which is undesirablyneither in the determination of the reference set nor in the
affected. For eukaryotic genomes, whose long genes make wisualization of the coding sequences in three-dimensions.)
about half of their coding part, the selection of gene$iieeds  Recall that thdrequency of a codoni in a sequencg is the

to be guided by such a criteria. For this, we introduce a cornumber of occurrences éfin g (whereg is intended to be
recting factor in the original formula proposed by Sharp andsplit in consecutive non-overlapping triplets corresponding to
Li (Sharp and Li, 1987), compute the global codon adaptatiommino-acid decomposition), and that thebative frequency
index, (QCAI) and determine a sebf coding sequences with of i in g is the frequency of in g divided by the number of
high gCAlI values. Ultimately, CAl values can be computedcodons irg. Notice that for each vector representing a coding
on codon weights calculated ¢h sequence, the sum of its entries must equal 1.
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Hence, a coding sequence is a point in the 64-dimensiondfodon bias and length of genesin eukaryotes:
spac€0. .. 1]%4, where no special assumption is made on thethe need of a revised statistics
space nor on the coordinate system. The set of points cafe introduce a new definition ofeight
be visualized in three dimensions by using principal com-
ponents analysis (PCA) (Hotelling, 1933; Hagtdl., 2001): _ 1S xi )
first, every coordinate is normalized on unity standard devi- Wi j = m ) ;
ation to take into account equally dominating as well as rare

codons [foIIOWIng the standard definition employed in PCA,Where Si is the set of Coding sequences Snthat contain
the normalized value of relative frequenq/j for codoni in at least one occurrence of codonand|S‘|, |S| denote the
genej is defined asx; ; — X;)/oi, wherex; ; is the relative  number of coding sequencesshands. The factor|S’|/|S|
frequency ofi in j, x; is the average relative frequency of denotes the probability that a codorappears in a gene of
i computed with respect to all coding sequences, @and . If the setS has ahighly homogeneous codon distribution,
the standard deviation for the set of frequency valygsfor  je. if genes are made out of the same pool of codons, then
all j]; then, three principal components for the cloud of pointsthe factor is expected to take almost always value 1, with
are calculated using the Euclidean distance measure; finallyi,o dramatic effect on the WEIth In generaL the factor dis-
the cloud of points is projected orthogonally in the subspacriminates against those codons that happen to appear in a
of the three selected vectors and visualized by means of fw number of genes i, even if their occurrence is very
specialized three-dimensional viewer (see below). pronounced within those genes. Such a situation might arise,

Other methods of multivariate analysis, as Correspondenc®yr instance, when some long gene belongs tsince rare
Analysis and Principal Factorial Analysis, have been usedgodons become likely to appear there (possibly in a high abso-
much more frequently than PCA, to investigate codon usagfite frequency). [Alternatively, one could define the weights
(Médlgueet al., 1991; Perriére and Thioulouse, 2002) wi,j as(|Sl|/|S|) . (xi,j/le,j): Wherexl'j denotes the fre-

Reference sets, codon frequency tables, tables of gCAl anguency of codor synonymous té. The valuey; ;/ Sx;j is
CAl values were calculated with the program CAlJava writtenin [0, 1] and denotes the probability thats selected within
by the authors, which uses parsers of GenBank flat files frora|| synonymous codons for the amino-agidl
the Biojava (http://www.biojava.org) programming package. A value in[0, 1], called gCAl, is associated to each gene
The algorithmic behaviour in the space of codon usage wagnd it is defined as
visualized in VidaExpert, a tool developed by A.Z. A special-
ized three-dimensional viewer is provided with VidaExpert. L YL
All software is available at http://www.ihes frhaterials. gCAl(g) = (H wk)

k=1

Codon composition and codon bias

For each genome sequence and some set of coding
sequences in G, codon bias is measured with respect to
its synonymous codon usage. Given an amino-ggcits syn-
onymous codons might have different frequencieS;iii x; ;  Some measures for codon usage
is the number of times that the codbifor the amino-acidj
occurs inS, then one associates i@ weight w; ; relative to
its sibling of maximal frequency; in S

whereL is the number of codons in the gene, angdis the
weight of thekth codon in the gene sequence. Genes with
gCAl value close to 1 are made by highly frequent codons.

