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ABSTRACT

Motivation: The ability of human immunodeficiency virus-1 (HIV-1)

protease to develop mutations that confer multi-drug resistance

(MDR) has been a major obstacle in designing rational therapies

against HIV. Resistance is usually imparted by a cooperative

mechanism that can be elucidated by a covariance analysis of

sequence data. Identification of such correlated substitutions of

amino acids may be obscured by evolutionary noise.

Results: HIV-1 protease sequences from patients subjected to

different specific treatments (set 1), and from untreated patients

(set 2) were subjected to sequence covariance analysis by evaluat-

ing the mutual information (MI) between all residue pairs. Spectral

clustering of the resulting covariance matrices disclosed two

distinctive clusters of correlated residues: the first, observed in set

1 but absent in set 2, contained residues involved in MDR

acquisition; and the second, included those residues differentiated

in the various HIV-1 protease subtypes, shortly referred to as the

phylogenetic cluster. The MDR cluster occupies sites close to the

central symmetry axis of the enzyme, which overlap with the global

hinge region identified from coarse-grained normal-mode analysis

of the enzyme structure. The phylogenetic cluster, on the other hand,

occupies solvent-exposed and highly mobile regions. This study

demonstrates (i) the possibility of distinguishing between the

correlated substitutions resulting from neutral mutations and those

induced by MDR upon appropriate clustering analysis of sequence

covariance data and (ii) a connection between global dynamics and

functional substitution of amino acids.

Contact: bahar@ccbb.pitt.edu

Supplementary information: Supplementary data are available at

Bioinformatics online.

1 INTRODUCTION

HIV-1 protease plays an important role in the late stage of

viral replication by cleavage of premature viral polypeptides

to peptides that fold into mature virus proteins. The ability

of HIV-1 protease to rapidly acquire a variety of mutants

in response to various protease inhibitors (PI) confers the

enzyme with high resistance to anti-AIDS treatments. A high

cooperativity has been documented among drug-resistant

mutations observed in HIV-1 protease (Ohtaka et al., 2003).

The sequence data retrieved from treated patients is likely to

include mutations that reflect cooperative effects originating

from late functional constraints, rather than stochastic evolu-

tionary noise (Atchley et al., 2000). Extensive studies have been

made on this protein structure and dynamics (Cecconi et al.,

2001; Hornak et al., 2006; Perryman et al., 2004; Zoete et al.,

2002) although the molecular mechanisms of multi-drug

resistance (MDR) is yet to be elucidated.

HIV-1 protease is particularly suitable for covariance

analysis because of the large sets of sequences available, and

the observed fast rate of mutations in response to treatments.

Sequence covariance analysis is a method widely used for

identifying correlated sites in proteins. Such correlations are

usually inferred from the statistical analysis of pairwise amino-

acid substitutions among the members of the examined family

of proteins. Because correlated substitutions are expected

to occur between residue pairs directly interacting in the

3-dimensional (3D) structure, sequence covariance analysis,

also referred to as correlated mutation analysis (CMA), has

long been used for detecting inter-residue contacts within

proteins (Eyal et al., 2007a, b; Gobel et al., 1994; Olmea et al.,

1999; Shindyalov et al., 1994; Thomas et al., 1996). More

recently, the same approach proved useful in identifying

communication pathways in allosteric proteins (Hatley et al.,

2003; Kass and Horovitz, 2002; Lockless and Ranganathan,

1999; Shulman et al., 2004; Süel et al., 2003), and in studying

drug-induced mutations using clinical data (Hoffman et al.,

2003; Wu et al., 2003).
The CMA procedure consists of three steps, in general:

(i) generation of multiple sequence alignment (MSA) using

homologous protein sequences; (ii) quantifying the covari-

ance between different columns in MSA and (iii) identifying

groups of highly covariant positions, also called clustering. The

underlying assumption is that co-varying residues reflect essen-

tial structural/functional inter-residue couplings.
These techniques have some major limitations. The purpose

of the method is to identify inter-residue couplings that are

directly relevant to protein structure or function. However,

the observed signals may not solely arise from such couplings.

