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Abstract
Motivation—Natural language processing (NLP) techniques are increasingly being used in biology
to automate the capture of new biological discoveries in text, which are being reported at a rapid rate.
To facilitate the computational reuse and integration of information buried in unstructured text, we
propose a schema that represents a comprehensive set of biological entities and relations as expressed
in natural language. In addition, the schema connects different scales of biological information, and
provides links from the textual information to existing ontologies, which are essential in biology for
integration, organization, dissemination, and knowledge management of heterogeneous information.
A comprehensive representation for otherwise heterogeneous datasets, such as the one proposed, are
critical for advancing systems biology because they allow for acquisition and reuse of unprecedented
volumes of diverse types of knowledge and information from text.

Results—A novel representational schema, PGschema, was developed that enables translation of
information in textual narratives to a well-defined data structure comprising genotypic and
phenotypic concepts from established ontologies along with modifiers and relationships. Initial
evaluation for coverage of a selected set of entities showed that 85% of the information could be
represented. Moreover, PGschema can be realized automatically in an XML format by using natural
language techniques to process the text.

1 INTRODUCTION
New biological discoveries are being reported at an extremely rapid rate. This new information
is found in diverse resources that encompass a broad array of journal articles and public
databases associated with different sub-disciplines within biology and medicine. The
integration of biological knowledge and information is recognized as a critical knowledge gap
in science (Pennisi 2005), and as essential for the future of the field because dissemination and
subsequent deployment of the knowledge by automated applications and by researchers who
need to access and connect the diverse information is also recognized as critical (Gardner
2005;Gopalacharyulu.et. al. 2005). Additionally, a large quantity of biological information
resides in unstructured or semi-structured textual databases, thus posing a frequent, yet special,
category of integration problem that we address in this paper. While linguistic knowledge is
computable using natural language processing (NLP), it does not allow for the same quality
of inference as declarative knowledge. Thus, it is essential to translate linguistic data structures
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generated by NLP into ontology-anchored declarative datasets to acquire otherwise
unattainable large-scale or cross-disciplinary inferences. There are several requirements for
high throughput large-scale integration of textual information with biological knowledge: 1)
natural language processing (NLP) methods that automatically acquire biomedical information
occurring in unstructured text (Cohen and Hersh 2005; Hirschman et. al. 2005), 2) the existence
of a comprehensive information model specifying the biological entities and relations as
described in text (Gkoutos et. al. 2004), 3) the existence of ontologies or terminologies
(Ashburner M et. al. 2000; Blake JA 2004) that specify and describe biological concepts, 4)
methods, likely based on a biological information schema, allowing for translation of the data
structures produced by NLP into those of structured and ontology-anchored databases, and 5)
integration and knowledge management tools that are based on coded data associated with
established databases (Cantor et. al. 2005). Therefore, to achieve reusability, it is critical that
NLP systems that structure textual information also map the information to a representation
that provides codes linking the information in text to established ontologies. Additionally, the
representation must be rich enough to model the complex relationships that are typically
described in text. Such a representation entails at least two levels of specification: 1)
representation of the biomedical concepts via identifiers that correspond to existing ontologies
or controlled terminologies, and 2) representation of salient contextual information and
relations, such as information that modifies and connects the coded concepts because these are
critical for accurate and fine grained representation of biological information. A substantial
amount of work by numerous researchers has been devoted to the first level as it involves
formal knowledge and reasoning within traditional ontologies. The second level, which is the
focus of this paper, provides for fine-grained representation of information and relations, which
is necessary for enabling expressiveness, such as that found in natural language, and also for
enabling subsequent fine-grained retrieval of structured information that was extracted from
text.

In this paper, we propose an ontology-anchored representational schema for biological
information called Phenotype-Genotype Schema (PGschema), which is based on information
found in the language of biological text. It represents individual concepts, modifiers of the
concepts, and identifiers associated with external ontologies. Most importantly, it incorporates
external ontological identifiers as building blocks in order to represent more complex and
expressive relations. Thus, this schema is intended to utilize existing ontologies while serving
as a bridge between natural language and the more formal bio-ontologies. The schema is
designed so that it can be directly realized automatically using a NLP technology that generates
a compatible form of XML output.