GC-content is defined to be the frequency ofHSC basepairs,
and GC3eontent is the frequency of G+ C basepairs at the
third coding position (excluding Met and Trp, and termination
Xij codons).XY-skew, whereX,Y € {A,T,G,Cl andX # Y,
wij = —=. is defined agX — Y)/(X + Y), that is the relative distance
Vi betweenX-frequency and’-frequency; its value is positive
A codon with maximal frequency ifs is called preferred ~ @nd high when the sequences are made by magnd a few
among its sibling codons. To each genén G, Sharp and Ys. Finally, for circular genomes, genes might happen to be

Li (Sharp and Li, 1987) associated a value{® 1], called located orleading andlagging strands; their codon usage is
CAI defined as influenced accordingly. To measure the connection between

strands and bias we use the standardlue for calculating the
difference between mean CAl values in leading and lagging

I 1/L
CAl(g) = (1_[ u)k) strands.
k=1 A strategy to search for the most

whereL is the number of codons in the gene, andis the biased reference set
weight of thekth codon in the gene sequence. Genes with CAM/e propose an automatic procedure to search forgwsatch
value close to 1 are made by highly frequent codons. is representative of the codon usage in the genome. Precisely,
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one wants to find a sétwhich contains about 1% of predicted setS;. Codons that do not appear $i take weight 0.01 by
coding sequences{50-150 sequences) and which allows todefault. At step 1, lefS; be the set of all coding sequences
compute weightsy; ; thatmaximize the gCAl values of the in G; at stepk + 1, defineS, 1 to be thex; 1% of the
genes inS, i.e. the gCAl values of coding sequencesipS  genes with highest gCAl value at stepvherexy1 = x/2,
(that is, those that are not in G) are smaller than all gCAlandx; = 100%. In particular, by dividing at each step the

values of sequences K number of genes by 2, the procedure soerB{15 steps
for prokaryotes, and 15-25 steps for eukaryotes) converges
gCAI(G/S) = gCAI(S) (1) to some small sef;. If the number of coding sequences

in S is smaller than the 1% of all coding sequences, then
stepk + 1 is applied toS; containing the 1% of coding
sequences with highest gGCAValue on the previous itera-
tion. The algorithm terminates when it converges to a small
. setS; such that gCAl, 1(g) = gCAl,(g) for all g in S, i.e.
Among all sets that satisfy (1), one wants to choose th& set L+1 = Si, where gCAJ represents the gCAI values which

which is representative of the family of codons that appear i . . -
most genes with the highest frequency (in within the genome)f.ire obtained at stép It might happen that a finite sequence of

In formal terms this means that df, . .., cq are preferred tsr:aitsscgzgs%+\/1\;é saSktJr;;\ t('t'ﬁés";ggé dzsiﬁ)lgggggvdgztriafllm
codons forS, andds,...,dso are preferred codons for the ! y P

entire genome;s, then we look for the sef that minimizes sets. To detect a'unlque convergentsiewve take 'away from
Sk+1 the gene with smallest gCAlalue and re-iterate, that

20 is we look for a reference set of size possibly smaller than
Z x (ci d;) (2) 1%. We do so (by decrementing a set by one) until a unique
i=1 convergent set is found.

The choice of fixing the smallest size §f sets at 1% of
the genome size corresponds roughly to the size of the ref-
erence sets proposed by Shatl. in (Sharp and Li, 1987;
harpetal., 1986; Shields and Sharp, 1987; Shetr@ ., 1988;
tenicoet al., 1994; Andersson and Sharp, 1996).

Once the convergent reference Sgts computed, weights
w;,; and CAI(g) values, for all gengs can be calculated.

where gCAIl values are computed ¢h In other words,
the highest gCAl values are obtained on the selected .set
Condition (1) expresses a sort sdlf-consistency principle
for S.

where x(c;,d;) = 1 if di # ¢; and = 0 otherwise.
Condition (2) expresses the meaningdoiminating codon
bias inG.

