
Vol. 24 no. 5 2008, pages 652–658
BIOINFORMATICS ORIGINAL PAPER doi:10.1093/bioinformatics/btn022

Structural bioinformatics

DiMoVo: a Voronoi tessellation-based method for discriminating

crystallographic and biological protein–protein interactions
Julie Bernauer1,2, Ranjit Prasad Bahadur2, Francis Rodier3, Joël Janin2 and
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ABSTRACT

Motivation: Knowledge of the oligomeric state of a protein is often

essential for understanding its function and mechanism. Within a

protein crystal, each protein monomer is in contact with many

others, forming many small interfaces and a few larger ones that are

biologically significant if the protein is a homodimer in solution, but

not if the protein is monomeric. Telling such ‘crystal dimers’ from real

ones remains a difficult task.

Results: It has already been demonstrated that the interfaces of

native and non-native protein–protein complexes can be distin-

guished using a combination of parameters computed with a method

on the Voronoi tessellation. We show in this article that the same

parameters highlight significant differences between the interfaces of

biological and crystal dimers. Using these parameters as descriptors

in machine learning methods leads to accurate classification of

specific and non-specific protein–protein interfaces.

Availability: Software is available at http://fifi.ibbmc.u-psud.fr/

DiMoVo

Contact: anne@rezo.net

1 INTRODUCTION

Proteins fulfill almost all the ‘active’ roles in life: enzymes,

antibodies, receptors, etc. For most proteins, biological and

biochemical function can be accomplished only through the

association of two or more macromolecules. Among the

different assemblies that two or more polypeptide chains

(monomers) can form, homo-oligomers contain multiple

copies of the same monomers, whereas hetero-oligomers and

complexes associate different proteins.
The structure of proteins and protein assemblies is experi-

mentally accessible through the interpretation of images

obtained by the diffraction of X-rays by a protein crystal. In

a crystal, each monomer makes contacts with many others,

identical or not. These contacts are non-specific and do not

exist in vivo, but they are of the same physico-chemical nature

as the specific contacts that stabilize complexes and oligomeric

proteins. It has been shown that most of the pairwise interfaces

created by the crystal packing are smaller than those of

complexes and oligomeric proteins (Bahadur et al., 2003, 2004;

Carugo and Argos, 1997; Dasgupta et al., 1997; Janin, 1997).

However, some are comparable in size to specific interfaces,

and a pair of protein molecules that form a large packing

interface in the crystal may be mistaken for a biological

homodimer if it has 2-fold symmetry. We call such pairs ‘crystal

dimers’.
Some dimeric proteins (either homodimers or heterodimers)

are called ‘obligate’ dimers. These are proteins than can exist

only associated to each other, and are never found in the

monomeric state [see Nooren and Thornton (2003) for a

review]. This is the case for the bacteriophage P22 Arc repressor

[PDB code: 1ARR (Bonvin et al., 1994)]. The repressor consists

in two identical chains that fold together, and both chains

participate in the hydrophobic core (Milla et al., 1995). Other

dimers are called non-obligates, and can be found as mono-

mers. In these cases, complexation often regulates the activity

of the protein. This is the case of sperm lysine (PDB code:

1LYN), which is active as a monomer and inactive as a dimer

(Shaw et al., 1995).
Understanding the function of a protein often requires the

knowledge of its oligomeric state. Whereas this should be done

by experiment in solution, one may attempt to derive the

oligomeric state from the crystal structure when it is available.

This has proved surprisingly difficult. A recent study uses graph

theory to find all the possible assemblies in the crystal, and then

computes, for each interface, a quantity related to the free

energy change upon dissociation. The PISA server reports the

results (Krissinel and Henrick, 2007). Another server, PITA

(Ponstingl et al., 2003) scores crystallographic contacts by their

contact size and chemical complementarity. NOXClass (Zhu

et al., 2006) uses descriptors of the interface, such as its size, its

composition, or the chemical complementarity of the contact-

ing residues, as parameters for a support vector machine

procedure. Block et al. (2006) used feature selection methods,

coupled with four different machine learning methods.