1.1 Natural Language Processing Systems
A number of NLP and text mining systems have been described that extract limited information
from biological text. For example, there are many systems that recognize or identify the names
of biomolecular entities (BNER) (Krauthammer M and Nenadic G 2004); Hirschman.et. al.
2005), while other systems extract interactions between biomolecular entities (Rzhetsky et. al.
2004; Hirschman.et. al. 2005), capture subcellular locations of proteins from text (Craven and
Kumlien 1999), or capture the kinase, substrate, and residue associated with phosphorylation
(Narayanaswamy et. al. 2005). These systems require a relatively straightforward
representational model. For example, a BNER system may insert tags around the entities in
text where the tags specify the corresponding semantic classes and possibly unique identifiers.
Similarly, a system that captures interactions can represent an interaction as a triplet interaction
entity1 entity2, where the entities are or are not necessarily coded. However, systems that
capture more comprehensive informational relations generally do require representational
schemas, particularly if convergence, completeness, and integration with many different
systems are objectives. Since we are currently developing an NLP system called BioMedLEE,
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which aims to capture a broad range of genotypic-phenotypic entities and relations, we require
a schema to represent the extracted information. Furthermore, for interoperability purposes,
the schema should be well-defined and use an established specification language so that other
applications can access the information appropriately. The BioMedLEE NLP system that uses
PGschema has been implemented and evaluated for use with an application called PhenoGO
(Lussier et. al. 2006), providing a proof of concept that PGschema can be realized
automatically. PhenoGO uses BioMedLEE to obtain information that augments gene-GO
relations in the GO annotations database with additional context, such as cellular and other
anatomical information. However, the focus of the work reported here is the representational
schema and not the NLP component.

Two other efforts involving integration of NLP and ontologies are the Obol effort (Mungall
2004), and the GENIA effort (Kim 2003). Obol has a different focus from our work because
the aim is to assist in ontological development. More specifically, because ontological terms
are expressed using natural language, Obol uses NLP technology to process the ontological
terms in order to discover unique computable definitions for them, to elicit relations between
the elements composing the ontological terms, and to facilitate reasoning over the ontology.
GENIA maintains an annotated corpus of biological entities, which substantially furthers the
development of NLP systems. The entity types conform to a model consisting of substances
and biological locations involved in protein interactions. The model has a semantic category
‘Other’ for entities such as disease, process, and phenotypic descriptions, which is our primary
focus.

1.2 Ontologies
There are substantial efforts in the biological community for organizing biological concepts
as controlled terminologies or ontologies (Ashburner M et. al. 2000; Blake JA 2004; Schulze-
Kremer 1998; Stevens et. al. 2000; Stevens et. al. 2002), and for developing tools that provide
interoperability among different ontologies (Bodenreider 2004; Cantor et. al. 2005) in order to
support intra- and inter-operability among the different research communities. This is critical
for the field because there are so many different groups working on the same model organism,
different model organisms, or different scales of biology. Some integrative ontologies
concerned with biomolecular entities are UniProt (Bairoch et. al. 2005), and UniGene (Wheeler
et. al. 2005), while Gene Ontology (Ashburner M et. al. 2000) is concerned with biomolecular
functions, processes, and subcellular components. Other ontologies are associated with
phenotypic traits, such as mouse anatomy (MA) (Evsikov et. al. 2004), mammalian phenotype
ontology (MP) (Smith et. al. 2005b), cell ontology (CL) (Bard et. al. 2005), the Unified Medical
Language System (UMLS) (Lindberg et. al. 1993), and SNOMED (Spackman 2004). In
general, these efforts involve specification of the individual concepts so that they have well-
defined definitions, are associated with non-ambiguous unique identifiers, and are
appropriately situated within a classification or part-whole hierarchy. The Open Biological
Ontologies (OBO) (http://obo.sourceforge.net/) consortium hosts over 50 open source
ontologies associated with phenotypic and biomolecular information. One of the OBO
ontologies, called Phenotype, Attribute and Trait Ontology (PAtO) (Gkoutos et. al. 2004), is
a general ontology for describing phenotypes that can be measured either quantitatively or
qualitatively. What is significant about PAtO is that it is species-independent. PAtO actually
consists of two components, where one is the model, and the other is the attribute ontology. It
contains an Entity-Attribute-Value (EAV) representation where three ontological terms are
linked together to form a description. The Entity component is the phenotype being described,
and, most importantly, it can be associated with an ontology that is external to PAtO. In contrast
to the entity component, the Attribute and Value components generally correspond to concepts
internal to PAtO. There also has been work concerning the ontology of relations in biomedical
ontologies (Smith et. al. 2005a). This work differs from the treatment of relations in PGschema
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because in PGschema the relations are linguistically based and represent terms, such as
cause, and play a role in, that connect different observations or events whereas the relations
specified by Smith and colleagues provide consistent and formal ontological definitions. A
more complete discussion of general issues concerning ontologies for biological concepts is
found in (Schulze-Kremer 2002); Baker et. al. 1999; Stevens et. al. 2000), and a fuller
discussion of issues associated with requirements for clinical terminologies can be found in
(Chute et. al. 1999; Cimino et. al. 1994).