An exhaustive search for the best reference set satisfying (13
and (2) asks for too much computational time. In fact, one
should search throug@() sets, where the binomial coeffi-
cient (’Y() = X!/[Y!(X — Y)!], X is the number of coding
sequences of the genome ards X/100. This means that Rationale and a localized version

for a genome of 6000 coding sequences, like the genome afhe rationale of the algorithm is based on the belief that for
Scerevisiae for instance, the number of sets to be checkedy| genomes there exists a small pool of coding sequences that
would be more than*°. The algorithm that we propose, is contain a small number of very frequent codons. From the
based on the belief that for all genomes there exists a pool gfery first iterations, such codons lead to determine the small

coding sequences that contain few and very frequent codonget of highly biased coding sequences which are representative
and that the bias induced by such codons can guide the seare}.the codon bias dominating the entire genome.

Maximum values are expected when codon distributigig This intuition is supported by the following numerical ana-
the most homogeneous, and when long genes containing raggsis: on the algorithm above, we fixsgto be someandomly
codons do not belong th These two properties are controlled sejected set made of 1% of all coding sequences, and we fixed
by the factor s |/|S|. , xk+1 = 1%, for all iterationsk. This ‘randomized’ version
Itisimportant to stress that the added complexity$of/|S|  of the algorithm has been applied several times to the gen-
is meaningful in the process of automated delineation opmes in Table 1, and always it produced the reference set
highly biased reference sets éukaryotes. In the last sec-  gptained with the original version (data not shown). Numer-
tion, we discuss, based on the concrete caseabégans, the  jca| simulations were based on coding sequences chosen
malfunctioning of the algorithm when this factor is not taken randomly, but most of them happened to be also ‘uniform’
into account. For bacterial genomes, this factor does not sigs, the space of coding sequences: this space is usually shaped
nificantly contribute and gCAl values are highly correlatedintg a few clusters (see later discussion), and the number

(correlation coefficient-0.98) with CAl values. of representative coding sequences in the random set com-
ing from each cluster was proportional to the size of the
THE ALGORITHM cluster. For non-uniform random selections, i.e. localized in

The algorithm is iterative. At each iteration stepit com-  space, the algorithmic convergenceStoannot be ensured. In
putes the gCAl values of the coding sequences;ifrom  this case, the algorithm detedtsal codon biases (see later
codon weights that are calculated with respect to a selectediscussion).
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Convergence and uniqueness of the solution oo il i 2T ecaion 1«
The algorithm converges to some finite stof coding P e T T T Ll Tsents.
sequences with high gCAl value because, at each iteration, thege+ | b iy A S '
setSy.1 is chosen to contain coding sequences with stronger “* _ _ _ _ _ _ _ _
bias than inS;. Notice that all genomes analysed in this paper 5 AP AW e DT A B R e
converged immediately to a unique sgtof size 1%, that is I
no oscillation was detected. 08 . | eration -
The discussion at the end of the previous section points out §°¢| — e i LM L nocton 5+
that the reference sét for genome sequences, is detectable §°| /‘*“‘"’" Lo L |
by the randomized version of the algorithm. This implies that — §; s
S doesnot depend orx; values, and we say that the gCA)( SN i ARM: E0 M Smd M dm  dm
[CAI(g)] value isunique, for each geng. I -
To conclude, let us observe that the self-consistency prin- :: : Gl Lol | bt

ciple (1), saying thas is a fixed point for the algorithm, is %‘M_ ’,.,._ i I [ (Lt

satisfied by our definition of stable set. Also, condition (2) %0:2_ { AU L kL Uikl bl

is satisfied with high probability at each iteration step, that oo 7 T T

is with hlgh prObab|l|ty21221X(dlk+l,dlk) is minimized by 0 2000 4000 6000 Buoraum 10000 12000 14000 16000

the selected sef;1, at each iteration step. (The formal

argument justifying this fact is based on the observation thatig, 1. Plot of the gCA} values of coding sequences ihpylori,

synonymous codons with weightg1 calculated orf; tend  E.coli, C.elegansfork = 1, 3,K, wherek corresponds to convergent

to preserve the same frequency distributiols;in,.) iterations. Thex-axis ranks coding sequences, and its maximum
value is the number of coding sequences in the organism. The rank
follows increasing gCAlvalues (seenin the smooth increasing curve