In fact sequence data are known to be noisy. A strong covari-

ance may be detected among columns due to evolutionary

signals that originate from early random mutation events.
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Noivirt et al. (2005) have shown that the signal due to inter-

residue interactions is comparable in magnitude to the noise

caused by other stochastic evolutionary events.
Several metrics have been used to quantify sequence

covariance in proteins. A comparative analysis of some com-

monly used methods can be found in the studies of Fodor and

Aldrich (2004) and Halperin et al. (2006). Yet, not enough

attention has been given to date, to the clustering step. This step

is important due to various reasons. First, although the CMA is

performed in a pairwise manner (mainly due to technical and

statistical reasons), it is clear that in nature larger sets of

residues are expected to co-evolve to meet particular structural/

functional requirements. Second, the clustering procedure is

expected to help in distinguishing the real correlations from the

background noise. The choice of clustering technique may also

depend on the adopted CMA. When an asymmetric metric

like the statistical coupling analysis (SCA) introduced by

Ranganathan and coworkers (Lockless and Ranganathan,

1999) is used in step 2, a hierarchical clustering is conveniently

applied (Chen et al., 2006; Hatley et al., 2003; Shulman et al.,

2004; Süel et al., 2003). For symmetric metrics such as Pearson

correlation coefficient and MI, on the other hand, a common

procedure is to perform a principal component analysis (Wold

et al., 1987; Fleishman et al., 2001).

We adopt the MI content as a measure of the correlation

between residue substitutions (Atchley et al., 2000; Clarke,

1995; Hoffman et al., 2003; Martin et al., 2005). Accordingly,

each of the N columns in the MSA generated for a protein

of N residues is considered as a discrete random variable

Xi (1� i�N) that takes on one of the 20 amino-acid types

with some probability. The MI (Cover and Thomas, 1991)

associated with the random variables Xi and Xj corresponding

to the ith and jth columns is defined as

IðXi,XjÞ ¼
X

allxi

X

all xj

PðXi ¼ xi,Xj ¼ xjÞ log
PðXi ¼ xi,Xj ¼ xjÞ

PðXi ¼ xiÞPðXj ¼ xjÞ

ð1Þ

Here P(Xi¼ xi, Xj¼ xj) is the joint probability of occurrence

of amino-acid types xi and xj at the ith and jth positions,

respectively, P(Xi¼ xi) and P(Xj¼ xj) are the corresponding

singlet probabilities. I(Xi, Xj) is the ijth element of the N�N

MI matrix I corresponding to the examined MSA.

In the present study, we introduce the use of spectral

partitioning methods for efficient analysis of the MI matrices

derived for HIV-1 protease sequences retrieved from the

Stanford HIV Drug Resistance database (DB) (http://hivdb.

stanford.edu; Rhee et al., 2003) (Table 1). This DB includes

sequences obtained from isolates along with information on the

type of PIs given to the patients (accessible via the ‘Detailed

Treatment Queries’ interface of the DB). The goal is to examine

sequence co-variance and distinguish between correlations

of different origin. Spectral clustering was originally proposed

for partitioning the nodes in an undirected weighted graph

G¼ (V,E). The weight wij of each edge eij is defined as a

measure of similarity between nodes vi and vj. This weight

matrix W is replaced in our work by the MI matrix. Our

objective will be to partition all the nodes/residues into groups,

such that the similarity is high among the nodes within a group

and low across different groups. This goal will be achieved by

minimizing the normalized cut (Shi and Malik, 2000) between

groups (see Materials and Methods).

We show that the method successfully identifies the resi-

dues cooperatively involved in MDR, as well as the mutational

patterns arising from different drug treatments. The results

suggest that spectral partitioning of the covariance data can

help in detecting cooperative functional relations and discrimi-

nating to a certain degree between the covariance patterns

originating from functional constraints and those associated

with neutral/stochastic mutation events that occur early in the

evolution of the species/family.

