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ABSTRACT

Similarity Matrix of Proteins (SIMAP) (http://mips.gsf.
10 de/simap) provides a database based on a pre-
computed similarity matrix covering the similarity
space formed by .4 million amino acid sequences
from public databases and completely sequenced
genomes. The database is capable of handling very

15 large datasets and is updated incrementally. For
sequence similarity searches and pairwise align-
ments, we implemented a grid-enabled software
system, which is based on FASTA heuristics and
the Smith–Waterman algorithm. Our ProtInfo system

20 allows querying by protein sequences covered by the
SIMAP dataset as well as by fragments of these
sequences, highly similar sequences and title
words. Each sequence in the database is supplemen-
tedwith pre-calculated featuresgeneratedbydetailed

25 sequence analyses. By providingWWW interfaces as
well as web-services, we offer the SIMAP resource as
anefficientandcomprehensive tool forsequencesim-
ilarity searches.

INTRODUCTION

30 Sequence similarity searches, mostly performed by BLAST
(1) or FASTA (2), are an essential step in the analysis of any
protein sequence and by far the most intensively used bioin-
formatics methods. Sequence conservation as the basic evolu-
tionary principle implies conservation of structure and

35 function. Thus, structural and functional attributes that cannot
be predicted from the sequence alone can be efficiently trans-
ferred from known to uncharacterized proteins. In general, for
the coding segments of any genome, searches on the protein
level are by far more sensitive than on the corresponding

40 DNA-sequences owing to the better signal to noise ratio of
the 20 amino acid alphabet in proteins (3).

The result of any sequence similarity search against a data-
base is a list of significant matches ordered by the similarity
score of the pairwise alignments. However, this list represents

45only a 1D view of the n-dimensional relation between a set of
similar and probably evolutionarily conserved sequences. The
complete similarity matrix (all-against-all) covers the com-
plete ‘protein similarity space’. Therefore, the information
content of an exhaustive database of similarity scores

50increases substantially since it takes all relations of any sim-
ilarity sub-graph into account. Employing subsequent ana-
lyses such as clustering allows for efficient computation of
a number of essential genome analysis tasks applicable to the
protein space. These include the systematic detection and

55identification of conserved domains (4), the analysis of protein
families and super-families in large datasets (5), the detection
of orthologs and paralogs for any pair of genomes (6), the
identification of clusters of orthologous groups in any number
of genomes (7) as well as the application of methods for

60functional prediction such as phylogenetic profiling (8), the
Rosetta stone method (9) or the principle of conserved gene
neighborhood (10). Several implementations of all-against-all
matrices were reported (11–14). Most of these systems were
built to support automatic annotation of proteins (15). How-

65ever, none of the systems described earlier provides a com-
prehensive coverage with respect to the known sequence space
nor does it allow for the searches by sub- or highly similar
sequences.

The optimal solution to generate the similarity matrix would
70be the exhaustive application of the Smith–Waterman align-

ment algorithm (16) and the subsequent storage of any signi-
ficant scores. Although efficient implementations (17) exist,
the computational costs are beyond feasibility. Thus, heuristic
approaches like BLAST (1) or FASTA (2) are used to speed up

75the search for biologically meaningful hits in a database and
they became the most intensively used tools in sequence
analysis.

Typically, sequence similarity searches of individual
sequences or genomes are repeated frequently since the

80available datasets change over time. In many analyses such
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as the detection of orthologous relationships (6), this
re-computation is the most time consuming step and makes
the analysis intractable for large numbers of datasets. There-
fore, a pre-calculated all-against-all matrix becomes desirable,

5 which stores the similarity-space in a database and allows
rapid access to significant hits of interest.

Such a database must reduce redundancy generated by
sequences that are conserved close to identity. It should pro-
vide useful interfaces for the user to allow for the extraction of

10 biologically meaningful subsets and the application of differ-
ent cut-offs. It should be regularly and frequently updated.
Scores must therefore be independent of the database size
and composition in order to ensure compatibility between
different versions (use of probability values instead of

15 expectation values). The time complexity for an all-against-
all comparison to generate the sequence similarity space is
O(n2) where n is the number of sequences in the database.
In good approximation, the alignments and the alignment raw
scores are symmetrical (therefore, we assume the score for an

20 alignment formed by sequence A with sequence B to be the
same as for B with A; this assumption is essential to be able to
perform incremental updates). This property reduces the
amount of computation required by half (18). Scores for
any new sequences are saved and the result lists of the old

25 sequences are updated without re-computation. In this paper,
we present the Similarity Matrix of Proteins, SIMAP, as an
implemented solution for a database representing the protein
similarity space.