APPLICATION TO VARIOUS GENOMES on the top). In steps 3 anki, we see how values adapt to the codon

The algorithm has been applied to 15 prokaryotic and eukalias that has been detected.

ryotic genomes. For all of them, a convergent set was found

after K = 15 iterations, except in the case Gfelegans

whereK = 20. By plotting gCA}, values for all genes (see g‘

Fig. 1), we observe that the trend associated to the convergeng

iteration K (bottom plot), can be very different for differ- -

ent species. Coding sequences of high gQ/lues (on the

right of the top curve) tend to conserve their high values in

iteration K (bottom plot), while coding sequences with low

gCAl; value typically take smaller values in successive iter-

ations. The latter fact is due to the codon biases of the setsg:|

S;, which are expected to associate lower weights to a larger

number of codons thasy, fork < j.

The differences between firstand last plots,|g€Al, (g) —
gCAl, (g)| for each geng, reveal a homogeneous distribu-
tion of codons inH.pylori, the existence of a pool of very
biased genes detectable from the first iteratiok.ooli, and
a biased set which is not detectable from the first iteration in
C.elegans (notice the high number of peaks along the plots
at iterationK). Figure 2 illustrates the change of codon fre-

guency in the first and the last iterations of the algorithm forFi9- 2. Frequency distribution of codons in the sor k = 1,K,,
these three representative organisms in H.pylori, E.coli, C.elegans. Recall thatS; is the set of all coding
' sequences. The frequencies of synonymous codons are connected by

consecutive lines for an easier visualization.

| | eration 20 -

quency %

. .freguency &

DYNAMICS OF THE ALGORITHM

The dynamics of the algorithm can be studied by looking . .

at the way the clouds; move in the 64-dimensional space Strgctureof the 64-dimensional spaces of

of sequences, or, analogously, by following the trajectory ofcoding sequences

average codon usage for the sgtsWe first say some words Recall that coding sequences are points in the 64-dimensional
about the space. spacdO. .. 1]%4, andthatthe cloud they form can be visualized
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used, and RSCU does not distinguish amino-acid compos-
ition.] This distinguished positional organisation of coding
sequences in the 64-dimensional space has been observed
several times for specific genomes (Perriére and Thioulouse,
2002).

For slow growing organisms, the cloud of points is consti-
tuted, in some cases, by class | and class IV, where class I
and Il are not distinct from class I. Other times, for instance
for spirochaetes, the two dense clouds have a less clear-cut
shape (Lafayt al., 1999).

Clusters and the dynamics of the algorithm

The codon usage of the whole set of coding sequences, i.e.

the vector whoséth coordinate represents the average usage
Fig. 3. E.coli: four clusters are shown in blue (class 1), pink of codoni in the set (formally, each coordinate of the vector
(class 1V), red (class Il) and green (class Ill). Left: thabbit  is defined as; /N, wherey; is the frequency of codohin S1
head; this view has been realized after rotating slightly the three-and N is the number of codons i), sits in the most dense
dimensional-projection along the first and second principal componeluster (see red ball in Fig. 3). Codon usages of the sets of
ents. Right: two-dimensional-projection along the second and thirgoding sequencesSy lie on the trajectory depicted by green
principal components; notice the pink cluster ‘below’ the rabbithead g5 in Fig. 3.

