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ABSTRACT
We propose a simple algorithm to detect dominating synonym-
ous codon usage bias in genomes. The algorithm is based on
a precise mathematical formulation of the problem that lead
us to use the Codon Adaptation Index (CAI) as a ‘universal’
measure of codon bias. This measure has been previously
employed in the specific context of translational bias. With the
set of coding sequences as a sole source of biological inform-
ation, the algorithm provides a reference set of genes which
is highly representative of the bias. This set can be used to
compute the CAI of genes of prokaryotic and eukaryotic organ-
isms, including those whose functional annotation is not yet
available. An important application concerns the detection of a
reference set characterizing translational bias which is known
to correlate to expression levels; in this case, the algorithm
becomes a key tool to predict gene expression levels, to
guide regulatory circuit reconstruction, and to compare spe-
cies. The algorithm detects also leading–lagging strands bias,
GC-content bias, GC3 bias, and horizontal gene transfer. The
approach is validated on 12 slow-growing and fast-growing
bacteria, Saccharomyces cerevisiae, Caenorhabditis elegans
and Drosophila melanogaster.
Availability: http://www.ihes.fr/~materials.
Contact: carbone@ihes.fr

INTRODUCTION
The genetic code associates a set of sibling codons to the
same amino acid, and some codons occur more frequently
than others in gene sequences (Granthamet al., 1980; Wada
et al., 1990). Biased codon usage may result from a diversity
of factors: GC-content, preference for codons with G or
C at the third nucleotide position (Lafayet al., 1999), a
leading strand richer in G+T than a lagging strand (Lafay
et al., 1999), horizontal gene transfer which induces chromo-
some segments of unusual base composition (Moszeret al.,
1999), and in particular, translational bias which has been
frequently noticed in fast growing prokaryotes and euka-
ryotes (Sharp and Li, 1987; Sharpet al., 1986; Médigue
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et al., 1991; Shields and Sharp, 1987; Sharpet al., 1988;
Stenicoet al., 1994). Three main facts support the idea of
‘translational impact’: highly expressed genes tend to use
only a limited number of codons and display a high codon
bias (Granthamet al., 1980; Sharp and Li, 1987), preferred
codons and iso-acceptor tRNA content exhibit a strong posit-
ive correlation (Ikemura, 1985; Bennetzen and Hall, 1982;
Bulmer, 1987; Gouy and Gautier, 1982), and tRNA iso-
acceptor pools affect the rate of polypeptide chain elongation
(Varenneet al., 1984).

To study the effect of translational bias on gene expres-
sion, Sharp and Li (Sharp and Li, 1987) proposed to associate
to each gene of a given genome a numerical value, called
codon adaptation index (CAI), which expresses its synonym-
ous codon bias. The idea is to compute aweight (representing
relative adaptiveness) for each codon from its frequency
within a chosen small pool of highly expressed genesS, and
combine these weights to define the CAI(g) value of each
geneg in the genome. For Sharpet al., the hypothesis driv-
ing the choice ofS is that, for certain organisms, highly
expressed genes in the cell have highest codon bias, and
these genes, made out of frequent codons, are representat-
ive for the bias. Based on this rationale, one can select a pool
of ribosomal proteins, elongation factors, proteins involved
in glycolysis, possibly histone proteins (in eukaryotes) and
outer membrane proteins (in prokaryotes) or other selections
from known highly expressed genes, to form the represent-
ative setS. Then, CAI values are computed and are checked
to be compatible with genes known to be highly or lowly
expressed in the cell. If this is the case, then predictions are
drawn with some confidence on expression levels for genes
and open reading frames, even with no known homologues.
Even if conceptually clear, this framework has been misused
several times in the literature and incorrect biological con-
sequences have been derived for gene expression levels of
organisms which donot display a dominant translational bias,
as discussed in (Grocock and Sharp, 2002). This confusion
motivated us to search for a methodology based on a pre-
cise mathematical formulation of the problem to detect the
existence of translational bias.
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But the main motivation for us came from the recogni-
tion that an increasing number of genome sequences will
be available for organisms for which biological knowledge
consists merely of a sketched morphological and ecological
description. For these organisms, it might not be evident how
to define the reference setS, or how to identify a reliable test-
ing set which can ensure that predictions meet a satisfiable
confidence level. Still, one would like to detect if translational
bias holds for these genomes and if so, to predict their gene
expression levels. If not, one would like to know the origin of
their dominating bias.

We propose an algorithm that uses the notion of CAI as a
measure to detect the most dominant codon bias in the gen-
ome, regardless of whether this bias is translational or not.
The algorithm screens all genes of an organism and itselects
a reference setS which scores the highest values in the CAI
scale. A screening of the genes in the set allows to identify
the kind of synonymous codon usage bias which drives the
genome under examination. IfS contains proteins involved
in translation and glycolysis, then one derives that the bias is
translational, and that CAI values can be safely correlated to
gene expression levels. If no translational bias is present, it is
then possible to successfully correlate CAI values to GC con-
tent, GC3 bias, GC skew bias, leading–lagging strand bias,
and so on. We discuss some examples later.