1.3 Representation Schemas for Biomedical Language
In addition to development of ontologies for individual concepts, there have been efforts in the
clinical domain to model the complex clinical information associated with the language of
patient documents. Models have been developed to represent information in specific medical
domains, such as radiology (Bell DS et. al. 1994; Evans et. al. 1994; Friedman et. al. 1994b;
Friedman et. al. 1994a; Rector et. al. 1995; Rocha and Huff 2001), nursing (Button et. al.
2001; Matney et. al. 2004), anatomy (Rosse et. al. 1998), and surgical procedures (Rodrigues
et. al. 1997; Rossi et. al. 1996), as well as for the broad medical domains (Campbell K et. al.
1994; do Amaral et. al. 2000; Friedman et. al. 1999). The different models or schemas are
represented using a variety of formalisms, such as frames (Minsky 1975), description logics
(Cornet and Abu-Hanna 2005; Hartel et. al. 2005), conceptual graphs (Sowa 1984), and XML
(Friedman et. al. 1999). Generally, these represent specific relations among concepts so that a
clinical event or observation may be associated with multiple attributes and values denoting
different types of informational qualifiers, such as negation, time, severity, frequency, body
location, and descriptive information. These different types of modifiers are critical for
automated applications that use structured information because they significantly affect
accuracy during retrieval, and are needed to achieve highly precise retrieval results. Negation,
uncertainty, and previous events occur frequently in the clinical documents, and therefore, an
application that seeks to detect a current clinical condition must retrieve reports containing that
condition and filter out ones that are negated, that have occurred in the part, or that have not
been asserted. For example, in rule out pneumonia, the condition pneumonia is not being
asserted, and therefore should not be retrieved. Similarly, anatomical and other qualifiers are
also critical to retrieve when high accuracy and fine granularity is needed. For example, in
worsening left lower lobe pneumonia, the lack of improvement of pneumonia may be important
to capture along with the specific lobular location.

A clinical informational schema was developed for the MedLEE NLP system (Friedman et.
al. 1994a), a natural language extraction and encoding system, which covers a broad range of
clinical information (Friedman et. al. 1994a; Friedman et. al. 1999). Numerous evaluations
have demonstrated that MedLEE performs similarly to medical experts (Friedman et. al.
1999; Hripcsak et. al. 1995; Knirsch et. al. 1998). A critical factor for achieving high
performance was that retrieval of the information encoded by MedLEE was fine-grained due
to the way the extracted information was modeled. The evaluation studies that were performed
were designed for realistic clinical applications associated with decision support tasks, and
they relied on queries to retrieve the structured output generated by MedLEE. What is
significant about these queries is that they required complex medical logic, which included
selecting and then filtering out cases based on clinical conditions along with various modifier
combinations, such as certainty, time, anatomical locations, change, and other contextual
modifiers. Most importantly, the ability to include modifiers was critical to achieving high
performance.

Our schema, PGschema, is framed on that of MedLEE (Friedman et. al. 1999), but differs
significantly from it in that PGschema is specifically designed to represent genotypic and
phenotypic information, as well as compound relations and functions instead of clinical events.
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There are many similarities between phenotypic information and clinical events, and therefore
representational schemas for clinical information is highly relevant. For example, they each
include anatomical, disease, morphological, and functional entities, many of which are
associated with similar modifier types, such as degree, change, and certainty. PGschema is not
an ontology, but a schema that represents compositional and contextual aspects of terms where
the terms may be associated with ontological concepts in external ontologies. It is most similar
to PAtO in that it represents observations and attributes that have values. PGschema differs
from PAtO in several ways: 1) an observation may have many qualifiers that represent different
types of information, 2) whenever possible, an attribute may be associated with codes from
external ontologies, 3) an attribute may have nested attributes, providing a mechanism for
representation of very complex information, 4) an observation may be a phenotype,
biomolecular entity, relation, or function, 5) complex entities, such as functions and relations,
are represented as having arguments that are also associated with directionality, 6) functions
and relations may be nested, 7) an observation can be but does not have to be associated with
an external code, and 8) the schema is based on information and relationships that occur in the
language of biological text.