Liu et al. (2006) use combinations of different physico-chemical

and geometrical parameters.*To whom correspondence should be addressed.
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When applied to test sets of specific interfaces in biological

dimers and of non-specific interfaces in crystal dimers, these

methods discriminate between the two types with success rates

near 92% (Mintseris and Weng, 2003; Ponstingl et al., 2003;

Zhu et al., 2006). However, the size of the interface is a

predominant parameter in all cases, and the presence of many

small interfaces in the non-specific set greatly helps. Indeed, the

success rate drops drastically when the non-specific set contains

crystal dimers with interfaces similar in size to those in the

specific set.

We present here a method based on the Voronoi tessellation

and a coarse-grained modelling of the protein structure, and

use it to discriminate between the interfaces of biological

homodimers and packing interfaces of a similar size formed by

monomeric proteins in crystals. This new method, called

DiMoVo (DIscrimination between Multimers and MOnomers

by VOronoi tessellation), achieves a high accuracy even on

crystal dimers that have large interfaces.

2 METHODS

2.1 Modeling the protein structure

Although the three dimensional structure of proteins is considered

unique, atoms on the surface are weakly constrained, and many atomic

movements happen when two proteins interact. As they are very difficult

to predict, a low-resolution, simplified model, is often more appropriate

than a detailed atomic structure when modeling protein–protein

interaction. We represent protein structures by spheres representing

amino acid residues and build a Voronoi tessellation to calculate a set of

parameters that have proven useful in combination with machine

learning algorithms (Bernauer et al., 2005, 2007; Poupon, 2004).

Residue-based Voronoi tessellations were built with a previously

described procedure (Bernauer et al., 2007) that uses the Computational

Geometry Algorithms Library (CGAL) (Boissonnat et al., 1999) and

was optimized to take less than one second for each complex.

2.2 Parameters

As described in (Bernauer et al., 2005), the parameters are:

� the interface area (1 parameter)

� the number of core interface residues (1 parameter)

� their Voronoi volumes (20 parameters)

� the frequency of each residue type at the interface (20 parameters)

� the frequency of the pairs of residues in contact (210 parameters)

� the distances between their geometric center (210 parameters)

The latter two categories should comprise 210 parameters each, a

number reduced to 21 by grouping residues in six bins: Hydrophobic

(VILM), Aromatic (FYW), Positive (HKR), Negative (DE), Polar non-

charged (NQ), Small (AGSTCP).

In addition, we tested some of the parameters described in (Bahadur

et al., 2004):

� Residue Propensity score (RP), for a residue of type i, this

propensity is computed as the logarithm of the ratio between the

area fraction contributed to the protein–protein interface and the

area fraction contributed to the protein–solvent interface by

residues of type i.

� Global Density index (GD): the mean number of atoms per unit

area in an ellipse fitting the interface.

� Local Density index (LD): the mean number of neighbors of an

interface atom.

2.3 Data sets

2.3.1 Training set The data sets used for developing the method

are those of (Bahadur et al., 2003) for the biological dimers and

(Bahadur et al., 2004) for the crystal dimers. The proteins of these sets

were selected manually from the Protein Data Bank, and their status of

dimer or monomer in solution was checked with the biochemical

literature. In addition, we required that the sequence of the crystallized

fragment has to be the one used for multimeric studies. Indeed,

experimental results showing that the full length protein forms a stable

dimer cannot guaranty that a fragment will also form a stable dimer.

The monomer set contains 178 crystal dimers selected to have an

interface area greater than 800 Å2. The biological dimer set contains 113

biological homodimers.

2.3.2 Test sets We used two other data sets to compare our

method with three other: NOXClass (Zhu et al., 2006), PISA (Krissinel

and Henrick, 2005) and PITA (Ponstingl et al., 2003).

� The Zhu dataset (Zhu et al., 2006). This dataset, compiled from

previously published sets (Bradford and Westhead, 2005; Neuvirth

et al., 2004), contains ‘obligate’, ‘non-obligate’ interactions and

crystal contacts. For this study, ‘obligates’ were equated with

homodimers and ‘non-obligates’ were not considered since these

were only heterodimers. This dataset has been used to train the

NOXClass method.