The algorithm is based on no biological assumption, in
particular concerning the biological functions of the organ-
ism. The key point is that dominant codon bias in a set of
coding sequences is a notion which isindependent of bio-
logical knowledge. It can be precisely formalized in purely
mathematical terms and used to detect a representative set of
sequences which lead the dominating bias. It is important to
stress though, that a biological evaluation of the reference set
is a crucial step to use it appropriately.

One novel technical aspect of our analysis is arevised defin-
ition of CAI that allows the automatic detection of dominant
codon bias for both prokaryotic andeukaryotic genomes. For
these latter, it has been noticed (Duret and Mouchiroud, 1999)
that gene length in the genomes ofCaenorhabditis elegans,
Drosophila melanogaster andArabidopsis thaliana displays a
strong negative correlation with codon usage bias. This means
that a careless selection along the iteration of the algorithm
of short and long genes might yield a setS with a heterogen-
eous codon distribution (where rare codons appear with high
frequency in certain long genes), and consequently, to the
calculation of a codon adaptation index which is undesirably
affected. For eukaryotic genomes, whose long genes make up
about half of their coding part, the selection of genes inS needs
to be guided by such a criteria. For this, we introduce a cor-
recting factor in the original formula proposed by Sharp and
Li (Sharp and Li, 1987), compute the global codon adaptation
index, (gCAI) and determine a setS of coding sequences with
high gCAI values. Ultimately, CAI values can be computed
on codon weights calculated onS.

Table 1. The full set of genomes considered in this paper with their number
of CDSs

Mycoplasma pulmonis 480 SG
Mycobacterium tuberculosis 4187 SG
Treponema pallidum 1031 SG
Helicobacter pylori 1566 SG
Pseudomonas aeruginosa 5567 SG
Borrelia burgdorferi 1638 SG
Haemophilus influenzae 1709 FG
Salmonella enterica 4600 FG
Staphylococcus aureus 2714 FG
Lactococcus lactis 2266 FG
Bacillus subtilis 4100 FG
Escherichia coli 4289 FG
Saccharomyces cerevisiae 6305 LE
Caenorhabditis elegans 17 078 HE
Drosophila melanogaster 14 146 HE

SG, slow-growing bacteria; FG, fast-growing bacteria; LE, lower eukaryotes; HE, higher
eukaryotes.

MATERIALS AND METHODS
Sequence data
The whole genomes along with gene annotation were retrieved
from the Genomes directory of GeneBank FTP (Table 1 and
supplementary material). All sequences marked as CDS were
considered, including those annotated as hypothetical and
those predicted by computational methods only. From each
coding sequence, we excluded initiation and stop codons.

Transcriptional data forSaccharomyces cerevisiae are taken
from the study reported in (Holstegeet al., 1998) and based on
high-density oligonucleotide arrays technology (downloaded
from http://www.wi.mit.edu/young/expression.html in 1999,
now available at http://www.ihes.fr/~materials). They concern
a set of 4849 genes.

Space of coding sequences and visualization
A coding sequence is represented by a 64-dimensional vector,
whose entries correspond to the 64 relative codon frequencies
in the sequence. (The entries for codons UAA, UAG, UGA,
UGG, AUG could be discharged: UGG, AUG have no syn-
onymous codons and UAA, UAG, UGA are stop codons and
they do not code for amino acids. Considering 59 dimen-
sions instead of 64 would not make any substantial difference
neither in the determination of the reference set nor in the
visualization of the coding sequences in three-dimensions.)
Recall that thefrequency of a codoni in a sequenceg is the
number of occurrences ofi in g (whereg is intended to be
split in consecutive non-overlapping triplets corresponding to
amino-acid decomposition), and that therelative frequency
of i in g is the frequency ofi in g divided by the number of
codons ing. Notice that for each vector representing a coding
sequence, the sum of its entries must equal 1.
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Hence, a coding sequence is a point in the 64-dimensional
space[0 . . . 1]64, where no special assumption is made on the
space nor on the coordinate system. The set of points can
be visualized in three dimensions by using principal com-
ponents analysis (PCA) (Hotelling, 1933; Handet al., 2001):
first, every coordinate is normalized on unity standard devi-
ation to take into account equally dominating as well as rare
codons [following the standard definition employed in PCA,
the normalized value of relative frequencyx′

i,j for codoni in
genej is defined as(xi,j − x̄i )/σi , wherexi,j is the relative
frequency ofi in j , x̄i is the average relative frequency of
i computed with respect to all coding sequences, andσi is
the standard deviation for the set of frequency valuesxi,j , for
all j ]; then, three principal components for the cloud of points
are calculated using the Euclidean distance measure; finally,
the cloud of points is projected orthogonally in the subspace
of the three selected vectors and visualized by means of a
specialized three-dimensional viewer (see below).

Other methods of multivariate analysis, as Correspondence
Analysis and Principal Factorial Analysis, have been used,
much more frequently than PCA, to investigate codon usage
(Médigueet al., 1991; Perrière and Thioulouse, 2002).