2 METHODS
Since the ability to formally represent all information that occurs in text is not currently
possible, we modeled a broad but selective set of genotypic and phenotypic types of entities
and relations as expressed in the literature. The model was developed iteratively using a sample
of 50 abstracts selected from a corpus of 3,705 MEDLINE abstracts, where the corpus consisted
of articles annotated for functional information by the Mouse Genomics Informatics group
(MGI) (Blake JA.et. al. 2003). First, an initial schema was established using the MedLEE
schema as a foundation because clinical information has many similarities to phenotypic
information. However, certain entities, such as diagnostic procedure, recommendation,
laboratory test, and demographic information, were removed because they were not
applicable. Similarly, certain modifiers were also removed, such as date and family history.
We then performed a manual analysis of the information in the sample corpus. Based on the
sample and knowledge of biology, we revised the initial schema accordingly by determining
the basic types of entities in the language of the biological text that were important to represent
(e.g. gene, gene product, anatomy, process, disease, cell), and then the types of information
that modify the basic entities. For example, in text, a cell may occur in the context of a mutated
gene (e.g. p53 −/− T cell), a gene may occur with organism information (e.g. mouse Ror2), and
a phenotypic trait may occur with severity, negation, and/or anatomical information (e.g.
moderate memory deficit, absence of limbs, stiffness in joints).

After a revised design was established, the sample articles were analyzed again in order to see
if it was possible to manually map relevant information in the text into the model. Several
rounds of refinements were made based on results of the above manual mapping activity.
Whenever relevant information could not be represented in the schema, it was revised
accordingly if possible. Once the modeling of the basic entities and their modifiers was deemed
satisfactory, modeling of the relations and functions was performed in a similar manner.
However, in addition to modifiers, a mechanism for representing arguments of the relations
and functions as well as their directionality was specified. For example, in Dexamethasone
induced cell death of T-cells, the function induce is represented so that it has an agent argument
(e.g. the substance dexamethoasone), and a target artument (e.g. the process cell death of T-
cells). After several more rounds of analysis and refinement, we determined that the model
was adequate for representing information captured automatically by an NLP system. We then
modified the BioMedLEE NLP system so that it would automatically structure biological
information in text in accordance with PGschema. BioMedLEE generates output in XML form
that is compatible with the representational schema. A document type definition (DTD) was
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created that specifies the entity types, their modifiers, the relations and functions in
conformance with PGschema.

We performed an initial evaluation of PGschema for coverage. This consisted of assessing the
completeness of the modifier relations associated with the various types of entities. For this
initial effort, we choose the entities that were most important to represent for the NLP
applications we were currently working on. These included the following types: problem
(diseases, morphologies, symptoms, phenotypic descriptions), process, body location, cell,
organism, and biomolecular entity. A set of sentences corresponding to each type was
randomly selected for manual analysis. The set was obtained by first collecting a different set
of abstracts than the ones used for establishing the schema. We used the set of gene-GO
annotations recorded in the GO database for the human. In order to facilitate the process of
collecting sets of sentences for each type of entity, we used BioMedLEE to process the abstracts
and to obtain structured output. For each type of entity, a program was then used to select
sentences containing a tag in the XML output that corresponded to the type of entity. For
example, to select sentences containing a cell entity, sentences containing the tag cell in the
XML output were chosen. Thus, the same sentence may be put into different sets depending
on the tags it contained. Once the sentences associated with the specific entity types were
collected into sets, all tags were removed so that the sets consisted of the original sentences.
Thus, BioMedLEE was used only as a tool to identify sentences containing the type of entity
to be analyzed. From each set, 100 sentences were randomly selected, and then the first 50
sentences were chosen for manual analysis. The remaining sentences in each set formed a
reserve set. The expert performed the manual analysis by reading each sentence in each set,
identifying term(s) associated with the corresponding entity type, finding the modifiers of those
terms, determining their semantic types if possible, and finally determining whether they were
included in PGschema. For training, the expert was given guidelines and a set of 25 sentences
for each type. This helped us identify problems concerning the evaluation and identify areas
where the guidelines needed to be revised. After the training session the guidelines that were
established were used by the expert performing the analysis to help further consistency for the
study.