SYSTEM ARCHITECTURE

30 Import of data

SIMAP represents sequences extracted from heterogeneous
data sources. For this reason we have implemented a flexible
input layer which is based on the Data Access Object (DAO)
design pattern. DAO classes are available for files using mul-

35 tiple FASTA and EMBL formats, databases like PEDANT
(19) as well as for web-services as provided by plantsDB
and Genome Research Environment (GenRE) projects at
MIPS (20). The imported data is separated into three entities:

(i) Database (describes the context of the proteins),
40 (ii) Protein (describes a certain protein entry using references

to database and protein sequence),
(iii) Sequence (contains the non-redundant protein sequences,

checksums and self-scores).

As all similarity and feature calculations rely only on sequence
45 information, the separation of protein and sequence informa-
tion is necessary to avoid redundant calculations. All protein
sequences are preprocessed for validation and low complexity
filtering. In order to avoid loss of information, low complexity
regions are not masked by ‘X’ but converted into lower case

50 letters.
New databases to be included in SIMAP are added

manually because some additional information, such as the
taxonomy node ID is required. The protein sequence import
and database update procedures run fully automatically.

55 Update procedures may be triggered either by chronological
jobs or manually. New sequences are scheduled for similarity
calculation.

Similarity calculation

The central component of the SIMAP is the calculation mod-
60ule. Its concept is based on the heuristic search algorithm that

pre-computes the sequence similarities. Because it was evalu-
ated to be the best compromise between computational speed
and sensitivity (21) we have chosen FASTA (2) for find-
ing all putative hits. The FASTA parameter ktup ¼ 1 and

65BLOSUM50 substitution matrix are used to adjust the cal-
culations to optimal sensitivity. Before FASTA calculations
all low complexity regions in the sequences are masked by seg
(22). In order to store the correct alignment coordinates and
scores into the hit database, every FASTA hit is recalculated

70without low complexity filtering using the Smith–Waterman
algorithm and BLOSUM50 substitution matrix. If the final
Smith–Waterman Score is >80 the hit is accepted and stored.
This score is independent from the query length and the data-
base size as it is necessary for incremental updates. The score-

75threshold of 80 is a compromise between sensitivity and the
amount of data to be handled in the database.

The calculation client runs as a command-line program
e.g. in Sun Gridengine clusters (http://gridengine.sunsource.
net) and also contains the BOINC core client to be used in

80BOINC based grid systems (http://boinc.berkeley.edu). The
results are validated by the SIMAP server and encoded into
the binary hit format. Every hit above the threshold to be
stored in the databases contains

(i) Sequence ID,
85(ii) Smith–Waterman score,

(iii) Identity score,
(iv) Similarity score,
(v) Overlap size of the pairwise alignment,
(vi) Start and Stop coordinates of the alignment in both proteins.90

To provide retrieval-optimized data structures, all hits are
sorted descending by score and organized in a hash-like
structure that is stored in one binary hitfile per sequence:

(i) The key (sequence ID) is encoded by pathname and
95filename,

(ii) The value (sorted list of hit data blocks as described
above) is stored within the file content.

This approach trades time for disc-space, so every hit is stored
100redundantly in two hitfiles according to the two sequences of

the pair. Nevertheless, this turned out to be a simple and
straightforward implementation providing the necessary
retrieval speed and scalability with respect to the expected
growth of public sequence databases.

105Data access and retrieval

A server based retrieval layer was implemented using Enter-
prise Java Beans (EJB). It operates as a database abstraction
layer and hides the internal structure of SIMAP for clients. The
EJBs are server side components designed for distributed

110access and information management. They allow easy integ-
ration of SIMAP in any kind of application within the MIPS
Genome Research Environment GenRE (http://mips.gsf.de/
genre/proj/genre) used for our various genome and protein
interaction databases. Direct access to SIMAP is not restricted

115to internal applications but the same functionality is offered
for external access through the web. We have developed
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additionally a Helmholtz Open Bioinformatics Information
Technology (HOBIT) service layer (http://hobit.gsf.de)
based on the web service technology to open SIMAP for
programming language independent access.

5 DATA CONTENT

Data from the prominent public protein databases and
completely sequenced genomes was imported into SIMAP. At
present SIMAP contains the recent versions of these databases:

(i) UNIPROT TrEMBL (23)
10 (ii) UNIPROT Swissprot (23)

(iii) mips nonredH
(iv) PDB (24)
(v) All genomes included in PEDANT (http://pedant.

gsf.de) (19)
15 (vi) All genome databases at MIPS, e.g. CYGD and MatDB

(20,25)
(vii) Several project specific databases.

The total number of �8 million protein entries corresponds to
�4 million non-redundant protein sequences. The hit files

20 contain �10 billion single hits.