Reference sets, codon frequency tables, tables of gCAI and
CAI values were calculated with the program CAIJava written
by the authors, which uses parsers of GenBank flat files from
the Biojava (http://www.biojava.org) programming package.
The algorithmic behaviour in the space of codon usage was
visualized in VidaExpert, a tool developed by A.Z. A special-
ized three-dimensional viewer is provided with VidaExpert.
All software is available at http://www.ihes.fr/~materials.

Codon composition and codon bias
For each genome sequenceG and some set of coding
sequencesS in G, codon bias is measured with respect to
its synonymous codon usage. Given an amino-acidj , its syn-
onymous codons might have different frequencies inS; if xi,j

is the number of times that the codoni for the amino-acidj
occurs inS, then one associates toi a weight wi,j relative to
its sibling of maximal frequencyyj in S

wi,j = xi,j

yj

.

A codon with maximal frequency inS is called preferred
among its sibling codons. To each geneg in G, Sharp and
Li (Sharp and Li, 1987) associated a value in[0, 1], called
CAI defined as

CAI(g) =
(

L∏
k=1

wk

)1/L

whereL is the number of codons in the gene, andwk is the
weight of thekth codon in the gene sequence. Genes with CAI
value close to 1 are made by highly frequent codons.

Codon bias and length of genes in eukaryotes:
the need of a revised statistics
We introduce a new definition ofweight

w̄i,j = |Si |
|S| · xi,j

yj

whereSi is the set of coding sequences inS that contain
at least one occurrence of codoni, and |Si |, |S| denote the
number of coding sequences inSi andS. The factor|Si |/|S|
denotes the probability that a codoni appears in a gene of
S. If the setS has ahighly homogeneous codon distribution,
i.e. if genes are made out of the same pool of codons, then
the factor is expected to take almost always value 1, with
no dramatic effect on the weight. In general, the factor dis-
criminates against those codons that happen to appear in a
few number of genes inS, even if their occurrence is very
pronounced within those genes. Such a situation might arise,
for instance, when some long gene belongs toS, since rare
codons become likely to appear there (possibly in a high abso-
lute frequency). [Alternatively, one could define the weights
w̄i,j as (|Si |/|S|) · (xi,j /�xl,j ), wherexl,j denotes the fre-
quency of codonl synonymous toi. The valuexi,j /�xl,j is
in [0, 1] and denotes the probability thati is selected within
all synonymous codons for the amino-acidj .]

A value in[0, 1], called gCAI, is associated to each geneg,
and it is defined as

gCAI(g) =
(

L∏
k=1

w̄k

)1/L

whereL is the number of codons in the gene, andw̄k is the
weight of thekth codon in the gene sequence. Genes with
gCAI value close to 1 are made by highly frequent codons.

Some measures for codon usage
GC-content is defined to be the frequency of G+C basepairs,
and GC3-content is the frequency of G+ C basepairs at the
third coding position (excluding Met and Trp, and termination
codons).XY -skew, whereX,Y ∈ {A, T, G, C} andX �= Y ,
is defined as(X − Y )/(X + Y ), that is the relative distance
betweenX-frequency andY -frequency; its value is positive
and high when the sequences are made by manyXs and a few
Ys. Finally, for circular genomes, genes might happen to be
located onleading andlagging strands; their codon usage is
influenced accordingly. To measure the connection between
strands and bias we use the standardt-value for calculating the
difference between mean CAI values in leading and lagging
strands.

A strategy to search for the most
biased reference set
We propose an automatic procedure to search for a setS which
is representative of the codon usage in the genome. Precisely,
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one wants to find a setS which contains about 1% of predicted
coding sequences (≈ 50–150 sequences) and which allows to
compute weights̄wi,j that maximize the gCAI values of the
genes inS, i.e. the gCAI values of coding sequences inG/S

(that is, those that are not in G) are smaller than all gCAI
values of sequences inS

gCAI(G/S) ≤ gCAI(S) (1)

where gCAI values are computed onS. In other words,
the highest gCAI values are obtained on the selected setS.
Condition (1) expresses a sort ofself-consistency principle
for S.

Among all sets that satisfy (1), one wants to choose the setS

which is representative of the family of codons that appear in
most genes with the highest frequency (in within the genome).
In formal terms this means that ifc1, . . . , c20 are preferred
codons forS, andd1, . . . ,d20 are preferred codons for the
entire genomeG, then we look for the setS that minimizes

20∑
i=1

χ(ci ,di) (2)

where χ(ci ,di) = 1 if di �= ci and = 0 otherwise.
Condition (2) expresses the meaning ofdominating codon
bias inG.

An exhaustive search for the best reference set satisfying (1)
and (2) asks for too much computational time. In fact, one
should search through

(
X
Y

)
sets, where the binomial coeffi-

cient
(
X
Y

) = X!/[Y !(X − Y )!], X is the number of coding
sequences of the genome andY is X/100. This means that
for a genome of 6000 coding sequences, like the genome of
S.cerevisiae for instance, the number of sets to be checked
would be more than 2360. The algorithm that we propose, is
based on the belief that for all genomes there exists a pool of
coding sequences that contain few and very frequent codons,
and that the bias induced by such codons can guide the search.
Maximum values are expected when codon distribution inS is
the most homogeneous, and when long genes containing rare
codons do not belong toS. These two properties are controlled
by the factor|Si |/|S|.