3 RESULTS AND DISCUSSION
PGschema was developed representing a variety of information associated with biomolecular
and phenotypic entities, modifiers, and relationships that are found in biological text.
Simplified overviews of the entity and modifier types are shown in Tables 1 and 2, but the
actual representation is an XML form, which can be generated automatically as a result of
processing text. An example of a few specifications of the XML representation is shown in
Figure 1 in the form of a document type definition (DTD). There are currently 27 types of
entities or information that are represented. The complete DTD for PGschema is located in the
Website: http://zellig.cpmc.columbia.edu/PGschema. Table 1 lists the entity types, provides
examples of each type, and shows what types of modifiers each entity type can have. For
example, the entity ORG(anism) may have an AL (allelic) modifier (homogygous mice), a
temporal modifier (e.g. newborn mice), a STR(ain) modifier corresponding to an organism
strain (e.g. C57BL/6J mice), and a MUTG (mutated gene) modifier as in p53 −/− mice. Another
entity type is process, which can have several modifiers including temporal (e.g. embryonic
stage development), AN (e.g. liver development, hepatocyte proliferation), change (e.g.
increased proliferation), certainty (failure to develop). The entity cell may have different
modifiers than the other types of anatomical entities because it can have an allelic modifier
(e.g. wild-type fibroblast cells), or specify a gene that has been modified (e.g. Traf5 −/−
cells). The entity type GGP (gene_gproduct) is an artifact useful when it is not possible to
determine whether an occurrence of an entity is a gene or gene product. This type of situation
typically occurs when using NLP techniques to extract information.
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Column 1 of Table 1 is used to group types for the convenience of specifying ones with similar
modifiers, as shown in column 4. In addition, the full term for the abbreviation is specified in
parentheses in column 1. Table 2 lists common types of modifiers MD1 that were also grouped
for convenience. Some types of entities can only occur as modifiers of other types because
they do not correspond to independent observations or entities (quantity, degree, certainty).
These are noted in Tables 1 and 2 by adding a single ‘*’ following the name. The types without
an ‘*’ can occur in text as an observation or modifier (disease, anatomy, gene). One type of
modifier, named code, is different than the others. It does not occur in the text of the documents,
but is used as metadata to associate identifiers of an entity with an external ontology. For
phenotypes, the identifier may consist of 3 fields (e.g. MP:0000351^increased cell
proliferation) where the first field specifies the applicable ontology, the second the identifier
of the concept within the ontology, and the third the preferred or official name of the
corresponding concept according to the ontology. In the above example, MP is an abbreviation
representing the mammalian phenotype ontology. For genes, the identifier may have an
additional fourth field, which specifies the taxonomic code of the organism.

More complex information is represented by the entities FUN(ction) (inhibit, bind) and REL
(ation) (correlate with, play role in). These entities may be qualified by degree, change,
certainty, temporal, and anatomical modifiers (e.g. high level of activation, decreased
activation, not activated, expression in liver), but they also specify arguments with
directionality or order. Therefore PGschema has a mechanism for specifying these phenomena.

An argument is different from a modifier because the meaning of the function or relation
substantially depends on the arguments and their roles. An example is the sentence Tenascin-
C regulates cell proliferation, where the function regulate is represented so that it has an
argument Tenascin-C belonging to the class GGP which is the agent of regulate, and an
argument cell proliferation, which is a process that is the target. Tenascin-C is specified as an
argument by adding a metadata tag arg, which has the value agent to the GGP element, and
a metadata tag arg with the value target to the process element. Similarly, in Tenascin-C plays
a role in cell proliferation the relation play role in would have two arguments, where the first
argument would be the GGP element and the second argument would be the process element.
This would be accomplished by adding a metadata tag arg to each element and assigning it a
value 1 or 2 specifying the order of the argument in the text. A specific role, such as agent or
target, is not assigned to the arguments of relation at this point because the role would depend
on knowledge of the particular relation and post-processing or additional knowledge would be
necessary to determine it. An example of the representation of relations, functions and
arguments will be described below.

Although, Tables 1 and 2 show the entities in the schema in tabular form, the actual
representation is an XML form that can be generated automatically by BioMedLEE when
processing articles. Figure 1 illustrates examples of the DTD for several elements of PGschema.