� The Ponstingl dataset (Ponstingl et al., 2003). This dataset contains

crystallographic dimers, biological dimers, and biological multi-

mers of larger order. For this study, only the ‘monomers’ and

‘dimers’ categories were retained. This dataset has been used to

train PISA (Krissinel and Henrick, 2007) and PITA (Ponstingl

et al., 2003).

It should also be noted that a few examples from these two datasets

were removed for different reasons. We removed items in these datasets

when: (i) the two polypeptide chains were not identical, (ii) a co-factor

or metallic ion was present at the interface, (iii) absence of a symmetry

matrix in file containing only one peptide chain, (iv) one of the four

tested methods fails to evaluate the example, (v) the polypeptide chain

was a fragment of the protein for which the quaternary structure has

been experimentally established or (vi) the quaternary structure had

been derived from homologous proteins and not experimentally

established.

2.4 Learning

The values of the 84 Voronoi-derived parameters and the indexes RP,

GD and LD measured on the Bahadur datasets of monomers and

homodimers were used as input for a Support Vector Machine (SVM)

procedure (Cristiani and Shawe-Taylor, 2000; Schölhopf, 1997) using a

Radial Basis Function (RBF) kernel. As in Bernauer (2006), missing

data were replaced by the median value of the corresponding parameter

on the whole dataset.

To ensure reliable statistics, and avoid over-fitting, learning was done

in leave-one-out with a 5-fold cross-validation procedure.

The R libSVM package (Chang and Lin, 2001) was used to perform

support vector machines experiments. The optimization of C and � was

done by a grid search (Hsu et al., 2003) using the ‘tune’ function of

libSVM. The ROC curves analyses were performed using the packages

‘ROCR’ (Sing et al., 2005) and ‘verification’.

DiMoVo
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2.5 Nested tests

We performed nested tests to evaluate the contribution of each para-

meter and selected the best performing subset. Learning was repeated

after eliminating each of the 84 parameters in turn. The parameter

whose elimination leads to the highest accuracy is excluded. Each of the

83 remaining parameters is eliminated in turn, and again, the parameter

whose elimination leads to the highest accuracy is excluded. The

procedure was repeated until only two parameters remained. Each

learning procedure was done through leave-one-out.

2.6 Accuracy and recall evaluation

The three datasets (Bahadur, Zhu and Ponstingl) have important over-

laps (Fig. 1), comparing the accuracies and recalls (on both monomers

and dimers) requires that each method is evaluated only on proteins not

belonging to their training dataset.

For each method, a test set was constructed using all the proteins that

were not present in the tested method’s training set, and had no more

than 30% sequence identity with proteins of the training set. Moreover,

the internal redundancy of each test set was filtered out so that two

proteins in the set don’t share more than 30% identity. The test sets are

available on the website.

As the authors of PITA estimate that scores above 70–80 indicate

specific interfaces (Ponstingl et al., 2003), (i) scores below 70 were taken

to identify crystal dimers, (ii) scores above biological dimers,

(iii) interfaces with scores between 70 and 80 are not assigned.

The overall accuracy is the number of correctly assigned examples

divided by the number of assigned examples. The crystal dimer (resp.

biological dimer) accuracy is the number of correctly assigned crystal

dimers (resp. biological dimers) divided by the total number of assigned

crystal dimers (resp. biological dimers). The crystal dimer (resp.

biological dimer) recall is the number of correctly assigned crystal

dimers (resp. biological dimers) divided by the total number of crystal

dimers (resp. biological dimers), assigned or not.

3 RESULTS

3.1 Values of the parameters

The area of interface (computed as the sum of the areas of

Voronoi facets shared by cells from the two subunits), and the

number of interface residues are on average much smaller for

crystal dimers than for biological dimers (Fig. 2A and B). These

two parameters are highly correlated.
Figure 2C shows the frequency of the 20 amino acids at the

interfaces. As previously described, the biological interfaces are

enriched in hydrophobic residues and depleted in polar and

charged residues relative to crystal packing interfaces, and also

to the solvent-accessible surface (Bahadur et al., 2004). Small

residues have similar frequencies in both types of interfaces,

except cysteine, which is more frequent in biological interfaces.