It is important to stress that the added complexity of|Si |/|S|
is meaningful in the process of automated delineation of
highly biased reference sets ineukaryotes. In the last sec-
tion, we discuss, based on the concrete case ofC.elegans, the
malfunctioning of the algorithm when this factor is not taken
into account. For bacterial genomes, this factor does not sig-
nificantly contribute and gCAI values are highly correlated
(correlation coefficient>0.98) with CAI values.

THE ALGORITHM
The algorithm is iterative. At each iteration stepk, it com-
putes the gCAI values of the coding sequences inG from
codon weights that are calculated with respect to a selected

setSk. Codons that do not appear inSk take weight 0.01 by
default. At step 1, letS1 be the set of all coding sequences
in G; at stepk + 1, defineSk+1 to be thexk+1% of the
genes with highest gCAI value at stepk, wherexk+1 = xk/2,
andx1 = 100%. In particular, by dividing at each step the
number of genes by 2, the procedure soon (≈ 8–15 steps
for prokaryotes, and 15–25 steps for eukaryotes) converges
to some small setSk. If the number of coding sequences
in Sk is smaller than the 1% of all coding sequences, then
step k + 1 is applied toSk containing the 1% of coding
sequences with highest gCAIk value on the previous itera-
tion. The algorithm terminates when it converges to a small
setSk such that gCAIk+1(g) = gCAIk(g) for all g in Sk, i.e.
Sk+1 = Sk, where gCAIk represents the gCAI values which
are obtained at stepk. It might happen that a finite sequence of
setsSk,Sk+1, . . . ,Sk+r (i.e.Sk+r+1 = Sk) is found instead. In
this case, we say that the procedureoscillates betweenr + 1
sets. To detect a unique convergent setSk, we take away from
Sk+1 the gene with smallest gCAIk value and re-iterate, that
is we look for a reference set of size possibly smaller than
1%. We do so (by decrementing a set by one) until a unique
convergent set is found.

The choice of fixing the smallest size ofSk sets at 1% of
the genome size corresponds roughly to the size of the ref-
erence sets proposed by Sharpet al. in (Sharp and Li, 1987;
Sharpet al., 1986; Shields and Sharp, 1987; Sharpet al., 1988;
Stenicoet al., 1994; Andersson and Sharp, 1996).

Once the convergent reference setSk is computed, weights
wi,j and CAI(g) values, for all genesg, can be calculated.

Rationale and a localized version
The rationale of the algorithm is based on the belief that for
all genomes there exists a small pool of coding sequences that
contain a small number of very frequent codons. From the
very first iterations, such codons lead to determine the small
set of highly biased coding sequences which are representative
of the codon bias dominating the entire genome.

This intuition is supported by the following numerical ana-
lysis: on the algorithm above, we fixedS1 to be somerandomly
selected set made of 1% of all coding sequences, and we fixed
xk+1 = 1%, for all iterationsk. This ‘randomized’ version
of the algorithm has been applied several times to the gen-
omes in Table 1, and always it produced the reference setS

obtained with the original version (data not shown). Numer-
ical simulations were based on coding sequences chosen
randomly, but most of them happened to be also ‘uniform’
on the space of coding sequences: this space is usually shaped
into a few clusters (see later discussion), and the number
of representative coding sequences in the random set com-
ing from each cluster was proportional to the size of the
cluster. For non-uniform random selections, i.e. localized in
space, the algorithmic convergence toS cannot be ensured. In
this case, the algorithm detectslocal codon biases (see later
discussion).
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Convergence and uniqueness of the solution
The algorithm converges to some finite setS of coding
sequences with high gCAI value because, at each iteration, the
setSk+1 is chosen to contain coding sequences with stronger
bias than inSk. Notice that all genomes analysed in this paper
converged immediately to a unique setSk of size 1%, that is
no oscillation was detected.

The discussion at the end of the previous section points out
that the reference setS, for genome sequences, is detectable
by the randomized version of the algorithm. This implies that
S doesnot depend onxi values, and we say that the gCAI(g)
[CAI(g)] value isunique, for each geneg.

To conclude, let us observe that the self-consistency prin-
ciple (1), saying thatS is a fixed point for the algorithm, is
satisfied by our definition of stable set. Also, condition (2)
is satisfied with high probability at each iteration step, that
is with high probability

∑20
i=1 χ(dk+1

i ,dk
i ) is minimized by

the selected setSk+1, at each iteration stepk. (The formal
argument justifying this fact is based on the observation that
synonymous codons with weights�1 calculated onSk tend
to preserve the same frequency distribution inSk+1.)