The element structured is a child of the root element called pgschema (not shown in Figure
1). Note that the elements of structured are the entities in Table 1 that are not followed by a
single ‘*’. These correspond to the primary types of entities or observations. Also note that the
elements of all the entities except for structured are optional and may occur zero or more
times. For example, problem has elements arg, bodyloc, code, and process, etc. These are
nested structures and are considered modifiers or qualifiers of problem. The v attribute of
problem is a string corresponding to a textual term that denotes that type of information. Note
that the change entity type can modify the type problem, but that change itself can only be
modified by degree, certainty, and temporal types of information.
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Figure 2 illustrates a simplified form of the XML output obtained as a result of processing
Hepatocytic proliferation was increased in livers of newborn C/EBPalpha knockout mice. Note
that the XML output is consistent with Tables 1 and 2. In the XML form, the types are specified
as tags and the instances as values of the tags. The primary observation for the information in
the sample sentence is a process whose value is proliferation. In addition, it has several
modifiers that are represented as nested elements. One modifier is an entity cell whose value
is hepatocyte, which is linked to a code CL:0000182 from cell ontology, and a UMLS code
UMLS:C0227525. Other modifiers of proliferation are a change entity increase, which is not
linked to any code, a body location entity liver, which is linked to a code MA:0000358
corresponding to mouse anatomy ontology, and to another code MP:0000598 corresponding
to the mammalian phenotype anatomy. The string following the code identifier is shown for
readability. In addition, a code MP:0000351 corresponding to increased cell proliferation
has been specified, which is associated with the proliferation structure. This code is the most
specific code found by BioMedLEE for the process structure. Note that the bodyloc tag
includes nested modifiers. Thus, organism whose value is mouse modifies liver; similarly
newborn, which corresponds to temporal information modifies mouse as does the
gene_product C/EBPalpha, which itself has a modifier knockout.

Figure 3 illustrates a simplified XML output form generated as a result of processing the
sentence Tenascin-C regulates cell proliferation, which contains a gene function regulate. Note
that the highest level in the output is function with the value regulate. It has nested under it
an argument gproduct with value tenascin-C, which also has a UMLS code. It also has another
nested element called arg with the value agent, signifying that gproduct is the agent argument
of the higher level function regulate. Similarly, the process with the value proliferation has
a qualifier arg with value target, signifying it is the target argument of regulate.

There are several issues concerning PGschema that are important to note. The schema allows
for some redundancies in representations in order to accommodate natural language. The issue
of focus or different viewpoints arises frequently in natural language because the
expressiveness of language incorporates such flexibility. Since our schema is based on relations
as expressed in natural language, it has entity-modifier combinations where the entity and
modifier types can be reversed. For example, according to Table 1, a process, which is a PO
(phenotypic observation) can be qualified by another PO. Thus, when representing the
information abnormal development, development, which is a process, could be considered the
primary entity, and abnormal, which is a problem, its qualifier. However, in abnormal in
development, the primary entity could be considered the problem abnormal and the qualifier
development. There are two ways that this redundancy could be handled subsequent to natural
language processing. One way would be to allow the redundancy to remain as is, and to
formulate queries that retrieve the structured output so that the queries account for the different
possible combinations. Another way would be to write transformations that map the NLP
output to a uniform representation or to one that conforms to another ontology. For example,
another representational system, such as PAtO, may view the appropriate representation of
hepatocyte proliferation differently than the one shown in Figure 2. In the PAto representation,
the primary observation would be hepatocyte and the qualifier proliferation. Additionally, the
view where cell is modified by liver, which in turn is modified by mouse may also be
considered incorrectly represented based on world-knowledge. By transforming the XML
structure appropriately, the correct view could be obtained. A second issue concerning the
schema is that it is permissive and allows combinations that are not likely, such as embryonic
diabetes mellitus. The purpose of PGschema is to represent the general compositional and
relational aspects of the various types of information in text and not to represent specific
knowledge concerning individual concepts. Thus, while an ontology may not permit a concept
such as embryonic diabetes mellitus, it would be permissible in PGschema for disease type
information in general to be qualified by temporal type information. A third issue concerning
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PGschema is that external ontologies are currently represented as identifiers, but are not integral
to the model. It may be advantageous in the future to link them directly to the source ontologies
using URLs, a method that would be more in keeping with the semantic Web.