Our previous study of protein–protein complexes

(Bernauer et al., 2007) indicates that the mean volumes of the

Voronoi cells of interface residues are important parameters.

Figure 2D shows some interesting variation. The volume

occupied by leucines, which is somewhat larger at biological

interfaces than in the protein core, is even larger at crystal

packing interfaces.
The frequencies of residue pairs in contact at the interface

also show interesting differences (Fig. 2E). The hydrophobic–

hydrophobic, hydrophobic-small and hydrophobic–aromatic

Fig. 2. Values of the parameters for crystal and biological dimers. The

values of the 84 parameters used for learning are shown in black bars

for biological dimers and white bars for crystal dimers. (A) Voronoi

area of the interface. (B) Number of residues participating in the

interface. (C) Frequencies of each of the 20 residues at the interface. (D)

Mean volume of the Voronoi cell for each of the 20 residues at the

interface. (E) Frequency of each type of pair at the interface. (F) Mean

distance between the geometric centers in a pair at the interface for each

type of pair. In E and F, S: small residue (AGSTCP), H: hydrophobic

(VILM), A: aromatic (FYW), �: negatively charged (DE), þ: positively

charged (NQ), P: polar (HKR).

Fig. 1. learning datasets. For crystal and biological dimers, region A

contains PDB codes found only in Bahadur dataset, region B those

found only in the Ponstingl dataset, and region C those found only in

Zhu datasets. Regions D, E and F are those examples found in two of

the datasets, but not in the third one. Region G contains the examples

common to the three datasets. For each dataset, and for both crystal

and biological dimers, the total number of examples and the mean

interface area are given.

J.Bernauer et al.
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pairs are much more frequent in biological interfaces. This is

partly due to the enrichment of biological interfaces in

hydrophobic residues, but also to their better physico-chemical

complementary compared to crystal packing interfaces.

3.2 Parameter selection

In order to evaluate the relative importance of the 84

parameters, we performed nested tests. The most important

thing we learned during these tests is that the method is more

accurate if not all parameters are used (Fig. 3). From these

tests, we concluded that 27 parameters should be retained

(see Table 1). Using these 27 parameters leads to an accuracy of

0.95, with a crystal dimer recall of 0.98 and a biological dimer

recall of 0.89.
As expected, the most important parameter is the interface

area (Table 1): alone, it yields an accuracy of 0.78 with a crystal

dimer recall of 0.90 and a biological dimer recall of 0.59. More

surprising is the fact that both area of the interface and number

of residues at the interface, although largely correlated, are very

important (the number of residues at the interface is ranked 9).
A well represented type of parameter in the retained set is the