APPLICATION TO VARIOUS GENOMES
The algorithm has been applied to 15 prokaryotic and euka-
ryotic genomes. For all of them, a convergent set was found
after K = 15 iterations, except in the case ofC.elegans
whereK = 20. By plotting gCAIk values for all genes (see
Fig. 1), we observe that the trend associated to the convergent
iteration K (bottom plot), can be very different for differ-
ent species. Coding sequences of high gCAI1 values (on the
right of the top curve) tend to conserve their high values in
iterationK (bottom plot), while coding sequences with low
gCAI1 value typically take smaller values in successive iter-
ations. The latter fact is due to the codon biases of the sets
Sj , which are expected to associate lower weights to a larger
number of codons thanSk, for k < j .

The differences between first and last plots, i.e.|gCAI1(g)−
gCAIK(g)| for each geneg, reveal a homogeneous distribu-
tion of codons inH.pylori, the existence of a pool of very
biased genes detectable from the first iteration inE.coli, and
a biased set which is not detectable from the first iteration in
C.elegans (notice the high number of peaks along the plots
at iterationK). Figure 2 illustrates the change of codon fre-
quency in the first and the last iterations of the algorithm for
these three representative organisms.

DYNAMICS OF THE ALGORITHM
The dynamics of the algorithm can be studied by looking
at the way the cloudsSk move in the 64-dimensional space
of sequences, or, analogously, by following the trajectory of
average codon usage for the setsSk. We first say some words
about the space.

Fig. 1. Plot of the gCAIk values of coding sequences inH.pylori,
E.coli, C.elegans for k = 1, 3,K, whereK corresponds to convergent
iterations. Thex-axis ranks coding sequences, and its maximum
value is the number of coding sequences in the organism. The rank
follows increasing gCAI1 values (seen in the smooth increasing curve
on the top). In steps 3 andK, we see how values adapt to the codon
bias that has been detected.

Fig. 2. Frequency distribution of codons in the setsSk for k = 1,K,
in H.pylori, E.coli, C.elegans. Recall thatS1 is the set of all coding
sequences. The frequencies of synonymous codons are connected by
consecutive lines for an easier visualization.

Structure of the 64-dimensional spaces of
coding sequences
Recall that coding sequences are points in the 64-dimensional
space[0 . . . 1]64, and that the cloud they form can be visualized
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Fig. 3. E.coli: four clusters are shown in blue (class I), pink
(class IV), red (class II) and green (class III). Left: therabbit
head; this view has been realized after rotating slightly the three-
dimensional-projection along the first and second principal compon-
ents. Right: two-dimensional-projection along the second and third
principal components; notice the pink cluster ‘below’ the rabbit head.
The clustering was done with theK-Means method. The trajectory
of convergence of the algorithm applied to this genome is described
by a sequence of green balls (representing codon usage of successive
setsSk) starting with a red one (computed forS1; the red ball is barely
visible). The trajectory starts in the blue cluster and ends-up in the
red one which contains genes coding for ribosomal proteins.

in three dimensions by normalizing the points (i.e. each vec-
tor coordinate), calculating three principal components and
performing an orthogonal projection in the subspace of the
three principal vectors. The shape of the cloud of points, for
fast growing organisms, reminds a ‘rabbit head’ and it was
observed in (Médigueet al., 1991) forE.coli (see Fig. 3).
It looks as formed by a dense cluster of coding sequences
(class I), with two much sparser sets of points protruding from
it (the ‘ears’ of the rabbit, class II and III). Class I comprises
genes that maintain a low or intermediary level of expression,
but that at times can be expressed at a very high level; in con-
trast class II contains genes that are constitutively expressed
at a high level, most of them are involved in translation, in
protein folding, in transcription, in DNA binding; class III
contains integration host factors, insertion sequences, genes
behaving as mutators when inactive, but also genes controlling
cell division, outer membrane proteins, catabolic operons.

Below class I one finds another dense set of points, which we
call class IV, rather well separated by the main one (see Fig. 3).
It mainly includes proteins encoded with hydrophobic amino-
acids, as membrane proteins. Figure 3 shows this cluster
structure forE.coli. It is detected in 64 dimensions by PCA and
then projected along the three principal components. [Class IV
was not detected in (Médigueet al., 1991) because Factorial
Analysis and RSCU data tables for representing codons were

used, and RSCU does not distinguish amino-acid compos-
ition.] This distinguished positional organisation of coding
sequences in the 64-dimensional space has been observed
several times for specific genomes (Perrière and Thioulouse,
2002).

For slow growing organisms, the cloud of points is consti-
tuted, in some cases, by class I and class IV, where class II
and III are not distinct from class I. Other times, for instance
for spirochaetes, the two dense clouds have a less clear-cut
shape (Lafayet al., 1999).

Clusters and the dynamics of the algorithm
The codon usage of the whole set of coding sequences, i.e.
the vector whoseith coordinate represents the average usage
of codoni in the set (formally, each coordinate of the vector
is defined asxi/N , wherexi is the frequency of codoni in S1

andN is the number of codons inS1), sits in the most dense
cluster (see red ball in Fig. 3). Codon usages of the sets of
coding sequencesSk lie on the trajectory depicted by green
balls in Fig. 3.