The clustering was done with théMeans method. The trajectory In Fig. 4, the clouds; are shown for the projected sequence
of convergence of the algorithm applied to this genome is describeg '

. ~pace oB.subtilis at consecutive iterations: the codon usage
by a sequence of green balls (representing codon usage of successi feS is located in cl | (the | black ball is hidden i
setsS;) starting with a red one (computed f8y; the red ball is barely of"Sy is located in class | (the large black ball is hidden in

visible). The trajectory starts in the blue cluster and ends-up in thét) Z_ind it gradually mov_es towards le’t‘ss II, along a traject(_)ry
red one which contains genes coding for ribosomal proteins. indicated by consecutive medium sized black balls, which

represent the codon usage of the sgtsor increasing:. The
algorithm displays the same regular behaviour for all fast-
growing bacteria and eukaryotic organisms analysed in this
: . . o . . paper: the trajectory starts at class | and terminates in class II.
in three d_lmen5|ons by n_ormallzmg t_he_pomts (i.e. each vec- For slow-growing bacteria, the algorithmic trajectory starts
tor coordinate), calculating three principal components anqand ends in class I. Typically such genomes display dominant

performing an orthogonal projection in the subspace of thefeading strand bias, GC3 bias, GC or AT skew bias, or a

three prirjcipal vec_tors. The '_shape ?f the_ cloud ,Of pO‘F‘tS' forhomogeneous composition (Lafetyal., 1999, 2000; Grocock
fast growing organisms, reminds a ‘rabbit head’ and it was and Sharp, 2002)

observed in (Médiguet al., 1991) forE.coli (see Fig. 3).

It looks as formed by a dense cluster of coding sequences

(class ), with two much sparser sets of points protruding fron\/ALIDATION

it (the ‘ears’ of the rabbit, class Il and Ill). Class | comprises ) ) o

genes that maintain a low or intermediary level of expressionP€tection of translational biasin fast growers

but that at times can be expressed at a very high level; in corf~or fast-growing micro-organisms, reference sets detected by

trast class Il contains genes that are constitutively expressetie algorithm contain genes which encode almost exclusively

at a high level, most of them are involved in translation, inproteins involved in translation, protein folding and glyco-

protein folding, in transcription, in DNA binding; class lll lysis. This composition has been obtained fenterica,

contains integration host factors, insertion sequences, gen&saureus and L.lactis for which no table of weights was

behaving as mutators when inactive, but also genes controllingreviously compiled and no reference set was proposed

cell division, outer membrane proteins, catabolic operons. (see supplementary material), as well as for organisms for
Below class | one finds another dense set of points, whichwevhich translational bias has been previously investigated

call class IV, rather well separated by the main one (see Fig. 3as H.influenzae (Perriére and Thioulouse, 199@3,subtilis

It mainly includes proteins encoded with hydrophobic amino-(Shields and Sharp, 1987E.coli (Sharp and Li, 1987),

acids, as membrane proteins. Figure 3 shows this clusté&cerevisiae (Sharpet al., 1986), D.melanogaster (Sharp

structure foE.coli. Itis detected in 64 dimensionsby PCAand et al., 1988), C.elegans (Stenicoet al., 1994). ForE.coli

then projected along the three principal components. [Class INnd H.influenzae, two Gram-negative bacteria with an outer

was not detected in (Médigwet al., 1991) because Factorial membrane, major outer-membrane proteins are additionally

Analysis and RSCU data tables for representing codons weliacluded by the algorithm in the reference set.
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‘Saccharomyces ceravisiae ) Escherichia coli _
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Fig. 5. CAl values computed on the reference set found by our
algorithm (y-axis) are plotted with CAl values computed by Sharp
et al. (x-axis) for Scerevisiae, E.coli, C.elegans, D.melanogaster,
B.subtilis andH.influenzae.