volume of the Voronoi cell. Frequencies are also well

represented in the selected set. In both cases, the importance

of these parameters cannot be correlated to their repartitions

between biological and crystal packing interfaces. Pair

frequencies appear less often, however, the frequency of

small-polar pairs is ranked 4. Since this type of pair is less

frequent in biological interfaces, its ranking shows that the

presence of this type of pair in a biological interface

Table 1. Rank of the parameters in nested tests

Type AA Rank Type AA Rank Type AA Rank

Area 1 Volume I 29 Pair freq þþ 57

Volume L 2 Volume M 30 Pair dist HP 58

Volume S 3 Pair freq SA 31 Pair dist PP 59

Pair freq SP 4 Volume N 32 Frequency M 60

Frequency D 5 Volume P 33 Volume Y 61

Frequency F 6 Pair freq SS 34 Pair dist þþ 62

Frequency Y 7 Frequency Q 35 Pair freq Aþ 63

Frequency L 8 Frequency A 36 Pair freq AP 64

Nb Res 9 Pair freq Hþ 37 Pair freq HA 65

Volume C 10 Frequency R 38 Pair dist Aþ 66

Frequency G 11 Volume W 39 Pair dist �P 67

Frequency K 12 Volume D 40 Pair dist Sþ 68

Pair freq AA 13 Pair freq H� 41 Pair freq S� 69

Volume V 14 Volume A 42 Pair freq PP 70

Frequency S 15 Volume G 43 Frequency H 71

Pair dist S� 16 Frequency P 44 Pair dist A� 72

Volume K 17 Frequency C 45 Frequency E 73

Pair freq HP 18 Pair dist SS 46 Volume R 74

Pair dist HH 19 Volume Q 47 Pair dist HA 75

Frequency I 20 Pair freq SH 48 Pair dist SP 76

Pair dist SH 21 Pair freq �� 49 Pair freq Pþ 77

Frequency N 22 Frequency W 50 Pair dist AA 78

Volume T 23 Volume F 51 Pair dist SA 79

Pair freq �P 24 Pair freq S� 52 Pair dist �þ 80

Pair dist Hþ 25 Pair freq A� 53 Pair dist Pþ 81

Pair dist AP 26 Volume H 54 Frequency T 82

Pair dist �� 27 Pair freq �þ 55 Pair freq HH 83

Volume E 28 Pair dist H� 56 Frequency V 84

Pair dist: pair distance, Pair freq: pair frequency, Nb res: number of residues at the interface, Area: area of the interface. A: Aromatic, H: Hydrophobic, S: Small, P: Polar,

þ: positively charged, �: negatively charged. Parameters on grey background are those retained by the nested tests analysis.

Fig. 3. Accuracy (white line), crystal dimer recall (grey line) and

biological dimer recall (black line) as a function of the number of

parameters. At each step, the accuracy with all parameters but one is

evaluated. The parameter giving the highest accuracy (consequently the

parameter that is less informative) is eliminated for the next step.

DiMoVo
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is unfavorable. Similarly, pair distances, which were thought to
have a very weak contribution, do appear in the retained set.

To summarize, these result show that the factors that favor
biological interfaces are:

� a larger interface area,

� more interface residues,

� a large proportion of F, I and L, a small proportion of D,

G, K, N, S and Y,

� small volumes for C, K, L, S, T and V,

� a large number of aromatic–aromatic pairs and a small
number of small-polar, hydrophobic–polar and negative-

polar pairs,

� small distances in small-negative, hydrophobic–hydropho-
bic, hydrophobic-positive, aromatic–polar and negative–

negative pairs.

3.3 Learning performance

Performance of learning has been evaluated by the Area Under
the ROC Curve (AUC). Receiver Operating Characteristics

(ROC) curves, issued from signal processing, represent the
trade-off between true and false positive rates when interpreting

hypotheses. The ideal hypothesis, which generates no false
positive and 100% of the true positives, has a ROC curve that
is a step function and an AUC of 1. A random selection

yielding true and false positives in equivalent numbers has an
AUC of 0.5.
Figure 4 shows three ROC curves: learning with 84

parameters, learning with 84 parameters and high-resolution
geometric parameters RP, LP and GD, and learning with the

selected set of 27 parameters. The curves show that whereas
adding the RP, LP and GD parameters has only a minor effect
on accuracy (the AUC increases from 0.91 to 0.92), a reduced

set of parameters performs much better, with an AUC of 0.97.

3.4 Reliability of predictions

Because the SVM, for each submitted example, returns a score,

we are able to give a reliability rate for a prediction, depending

on the score obtained (Fig. 5).
As expected, since the SVM aims at giving to a crystal dimer

a score close to 0, and to a biological dimer a score close to 1,

the accuracy of predictions with scores lower than 0.3, or higher

than 0.8 is very high. Although not very low, the accuracy

around 0.5 is not as good (0.73 accuracy for scores between 0.5

and 0.55, and 0.79 accuracy for scores between 0.45 and 0.5).

Consequently, we tested three different options:

� threshold 0.5: if the score is lower than 0.5, we predict a

crystal dimer, if the score is higher than 0.5, we predict a

biological dimer

� 0.45–0.55: if the score is lower than 0.45, we predict a

crystal dimer, if the score is higher than 0.55, we predict a

biological dimer, if the score is between 0.45 and 0.55 we

don’t predict.