In Fig. 4, the cloudsSk are shown for the projected sequence
space ofB.subtilis at consecutive iterations: the codon usage
of S1 is located in class I (the large black ball is hidden in
it) and it gradually moves towards class II, along a trajectory
indicated by consecutive medium sized black balls, which
represent the codon usage of the setsSk, for increasingk. The
algorithm displays the same regular behaviour for all fast-
growing bacteria and eukaryotic organisms analysed in this
paper: the trajectory starts at class I and terminates in class II.

For slow-growing bacteria, the algorithmic trajectory starts
and ends in class I. Typically such genomes display dominant
leading strand bias, GC3 bias, GC or AT skew bias, or a
homogeneous composition (Lafayet al., 1999, 2000; Grocock
and Sharp, 2002).

VALIDATION
Detection of translational bias in fast growers
For fast-growing micro-organisms, reference sets detected by
the algorithm contain genes which encode almost exclusively
proteins involved in translation, protein folding and glyco-
lysis. This composition has been obtained forS.enterica,
S.aureus and L.lactis for which no table of weights was
previously compiled and no reference set was proposed
(see supplementary material), as well as for organisms for
which translational bias has been previously investigated
as H.influenzae (Perrière and Thioulouse, 1996),B.subtilis
(Shields and Sharp, 1987),E.coli (Sharp and Li, 1987),
S.cerevisiae (Sharp et al., 1986), D.melanogaster (Sharp
et al., 1988), C.elegans (Stenicoet al., 1994). ForE.coli
andH.influenzae, two Gram-negative bacteria with an outer
membrane, major outer-membrane proteins are additionally
included by the algorithm in the reference set.
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Fig. 4. B.subtilis: the dynamics of the algorithm from iteration 2
(top left) to iteration 10 (down right) visualized on the rabbit head.
Coding sequences are represented by dots; black dots correspond to
sequences inSk , for k = 2, . . . , 10. The black cloud and its large
black ball (corresponding to average codon bias inSk) progressively
move from (sequences in) class I towards class II, for increasing
values ofk. The algorithm stabilizes around setsSk , for k ≥ 7,
whose codon usage are localized in the same small neighbourhood.

Besides proteins involved in translation and glycolysis,
the reference sets for higher eukaryotes comprise proteins
involved in ATP production (by mitochondria) and in the
cytoskeleton. ForC.elegans, the reference set additionally
contains histone and collagen proteins.

The lengths of genes vary considerably within each refer-
ence set, from≈100aa for cold-shock proteins, to≈700aa

for heat-shock and glycolytic proteins, with the vast major-
ity ≈ 200–300aa long. There are also proteins which are
1000aa long such as myosin proteins, up to 1600aa long as
vitellogenin inC.elegans (see supplementary material also).

When comparing our CAI values with those computed on
reference sets defined by manually selecting highly expressed

Fig. 5. CAI values computed on the reference set found by our
algorithm (y-axis) are plotted with CAI values computed by Sharp
et al. (x-axis) for S.cerevisiae, E.coli, C.elegans, D.melanogaster,
B.subtilis andH.influenzae.

genes in the cell, we obtain a remarkably good correla-
tion between the values as illustrated in Fig. 5. ForE.coli,
S.cerevisiae and H.influenzae (Sharp and Li, 1987; Sharp
et al., 1986; Perrière and Thioulouse, 1996) all points are
well distributed along the diagonal. ForC.elegans, the cor-
relation is done with data in (Stenicoet al., 1994); our
reference set contains 172 proteins and it is much larger
than the one computed for micro-organisms. The same is
true for D.melanogaster [with data in (Sharpet al., 1988)],
where our reference set contains 129 coding sequences. The
CAI values ofB.subtilis have been defined in (Shields and
Sharp, 1987) on a set which comprised only seven genes
and given its small size, it is surprising that the correlation
is so high.

For S.cerevisiae, the bias captured by our algorithm is
correlated with transcript steady-state levels and reflects the
transcriptional load of mRNA present in the cell (see Fig. 6,
left). This correlation supports the intuition that the cost
of cellular macromolecular synthesis would be increased by
producing an abundant transcript encoding lowly expressed
proteins, or vice versa, by producing a poor transcript encod-
ing highly expressed proteins. It also suggests that the bias
detected by the analysis of codon usage is intrinsically related
to both transcription and translation [as argued in (Sharp and
Li, 1987; Sharpet al., 1986)].

2011



A.Carbone et al.

Fig. 6. Different biases detected by the algorithm. Transcriptional bias, left: transcription levels ofS.cerevisiae genes are plotted (in log scale)
with CAI values. GC3s bias, centre: GC3s values ofP.aeruginosa are plotted with CAI values (in log scale); the open squares correspond to
ribosomal genes. Leading–lagging strand bias, right: number of genes in leading and lagging strands ofB.burgdorferi are plotted with CAI
values.

(For all fast growing organisms considered in the paper, high
gCAI values are about 10–15% smaller than CAI values, and
low gCAI values are at most 30% smaller than CAI values.
gCAI values are highly correlated with CAI values, with a
correlation coefficient of 0.98–0.99 in the worst case.)