Most of the databases (UNIPROT, PDB and PEDANT) are
weekly checked for updated entries. These updates are per-
formed by a fully automated procedure that also triggers the
similarity calculations for new sequences.

25SEARCH CAPABILITIES

We have developed ProtInfo to allow for searching sequence
homologs for sequences and proteins in SIMAP by using
complete sequences but also sequence fragments, similar
sequences and keywords. The query sequences are searched

30within the SIMAP sequences using an indexing structure that
allows fast searches for similar or partial sequences in large
databases. Each ProtInfo query yields a result list of the ident-
ical, containing, contained and most similar SIMAP sequences
and their related protein entries. Full text queries are searched

35in protein IDs and descriptions. Using ProtInfo SIMAP serves
as a comprehensive protein information system that provides
quickly all proteins that share same or very similar sequences.
For every sequence displayed in the search result a link to the
list of homologs is provided.

Figure 1. Illustration of the list of homologs for the UNIPROT protein Q06124, the human protein-tyrosine phosphatase, non-receptor type 11. Starting from the
fulltext search using ProtInfo, the list of homologs can be accessed. Froma list of homologs, for every hit links to the pairwise alignment, the report page and the list of
its homologs are provided. Additionally the filter options and search scope for the list of homologs can be modified.
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SEQUENCE FEATURES

The non-redundant sequence set of SIMAP is supplemented
with protein feature information and cross-references to sec-
ondary databases of protein domains and families. The data-

5 base of associated information is updated automatically
whenever new sequences are imported into SIMAP. Currently
both calculated and imported features are contained:

(i) General protein information like isoelectric point and
molecular weight,

10 (ii) Transmembrane domains from TMHMM (26),
(iii) Signal peptides from SignalP (27),
(iv) Protein localization from TargetP (28),
(v) Protein domains from InterPro and its member

databases (4).

15 Except on InterPro these features are calculated for the com-
plete amount of sequences. Owing to the computationally
expensive hiddenMarkovModel (HMM) searches for InterPro
calculations we import the InterPro hits for all UNIPROT
sequences which are provided by the EBI. Additionally we

20 have started to calculate InterPro domains for sequences that
are not yet contained in UNIPROT.

WWW INTERFACES

The public SIMAP WWW server (http://mips.gsf.de/simap)
offers three entry points for users:

25 (i) ProtInfo (protein information system),
(ii) SimpleSIMAP (simple retrieval of homologs using

a predefined set of parameters), and
(iii) AdvancedSIMAP (flexible retrieval of homologs that

provides a wide variety of parameters, sorting and filtering
30 capabilities).

SimpleSIMAP and AdvancedSIMAP retrieve homologs for
given protein sequences that need to be contained in the
SIMAP database. SimpleSIMAP provides only selected para-
meters and preconfigured search spaces; it includes the pre-

35 calculated sequence features. In SimpleSIMAP, E-values are
computed on-the-fly according to the search space of the query
(Figure 1). AdvancedSIMAP allows the user to specify search
space, filtering and sorting parameters in a flexible manner.
Both types of queries return lists of similar sequences that are

40 recursively linked to their own homologs. Both types of quer-
ies provide Smith–Waterman alignments that are computed
on-the-fly. Thus, the web interfaces allow users to explore the
protein space by sequence similarity, starting with any user
defined protein sequence. The retrieved sequences may be

45 downloaded for post-processing, e.g. multiple alignments or
reconstruction of phylogenetic trees. The AdvancedSIMAP
system provides integrated tools for clustering, multiple align-
ments and the construction of HMMs.

WEB-SERVICES

50 Web-services provide open access to SIMAP databases and
applications. They are platform independent and may be
connected from many programming languages as Perl, Java,
C/C++ and Python. Currently methods for the retrieval of
homologs by a given sequence are offered.

55The web-services are part of the HOBIT project (http://
hobit.gsf.de) and can be accessed through http://mips.gsf.de/
proj/hobitws/services/RPCSimapService?wsdl and http://
mips.gsf.de/proj/hobitws/services/DocSimapService?wsdl.

CONCLUSION AND FURTHER DIRECTIONS

60We implemented SIMAP, a database containing the similarity
space formed by �4 million amino acid sequences from >400
organisms by exhaustive similarity searches using the FASTA
heuristics. The efficient backbone for computation in addition
to the FASTA heuristics and the incremental update process

65enables us to keep up with the ever-increasing amount of data
by using our in-house resources in an efficient way. Powerful
search capabilities and the additional sequence feature data-
base allow users to explore the protein space by sequence
similarity, starting with a user defined protein sequence or

70keyword. SIMAP will be continuously updated and expanded
to include all publicly available proteomes and major sequence
data collections.
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