� 0.4–0.6: if the score is lower than 0.4, we predict a crystal

dimer, if the score is higher than 0.6, we predict a biological

dimer, if the score is between 0.4 and 0.6 we don’t predict.

Results obtained in leave-one-out on the learning set are given

in Table 2. DiMoVo in its simplest flavor (with a threshold at

0.5) is already performing well with an accuracy of 0.95. The

important difference between crystal and biological dimer

recalls (0.98 and 0.89, respectively) is largely due to the fact that

there are more crystal than biological dimers in the learning set.

However, randomly removing crystal dimers from the set,

which is the usual methodology in this type of method, led to

significantly lower accuracies. This could have been due to

over-fitting. However, the accuracy and recalls obtained on the

two other datasets show that we are not in this situation. This is

also confirmed by the number of vectors (171� 12), which is

significantly lower than the number of structures used in the

learning set.
When considering that structures with scores between 0.45

and 0.55 (in DiMoVo 0.45–0.55), or scores between 0.4–0.6

Fig. 4. ROC curves for three different sets of parameters: the selected

set of 27 parameters (see text), the original set of 84 parameters, and the

84 low-resolution parameters with the three high-resolution parameters

RP, LP and GD (see text).

Fig. 5. Accuracy of DiMoVo as a function of score.

J.Bernauer et al.
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(in DiMoVo 0.4–0.6) cannot be assigned to crystal or biological

dimers, the accuracy is improved, but the recalls are lower.

3.5 Comparison with other existing methods

In order to assess the accuracy of our method, and to compare

with already existing methods, we have used the four already

cited methods: DiMoVo, PITA (Ponstingl et al., 2003), PISA

(Krissinel and Henrick, 2005) and NOXclass (Zhu et al., 2006).

We used the three datasets (Bahadur, Ponstingl and Zhu) for

the tests. Each method was evaluated only on crystal and

biological dimers that were not part of its own training set, and

that have no more than 30% sequence identity with proteins of

the learning set. Because of the large overlap between the

different datasets, the number of examples used for the

evaluation of each method is different (except for PITA and

PISA which were trained on the same dataset).
The results are given Table 3. As can be seen, DiMoVo has

both a better overall accuracy, but also better crystal dimer

recall than the other three methods. PISA and NOXClass have

a better biological dimer recall than DiMoVo, but this is

counter-balanced by rather low crystal dimer recalls.
To further analyze predictions, and for comparison, we

studied the reliability of predictions by the four methods as a

function of the interface area. As can be seen in Figure 6, all

methods show lesser accuracies for ‘problematic’ cases: those

with interface areas from 1400 to 3000 Å2. However, DiMoVo

accuracies are never lower than 0.8 (areas between 2000 and

2500 Å2, 0.83 for DiMoVo 0.4–0.6), whereas other methods

show significantly lower values: 0.73 for PITA (areas between

2000 and 2500 Å2), 0.5 for PISA (areas between 2500 and

3000 Å2), and 0.57 for NOXClass (areas between 2000 and

2500 Å2). The comparatively lower accuracies obtained with

PITA and PISA are attenuated by the fact that these two

methods are not only able to predict monomers and dimers, but

also multimers. Moreover, PISA gives many very useful details

concerning each possible interface. The larger number of

possible predictions lowers the accuracy of one particular

prediction, namely the discrimination between crystal and

biological dimer.

Our improved performances for difficult cases are due to

three facts. Firstly, our learning set contains more difficult

cases, and especially more crystal dimers with large interface

areas. To highlight this point, we have trained DiMoVo using

(i) obligates and crystal dimers from Zhu dataset, (ii) obligates,

non-obligates and crystal dimers from Zhu dataset and (iii)

monomers and dimers form Ponstingl dataset. The results in

Table 3 clearly show that these three learning sets lead to lower

accuracies and recall. Secondly, and this is a direct consequence

of the previous point, interface area, although a very important

parameter, has a lower weight in our method as compared to

other ones. Finally, we consider many more parameters than

other methods, and use these to build a scoring function using a

machine-learning procedure.