Detection of translationally optimal codons in slow
growers: M.pulmonis and M.tuberculosis
M.pulmonis is a slow growing pathogen with a small num-
ber of genes, distributed within a four cluster structure in the
64-dimensional space of coding sequences (data not shown;
the space reminds the one illustrated in Fig. 3 forE.coli);
ribosomal proteins are grouped in one of these clusters. Our
algorithm converges towards ribosomal proteins first, to devi-
ate afterwards towards a group of lipoproteins, outliers for
the distribution and highly GC-rich. As a result, the refer-
ence set (constituted by seven genes) includes three ribosomal
proteins, three lipoproteins and one protein of unknown func-
tion. This suggests that the primary source of codon variation
in M.pulmonis is in the use of a subset of codons which are
translationally optimal.

An analogous description holds forM.tuberculosis. This
genome is highly GC3 biased and the correlation coefficient
between GC3 and CAI values isr = 0.93. We find a reference
set of 41 genes that includes three ribosomal proteins, two
translation factors, and many properties involved in glycolysis
suggesting a selection for optimal codons being more effective
on genes expressed at high levels. This was also noticed in
(Andersson and Sharp, 1996).

Detection of GC3 bias:
Pseudomonas aeruginosa PA01
On P.aeruginosa genome, the algorithm detects a reference
setS which contains neither ribosomal proteins nor elongation
factors. This suggests that translational bias is not dominating,
and that CAI values computed fromS are not representative

of gene expression levels. Notice, for instance, that the highly
expressed geneoprI turns out to have CAI value 0.26.

CAI values are well correlated with GC3-content though,
with a correlation coefficientr = 0.83; the correlation coef-
ficient between the logarithmic value of CAI and GC3 is
r = 0.90 (see Fig. 6, middle). It is interesting to see that if the
algorithm is run from an initial setS′ containing genes con-
stituting the core of the gene expression machinery (i.e. genes
coding for ribosomal proteins, elongation factors, and so on),
then, nevertheless, it detectsS as a reference set. This ‘proves’
that GC3 bias ismuch more dominant than translational bias.

The dominating codon bias inP.aeruginosa gave origin to
controversial opinions on the biology of this organism. This
was due to calculations of CAI values which were based on
misleading manual selections of reference sets (Grocock and
Sharp, 2002; Gupta and Ghosh, 2001; Kiewitz and Tümmler,
2000).

Detection of GC skew bias: Treponema pallidum
A genome where GC skew content is known to be the domin-
ating codon bias, isT.pallidum (Lafay et al., 1999). Our CAI
values meet the highest correlation coefficient with GC skew
values, withr = 0.659.

Homogeneous genomes: Helicobacter pylori
On H.pylori, the algorithm returns a reference setS which is
constituted essentially by coding sequences with ‘unknown’
function. CAI values have a low correlation with all forms of
bias (notice that the strongest one is a mild correlation with
GC skew values, withr = 0.358), and the gCAIk values of
genes along different iterations vary very little (see Fig. 1). All
these observations support the hypothesis ofhomogeneity of
the codon distribution on this slow growing micro-organism,
and a lack of translational bias as a dominating bias (Lafay
et al., 2000).
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Detection of leading strand bias:
Borrelia burgdorferi
For the spirochaeteB.burgdorferi, it was shown that the main
factor shaping codon usage is the strand-specific mutational
pressure (Lafayet al., 1999). [Some translational selection
was shown to exist (Perrière and Thioulouse, 2002) but it
does not constitute the dominating bias.] The leading strand
of replication is G+T-rich, and therefore genes placed on that
strand (565 genes) display a strong bias towards those basis
at the silent sites, while the opposite biases are found in genes
placed on the lagging strand (286 genes) (McInerney, 1998;
Lafayet al., 1999). Figure 6 (right) shows that genes with the
highest CAI values lie in the leading strand. Thet-value cal-
culated for the difference between mean CAI values in leading
and lagging strands ist = 1.8565, which corresponds to the
confidence level of 93.8%, suggesting that the leading and
lagging strands determine the dominating bias in agreement
with (McInerney, 1998; Lafayet al., 1999).

Local codon bias: detection of a bias on the
lagging strand of B.burgdorferi
Given a pointx in the 64-dimensional space of coding
sequences, let us consider the 1% of the sequencesSx which
are closest tox with respect to some distance metric, for
instance the Euclidean metric. By applying the algorithm to
the reference setSx , it might happen thatSx satisfies the self-
consistency principle (1). This is possible even whenSx is not
representative of the dominating bias, and simply means that
besides theglobal bias, which is dominating, there is alocal
bias which is represented bySx .

For B.burgdorferi, if the algorithm is run on a random set
of genes selected among those on the lagging strand, the con-
vergent set also lies on the lagging strand. The local bias for
the lagging strand is shaped mainly by GC3-content and very
mildly (negatively) related to GC-skew.