genes in the cell, we obtain a remarkably good correla-
tion between the values as illustrated in Fig. 5. Eaoli,
Fig. 4. B.subtilis: the dynamics of the algorithm from iteration 2 SCerevisiae and H.influenzae (Sharp and Li, 1987; Sharp
(top left) to iteration 10 (down right) visualized on the rabbit head. €t al., 1986; Perriere and Thioulouse, 1996) all points are
Coding sequences are represented by dots; black dots correspond¥€ll distributed along the diagonal. FQxelegans, the cor-
sequences iy, for k = 2,...,10. The black cloud and its large relation is done with data in (Stenicet al., 1994); our
black ball (corresponding to average codon biarprogressively  reference set contains 172 proteins and it is much larger
move from (sequences in) class | towards class Il, for increasinghan the one computed for micro-organisms. The same is
values ofk. The algorithm stabilizes around sefg, for k > 7, true for D.melanogaster [with data in (Sharget al., 1988)],
whose codon usage are localized in the same small neighbourhooghere our reference set contains 129 coding sequences. The
CAI values ofB.subtilis have been defined in (Shields and
Sharp, 1987) on a set which comprised only seven genes
Besides proteins involved in translation and glycolysis,and given its small size, it is surprising that the correlation
the reference sets for higher eukaryotes comprise proteiris so high.
involved in ATP production (by mitochondria) and in the For Scerevisiag, the bias captured by our algorithm is
cytoskeleton. FoIC.elegans, the reference set additionally correlated with transcript steady-state levels and reflects the
contains histone and collagen proteins. transcriptional load of mMRNA present in the cell (see Fig. 6,
The lengths of genes vary considerably within each referieft). This correlation supports the intuition that the cost
ence set, fromx10Qua for cold-shock proteins, te=70Qua of cellular macromolecular synthesis would be increased by
for heat-shock and glycolytic proteins, with the vast major-producing an abundant transcript encoding lowly expressed
ity ~200-30@a long. There are also proteins which are proteins, or vice versa, by producing a poor transcript encod-
100Qza long such as myosin proteins, up to 16adong as  ing highly expressed proteins. It also suggests that the bias
vitellogenin inC.elegans (see supplementary material also). detected by the analysis of codon usage is intrinsically related
When comparing our CAI values with those computed onto both transcription and translation [as argued in (Sharp and
reference sets defined by manually selecting highly expressdd, 1987; Sharpet al., 1986)].
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Saccharomyces cerevisiae
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Fig. 6. Different biases detected by the algorithm. Transcriptional bias, left: transcription le\&teraf/isiae genes are plotted (in log scale)
with CAl values. GC3s bias, centre: GC3s value®.aéruginosa are plotted with CAl values (in log scale); the open squares correspond to
ribosomal genes. Leading-lagging strand bias, right: number of genes in leading and lagging stBamagddrferi are plotted with CAl
values.

(For all fast growing organisms considered in the paper, higlof gene expression levels. Notice, for instance, that the highly
gCAl values are about 10—-15% smaller than CAl values, anéxpressed genaprl| turns out to have CAl value 0.26.
low gCAl values are at most 30% smaller than CAI values. CAI values are well correlated with GC3-content though,
gCAl values are highly correlated with CAI values, with a with a correlation coefficient = 0.83; the correlation coef-

correlation coefficient of 0.98—-0.99 in the worst case.)

Detection of tranglationally optimal codonsin slow
growers: M.pulmonisand M.tuberculosis

M.pulmonis is a slow growing pathogen with a small num-

ficient between the logarithmic value of CAl and GC3 is

r = 0.90 (see Fig. 6, middle). Itis interesting to see that if the
algorithm is run from an initial se§’ containing genes con-
stituting the core of the gene expression machinery (i.e. genes
coding for ribosomal proteins, elongation factors, and so on),

ber of genes, distributed within a four cluster structure in thehen, never.the!ess, itdetedtas a reference set. Thi_s ‘proyes’
64-dimensional space of coding sequences (data not showpﬂat GC3 b!as |;sruch more QOm|nant than translatlo_ngl bias.
the space reminds the one illustrated in Fig. 3 Eaoli); The dominating codon bias Raeruginosa gave origin to

ribosomal proteins are grouped in one of these clusters. Oontroversial opinions on the biology of this organism. This

algorithm converges towards ribosomal proteins first, to devi¥as due to calculations of CAl values which were based on

ate afterwards towards a group of lipoproteins, outliers forMisleading manual selections of reference sets (Grocock and
the distribution and highly GC-rich. As a result, the refer- SNarP, 2002; Gupta and Ghosh, 2001; Kiewitz and Tummler,

ence set (constituted by seven genes) includes three riboson%goo)'
proteins, three lipoproteins and one protein of unknown func-

tion. This suggests that the primary source of codon variatiometection of GC skew bias: Treponema pallidum