Table 3. Comparison of the performances of 4 different methods:

NOXClass (Zhu et al., 2006), PISA (Krissinel and Henrick, 2005),

PITA (Ponstingl et al., 2003) and DiMoVo

Method Crystala Biologicalb Total Acc Recall C Recall B

NOXClass 178 79 257 0.76 0.68 0.95

PISA 227 76 303 0.86 0.76 0.92

PITA 227 76 303 0.92 0.91 0.84

D. 0.5 137 33 170 0.93 0.95 0.84

D. 0.45–0.55 137 33 170 0.94 0.93 0.79

D. 0.4–0.6 137 33 170 0.97 0.91 0.7

D Zhu OC 106 75 181 0.90 0.97 0.79

D Zhu ONOC 106 137 243 0.88 0.91 0.85

D Ponstingl 89 69 158 0.83 0.92 0.71

aNumber of crystal dimers.
bNumber of biological dimers.

Each method is evaluated only on structures not part of the training set. Three

different flavors of DiMoVo trained on Bahadur dataset are presented (D. 0.5, D.

0.45–0.55 and D. 0.4–0.6, see text). Results obtained with DiMoVo trained on:

obligates and crystal dimers of Zhu dataset (D. Zhu OC); on obligates, non-

obligates and crystal dimers of Zhu dataset (D. Zhu ONOC) and on dimers and

monomers of Ponstingl dataset (D. Ponstingl), Recall C: recall crystal dimers.

Recall B: recall biological dimers.

Fig. 6. Accuracy as a function of the interface area. The accuracies of

crystal/biological assignment by PITA, PISA, NOXClass and the three

different flavors of DiMoVo (see text) were estimated for examples with

interface areas in different intervals.

Table 2. Accuracy, crystal dimer recall and biological dimer recall for

three different flavors of DiMoVo, obtained on the learning set, using a

leave-one-out procedure

Method Accuracy Crystal dimers Biological dimers

DiMoVo 0.5 0.95 0.98 0.89

DiMoVo 0.45–0.55 0.96 0.95 0.8

DiMoVo 0.4–0.6 0.97 0.92 0.73

DiMoVo 0.5: if score is lower than 0.5, a crystal dimer is predicted, else a

biological dimer is predicted. DiMoVo 0.45–0.55: if score is lower than 0.45, a

crystal dimer is predicted, if score is higher than 0.55 a biological dimer is

predicted, else no prediction. DiMoVo 0.4–0.6: if score is lower than 0.4, a crystal

dimer is predicted, if score is higher than 0.6 a biological dimer is predicted, else

no prediction is made.

DiMoVo
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4 CONCLUSION

In this study, we set up an effective method to discriminate

between crystal packing and biological interactions using a

coarse-grained model for the structure. This method correctly

discriminates between crystal and biological dimers for 97% of

the tested cases (DiMoVo 0.4–0.6), with very good recalls for

both types of dimers. DiMoVo has been shown to compare

very favorably with existing methods, especially for difficult

cases, namely those for which the area of the interface is around

2000 Å2.

Interestingly, the initial set of 84 parameters had to be

reduced to a subset of 27 parameters to obtain maximal

accuracy. The parameters of this subset belong to all of the

initial categories: volumes, frequencies, pair frequencies and

pair distances. It has also shown that strong correlation of the

two parameters was not a criterion for excluding one. Indeed,

the number of residues constituting the interface, and the area

of the interface, which are two strongly correlated parameters,

are both present in the final subset, and excluding one decreases

significantly the accuracy.

This work shows that the formalism used for the description

of the protein structure is very powerful. Although only one

point per residue is used, and the relative weights of the

different types of residues are ignored, the obtained Voronoi

tessellation allows computing well-discriminating descriptors.

To try to improve further the discrimination between biological

and crystal contact interfaces, we will try to use more complex

mathematical tessellations, such as power diagrams. However,

the first attempts we have made in this direction show that it is

very difficult to adjust the weights assigned to each type of

residue, since no simple relation can be established between

these weights and the size or molecular weights of the residues.

Moreover, if the parameters obtained show a larger gap

between specific and non-specific interfaces, the standard

deviations are also larger.
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