Local codon bias: detection of horizontal
gene transfer
On all random selections of 1% of genes from sequences in
class I and in class II ofB.subtilis (see Fig. 4), the algorithm
converged to thesame reference set located in class II and
containing genes coding for the translation machinery. When
random sets were selected from class III, the algorithm con-
verged to a reference set lying in class III. This suggests
that coding sequences in class III follow a different codon
bias from the rest of the genome. Class III [made of coding
sequences which are A+T-rich (Nicolaset al., 2002)] con-
tains horizontally transferred genes (Médigueet al., 1991):
transposons, insertion sequences and proteins involved in
phage-related functions, in adaptation to atypical conditions,
and in detoxification.

We repeated the numerical test on the genome ofE.coli
whose shape in the projected 64-dimensional space is again

made of classes I, II, III and IV (Fig. 3). When random sets
were selected in class III (as well as in class I and class IV),
the algorithm always converged to the same reference set in
class II, showing that codon usage is less biased inB.subtilis
than inE.coli, in agreement with (Shields and Sharp, 1987).
A local fixed point exists though for genes selected on the
most extreme AT-rich region in class III: the algorithm does
not leave this set. The same behaviour was observed for
S.enterica. In C.elegans, the algorithm always escaped chosen
sets to converge towards the most translationally biased set in
class II. No other fixed point, other than the dominating one,
was found. [On codon bias, base composition and gene trans-
fer see (Syvanen, 1994; Guidon and Perrière, 2001; Koski
et al., 2001).]

CODON BIAS AND THE LONG GENE EFFECT:
S.CEREVISIAE AND C.ELEGANS
We give a numerical justification for introducing the notion
of ‘global Codon Adaptation Index’. We had argued that an
algorithmic analysis of codon bias should take into explicit
account gene length because of a combination of two facts:
half genetic information (defined as the number of base pairs)
sits in long genes (>2000 bp long), and a strong negative cor-
relation between codon usage and protein length was observed
for Eukaryotes (Duret and Mouchiroud, 1999). In particular,
one expects long coding sequences to undesirably influence
the behaviour of the algorithm in successive steps: rare codons
that appear in long coding sequences which are consistently
selected at successive steps of the procedure, augment their
relative weight withk, and bias the codon usage accord-
ingly, possibly deviating the algorithmic behaviour. The factor
|Si

k|/|Sk| included in the gCAI formula takes care of these
situations.

A mild form of the problem appears withS.cerevisiae. This
genome is the only one among unicellular organisms that dis-
plays an oscillatory behavior among two reference setsS1,S2

differing for exactly one gene, if weightswi,j are used instead
of w̄i,j , i.e. if we compute CAIk values instead of gCAIk val-
ues at each iteration. This is due to two genes which flip in
and out the reference set, RPL9B (576 bp long) and YEF3
(3135 bp long). YEF3 is by far the longest gene in the set and
it spoils the statistics when CAI values are considered. With
the gCAI formula no such effect appears.

A much stronger form of long gene effect is displayed
in C.elegans. Here, the algorithm converges but it ‘fails’ to
determine a setS, representative of the translational bias,
if we compute CAIk values instead of gCAIk values. By
applying the algorithm to the coding sequences ofC.elegans,
one observes that the algorithmic trajectory starts and ends
in Class I because of the presence, in the setsSk, of long
genes as lrp-1 of length= 14 262 bp and converging CAIK

value= 0.7. Even though coding sequences in Classes II and
III are the most biased, the trajectory does not escape Class I
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Fig. 7. C.elegans. Top: a view of the projected 64-dimensional space
of codon frequencies. Notice the shape of the ‘rabbit head’ (classes I
and IV correspond to the dense cloud, and classes II and III are the
‘ears of the rabbit’). The trajectory of the algorithm is indicated by
large black balls and it is visibly trapped in cluster C1 (compare
to Fig. 3). The algorithm computes CAIk values instead of gCAIk

values at each iteration, and converges in 15 steps. Below: CAIk

values of each coding sequence at iterationk = 1, 3, 15; plot of
codon frequencies inS1 andS15. Compare with Figs 1 and 2.

(see top of Fig. 7). The analysis (based on CAIk) restricted to
single chromosome sequences ofC.elegans shows that chro-
mosomes II, IV, V and X display a trajectory that ends in Class
II as one would expect, but that this is not the case for chromo-
somes I and III (data not shown). In Chromosome I, the long
genes that influence the behaviour of the algorithm encode
the membrane protein lrp-1, but also the DNA replication
protein C44E4.1a of length= 11 595 bp and CAIk = 0.60,
and the dynein protein F18C12.1 of length= 10 630 bp and
CAIk = 0.63. In chromosome III the long gene that influ-
ences the behaviour of the algorithm is the hypothetical protein
K07E12.1 of length= 39 168 bp and CAIk = 0.599.

DISCUSSION
We introduced a method to study dominating codon biases in
genomes and we validated it over several known unicellular
organisms which have been previously investigated with Cor-
respondence Analysis (CA) (Perrière and Thioulouse, 2002).
A few new organisms, asD.melanogaster and C.elegans,
whose genomes are much larger in size and provide a com-
putational obstacle to CA, are also considered. The biological
impacts of this new approach will be discussed elsewhere;
they comprise the definition of new quantitative measures for
comparing species, and the reconstruction and validation of
regulatory circuits and metabolic pathways on known and less
known organisms.
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