Table 3 shows the results of the manual analysis for coverage of selected entity types in
PGschema. Column 1 shows the type of entity; column 2 shows the number of modifiers that
were judged to be covered in PGschema followed by the total number of modifiers found to
correspond to that type; column 3 shows frequent types of modifiers, and column 4 includes
examples modifiers that were not covered. The average coverage for all the types combined
was 85%. Note that the lowest coverage, which was 67%, is associated with biomolecular
entities. This reflects our focus, which is the phenotype, and that we have not concentrated on
the representation of components of genes and gene products. Results for anatomical body
locations (BPT) and problem indicate certain difficulties that occurred during the manual
analysis. For example, normal, which occurred 5 times in the test set, was considered by the
expert as ‘not covered’ but it actually was classified as a descriptor in the BioMedLEE lexicon,
and therefore should have been considered as covered. The coverage for BPT would be 94%
if the manual analysis were corrected.

A number of other issues arose in the manual analysis, reflecting the complexity of the task.
Our experience demonstrated that the task required expertise in four disciplines: linguistics,
biology, medicine, and ontology, and thus was very difficult. One type of problem associated
with the analysis occurred because BioMedLEE output was used to collect sentences
containing an occurrence of a particular type of entity. However, occasionally the BioMedLEE
system tagged an entity as denoting an incorrect type due to ambiguity. For example,
backbone was tagged as an anatomical entity but it actually occurred in the text as peptide
backbone of three proteins. Since the study involved evaluating the coverage of the schema
and not the performance of the NLP system, such a sentence was removed from the manual
analysis set by the expert, and another sentence from the reserve set containing that entity type
was selected. Thus, we ensured that the sets each contained exactly 50 sentences associated
with the particular entity type being evaluated.

A second type of problem occurred because the expert had to determine the semantic categories
of the terms that modified the entity being evaluated. The semantic classes of many of the
modifier terms were clear cut, such as limb, mouse, hepatocyte, and tumor. But the semantic
types of certain terms (e.g. direct, specific) were vague and difficult to ascertain. This difficulty
was discovered during the training session for the manual analysis. This difficulty was partially
addressed by using a pre-existing source of semantic knowledge as the reference standard.
Thus, if the expert could not semantically classify a term, the BioMedLEE lexicon was used
to obtain its semantic category. If the term was in the lexicon, the semantic class that was
specified in the lexical entry was the one that the expert used as a basis for the analysis. If the
term was not in the lexicon, it was considered “not covered” by the schema. We felt this
approach was reasonable because the existence of a lexical entry for a term meant that it was
already semantically categorized independently based on another knowledge source. In the
future, it may be more appropriate to search for the term in other ontologies. However, if the
term is not found in any biological knowledge source, the problem will still exist. Determining
the semantic category occasionally led to errors in the analysis. For example, the expert did
not correctly classify normal. In the future, if multiple experts perform the analysis, and resolve
their differences, this type of error is likely to be reduced.

A third type of problem occurred because the expert performing the manual analysis had to
determine whether a multi-word term was compositional in meaning and thus consisted of a
entity and modifiers or if it was an atomic unit. This required knowledge of both biology and
medicine. For example, essential hypertension would be considered an atomic unit in medicine
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and would not be considered as denoting hypertension with a modifier essential. In contrast
moderate hypertension should be considered to be compositional, and therefore as an entity
hypertension with a modifier.

The fourth problem was that it was not always straightforward to determine which entity was
the modifier and which entity was being modified because different interpretations or
viewpoints were possible. According to linguistics, the focus of a noun phrase is typically the
head noun, as discussed above. Thus, when analyzing abnormal in development, abnormal
would be considered the observed entity, and the modifier would be the head noun
development of the prepositional phrase. However there were exceptions, which seemed to
occur whenever the head noun could not be a primary entity (e.g. it could only occur as a
modifier). For example, in increase in proliferation, the head noun increase modifies
proliferation.

Other limitations of our study were: only one expert performed the manual analysis, an
evaluation of certain entity types only was performed, and PGschema was not complete. In
future work we plan on expanding and refining the schema. For example, experimental methods
are not represented, and temporal information could be represented using a finer granularity
because there are many different aspects associated with temporal information, such as
duration, frequency, developmental stages, and disease stages. Additionally, in future work we
also plan on performing further evaluations.

CONCLUSIONS
We have proposed a novel informational schema called PGschema, which represents
phenotypic and genotypic entities, modifiers, and relationships. PGschema is significant in
several ways: 1) it can be realized automatically using NLP techniques, 2) it bridges the gap
between language and ontologies by providing compositional expressiveness similar to that
found in natural language, while also linking to formal ontologies, which are needed for
reasoning and specification of external declarative and world knowledge, 3) it is in the form
of XML, which is textual and easy to read, and 4) it connects diverse biological scales of
information. Evaluation for coverage of selected entities demonstrated that those entities were
appropriately covered, but more work was needed. Moreover, we found that guidelines were
critical for the manual analysis study, although the task still was very complex because it
required expertise in biology, medicine, linguistics, and knowledge representation.