L?a?sfzﬂiggg:ls I(S) IE;:;; use of a subset of codons which areA genome where GC skew content is known to be the domin-
y op ) ating codon bias, i$.pallidum (Lafay et al., 1999). Our CAI

An ana_llog_ous descrlp.tlon holds fdm.tuberculpss. Th'? . Yalues meet the highest correlation coefficient with GC skew
genome is highly GC3 biased and the correlation coeff|C|envalues withr — 0.659

between GC3 and CAl valuesris= 0.93. We find a reference
set of 41 genes that includes three ribosomal proteins, two
translation factors, and many properties involved in glycolysisH omogeneous genomes: Helicobacter pylori
suggesting a selection for _optimal codon_s being more eff_ectivgn H.pylori, the algorithm returns a reference Savhich is
on genes expressed at high levels. This was also noticed {,qsityted essentially by coding sequences with ‘unknown’
(Andersson and Sharp, 1996). function. CAl values have a low correlation with all forms of

) ) bias (notice that the strongest one is a mild correlation with
Detection of GC3 bias. GC skew values, with = 0.358), and the gCAlvalues of
Pseudomonas aeruginosa PAOL genes along different iterations vary very little (see Fig. 1). All
On Paeruginosa genome, the algorithm detects a referencethese observations support the hypothesisonfogeneity of
setS which contains neither ribosomal proteins nor elongatiorthe codon distribution on this slow growing micro-organism,
factors. This suggests that translational bias is not dominatingnd a lack of translational bias as a dominating bias (Lafay
and that CAl values computed frohare not representative et al., 2000).
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Detection of leading strand bias: made of classes |, II, lll and IV (Fig. 3). When random sets
Borrelia burgdorferi were selected in class Il (as well as in class | and class 1V),

For the spirochaet®.burgdorferi, it was shown that the main the algorithm always converged to the same reference set in

factor shaping codon usage is the strand-specific mutationg{@SS !l; showing that codon usage is less biasegisubilis
pressure (Lafayt al., 1999). [Some translational selection than inE.coli, in agreement with (Shields and Sharp, 1987).
was shown to exist (Perriére and Thioulouse, 2002) but if* oc@! fixed point exists though for genes selected on the
does not constitute the dominating bias.] The leading strang'0St extreme AT-rich region in class IlI: the algorithm does
of replication is G-T-rich, and therefore genes placed on thatOt leave this set. The same behaviour was observed for
strand (565 genes) display a strong bias towards those basrnterica. InC.elegans, the algorithm always escaped chosen
at the silent sites, while the opposite biases are found in gen&&!S t0 converge towards the most translationally biased setin
placed on the lagging strand (286 genes) (Mclnerney, 19933,Iass II. No other fixed pomt, other than th(_e dominating one,
Lafayet al., 1999). Figure 6 (right) shows that genes with the'Vas found. [On codon bias, base composition and gene trans-
highest CAI values lie in the leading strand. Thealue cal- €7 S€€ (Syvanen, 1994; Guidon and Perriere, 2001; Koski
culated for the difference between mean CAl valuesin Ieadin&t al., 2001).]

and lagging strands is= 1.8565, which corresponds to the

confidence level of 93.8%, suggesting that the leading angopoON BIAS AND THE LONG GENE EFFECT:

lagging strands determine the dominating bias in agreemer ~EREVISIAE AND C.ELEGANS

with (Mclnerney, 1998; Lafagt al., 1999). i o ) ) ]
We give a numerical justification for introducing the notion