Rapid technological improvements of biomedical ontologies and natural language processing
should lead to a profound transformation in the reuse of heterogeneous narrative information
when it occurs in the form of curated and highly computational knowledge stored in specialized
biomedical databases. Thus, the proposed schema should result in accelerated reuse of
biomedical knowledge. Moreover, technological standardization of declarative knowledge and
the semantic Web have profoundly accelerated the development cycles in computational
semantics, resulting in ontology-anchored databases that could be automatically transformed
with a common expressive information schema, such as the one proposed. As the gap between
linguistic and declarative knowledge is bridged with highly expressive and computable
information schemas, such schemas are poised to produce a paradigm shift. Indeed,
comprehensive information models are likely to enable rapid large-scale computational
analyses of unprecedented volumes of information and knowledge.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Examples of document type description (dtd) for elements of PGschema
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Figure 2.
XML representation obtained as a result of processing the sentence Hepatocytic proliferation
was increased in livers of newborn C/EBPalpha knockout mice.
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Figure 3.
XML representation obtained as a result of processing the sentence Tenascin-C regulates cell
proliferation, which contains a function and arguments.
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Table 1
Entities

Type
Group

Type Examples Modifiers

PO
(phenotype
observa-
tion)

Prob-
lem

diabetes, defect Tou-
rettes,fever,

MD1, AN, PO, Q,
REG, BE

Proces
s

angiogenesis, walk-
ing

MD1, PO, AN, BE

DESC large, red MD1, AN, DESC,
BE

BMS weight, creatinine
clearance

MD1, AN

AN
(anatomy)

BPT liver, epithelium,
chest, arm

ORG, AL, Arg,
MUT, quantity,
REG, BPT, Cell,
Code, Ccomp, PO,
temporal

Cell Leukocyte, stem cell ORG, AL, Arg,
MUT, quantity,
BPT, Code, Ccomp,
PO, temporal

Ccomp Nucleus, cytoplasm Cell, ORG, MD1,
PO, Code

(allele) AL* Wild-type, heterozy-
gote

BE
(biomole-
cular enti-
ty)

Gene P53, cdk1 ORG, AN,Arg,
MUT, AL, Code

GP Estrogen receptor ORG, AN, Arg,
MUT, Code

GGP Ambiguous term (may
be gene or GP)

ORG, AN, Arg,
MUT, AL, Code

MUTG P53 −/− AL, MUT (required)

(link to
ontology)

Code* CL:0000182^hepato
cyte

(function) FUN** Bind, activate MD1 , Code

(mutation) MUT* Mutant, deletion

(organism) ORG Mouse, human STR, AL,Arg, Code,
temporal, MUT, PO,
MUTG

(region) REG* Upper, right REG

(relation) REL** Depend on, play role
in,

MD1

(strain) STR* C57BL/6J

(substance) SUB Acetol Arg

For convenience some entities appear as abbreviations and some were collected into groups. In column 1, full forms are noted in parentheses. Entities
that have ‘*’ following the name are modifier types only, and entities having ‘**’ have arguments as well as modifiers. When the Modifier column
is blank, it signifies that the corresponding entity has no modifiers. Legend for abbreviations not specified in table: DESC-descriptor, BMS-quantifiable
measurement concerning an aspect of organism, BPT-an anatomical body part or location excluding cell, Ccomp-cell component; GP-gene product,
GGP-gene or gene product, MUTG – a gene or gene product with a required mutation or allelic modifier.
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Table 2
Modifier Group 1 (MD1)

Type Examples Mods

Arg* Agent, target, 1, 2

Certainty* Possible, definite, no Degree

Change* Increased, unchanged Certainty,
degree,
temporal

Code* GO: 0008283

Degree* Moderate, substantial Degree

Measure* 5%

Quantity* 1, many

Temporal* Adult, embryonic
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Table 3
Results of manual analysis for coverage

Entity
Type

Coverage Frequent
Mods

Not covered

BE 34/51 (67%) Org Sequence, 2

BPT 44/52 (85%) Org, AN, BE Normal*

Process 64/69 (93%) BE, disease Rat, intron

Cell 48/50 (96%) Org, temporal Female

Problem 42/51 (83%) AN t(15;15)

Combined 232/273 (85%)
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