L ocal codon bias: detection of a biason the of ‘gl(_)baI_Codon Adaptation Ind_ex’. We had arg_ued that_a_n
lagging strand of B.burgdorferi algorithmic analysis of codon bias shoulq ta.ke into explicit

) _ . . _ _account gene length because of a combination of two facts:
Given a pointx in the 64-dimensional space of coding pif genetic information (defined as the number of base pairs)
sequences, let us consider the 1% of the sequesicesiich  gjis i |ong genes(2000 bp long), and a strong negative cor-
are closest tor with respect to some distance metric, for 1o |ation between codon usage and protein length was observed
instance the Euclidean metric. By applying the algorithm 0 £\ karyotes (Duret and Mouchiroud, 1999). In particular,
the reference s, it might happen thas, satisfies the self- g eypects long coding sequences to undesirably influence
consistency principle (1). This is possible even wigrs not he hehaviour of the algorithm in successive steps: rare codons
representative of the dominating bias, and simply means thaf, anpear in long coding sequences which are consistently
besides thelobal bias, which is dominating, there idacal  ggjected at successive steps of the procedure, augment their
bias which is repr(.as'ented Ky , , relative weight withk, and bias the codon usage accord-

For B.burgdorferi, if the algorithm is run on a random set g1y nossibly deviating the algorithmic behaviour. The factor
of genes selected_ among those on the lagging strand, t_he co|r3«;;|/|5k| included in the gCAI formula takes care of these
vergent set also lies on the lagging strand. The local bias fog;t ations.

the lagging strand is shaped mainly by GC3-content and very a miid form of the problem appears witcerevisiae. This

mildly (negatively) related to GC-skew. genome is the only one among unicellular organisms that dis-
. ) ) plays an oscillatory behavior among two reference Sgts;

L ocal codon bias: detection of horizontal differing for exactly one gene, if weights; ; are used instead

genetransfer of w; ;, i.e. if we compute CAl values instead of gCAlval-

On all random selections of 1% of genes from sequences ines at each iteration. This is due to two genes which flip in
class | and in class Il dB.subtilis (see Fig. 4), the algorithm and out the reference set, RPL9B (576 bp long) and YEF3
converged to theame reference set located in class Il and (3135 bp long). YEF3 is by far the longest gene in the set and
containing genes coding for the translation machinery. Wheiit spoils the statistics when CAIl values are considered. With
random sets were selected from class Ill, the algorithm conthe gCAI formula no such effect appears.
verged to a reference set lying in class lll. This suggests A much stronger form of long gene effect is displayed
that coding sequences in class Il follow a different codonin C.elegans. Here, the algorithm converges but it ‘fails’ to
bias from the rest of the genome. Class Il [made of codingdetermine a sef, representative of the translational bias,
sequences which are4Ar-rich (Nicolaset al., 2002)] con- if we compute CA} values instead of gCAlvalues. By
tains horizontally transferred genes (Médigaieal., 1991):  applying the algorithm to the coding sequence€ afegans,
transposons, insertion sequences and proteins involved e observes that the algorithmic trajectory starts and ends
phage-related functions, in adaptation to atypical conditionsin Class | because of the presence, in the Sgfsof long
and in detoxification. genes as Irp-1 of length= 14 262 bp and converging CAIl

We repeated the numerical test on the genomé&.odli value= 0.7. Even though coding sequences in Classes Il and
whose shape in the projected 64-dimensional space is agalih are the most biased, the trajectory does not escape Class |
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DISCUSSION

We introduced a method to study dominating codon biases in
genomes and we validated it over several known unicellular
organisms which have been previously investigated with Cor-
respondence Analysis (CA) (Perriere and Thioulouse, 2002).
A few new organisms, a®.melanogaster and C.elegans,
whose genomes are much larger in size and provide a com-
putational obstacle to CA, are also considered. The biological
impacts of this new approach will be discussed elsewhere;
they comprise the definition of new quantitative measures for
comparing species, and the reconstruction and validation of
regulatory circuits and metabolic pathways on known and less
known organisms.
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