2 METHODS

2.1 Mutual information

Mutual information [MI; Equation (1)] describes the mutual depen-

dence of the two random variables Xi, Xj, it can alternatively be

expressed as

IðXi,XjÞ ¼ SðXiÞ þ SðXjÞ � SðXi,XjÞ ¼ SðXiÞ � SðXijXjÞ ð2Þ

where

SðXiÞ ¼ �
X

allxi

PðXi ¼ xiÞ logPðXi ¼ xiÞ ð3Þ

is the entropy of Xi,

S XijXj

� �
¼ �

X

all xi

X

all xj

P Xi ¼ xi,Xj ¼ xj
� �

logP Xi ¼ xijXj ¼ xj
� �

ð4Þ

is the conditional entropy of Xi given Xj, S(Xi, Xj) is the joint entropy

of Xi and Xj. Equation (2) implies that MI is non-negative. The

non-negativity of MI permits us to use it in the similarity matrix for

spectral clustering.

2.2 Spectral graph partitioning

The normalized cut for two disjoint sets of nodes A and B is defined as

NcutðA,BÞ ¼
cutðA,BÞ

assocðA,VÞ
þ

cutðA,BÞ

assocðB,VÞ
: ð5Þ

where cut(A,B) is the total weight of edges connecting the nodes in

A and B,

cutðA,BÞ ¼
X

vi2A,vj2B

wij

Table 1. Summary of Data

Dataset Treatment Number of sequences

1 Treated 7758

2 Untreated 8761

3 IDV only 1112

4 IDV þ 2569

5 NFV only 885

6 NFV þ 2131

In the ‘Treatment’ column, ‘treated’ means at least one PI is used in the treatment.

‘IDV þ’ and ‘NFV þ’ means that at least one of the other PIs has been used

in combination with the one before the ‘þ’ sign. IDV and NFV are the respective

PI drugs indinavir and nelfinavir.
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and assoc(A,V) is the total weight of connections from A to all nodes

in the graph. Shi and Malik (2000) have derived an algorithm

to approximately solve the optimization problem of minimizing

Ncut(A,B). By adopting a solution for the discrete clustering problem

in a continuous space, the problem reduces to solving the generalized

eigenvalue problem

ðD�WÞy ¼ �Dy: ð6Þ

where W¼ {wij} is the matrix of the edge weights, also called similarity

or affinity matrix, D is the diagonal matrix with elements, di¼�j wij.

� and y are the generalized eigenvalues and eigenvectors of W,

respectively. The difference D�W, also called the Laplacian matrix,

is symmetric and positive semi-definite (Chung, 1997). In order to

partition a graph of N nodes into k clusters, we utilize the first k

eigenvectors y1, . . .,yk. For the particular case of bi-partitioning the

graph (i.e. k¼ 2), y2 becomes the only eigenvector used as a criterion,

since �1¼ 0. In our application, each column in the MSA corresponds

to a residue, which in turn is represented as a node in the graph. The MI

matrix I replaces W, and the graph (protein) is bi-partitioned based

on the elements of y2 (see below).

2.3 k-way clustering

We also performed k-way partitioning of the data using k¼ 3, 4 and 5.

Dataset 1 was chosen for these additional calculations, as the largest

dataset that contains data about viruses exposed to PIs. We used the

city block distance in k-means clustering. For each k we performed

ten runs, and reported the results for the one with the minimum point-

to-centroid distance sums.

2.4 Protein dynamics

The Gaussian Network Model (GNM) was applied according to the

standard protocol (Yang et al., 2006). We used a cutoff distance of

7.3 Å between C� atoms to define the Kirchhoff matrix of inter-residue

contacts. Details on the methodology may be found in our earlier work

(Bahar et al., 1997; Haliloglu et al., 1997) and recent reviews (Rader

et al., 2006).

3 RESULTS AND DISCUSSION

3.1 Spectral clustering of CMA results

To investigate the correlation between drug treatment and
mutational patterns, we compiled six datasets of sequences,

summarized in Table 1. We collected sequences of all subtypes

and aligned them against the consensus subtype B sequence

(Korber and Myers, 1992). Any sequence shorter than 99

residues was excluded, and all residues with ambiguity were

treated as gaps. A MI matrix was generated for each dataset

of HIV-1 protease sequences listed in Table 1.
The result for dataset 1 is illustrated in Figure 1. The plot

underneath represents the entropy profile, calculated using

Equation (3). Peaks are distinguished at positions such as 10,

20, 63 and 82, reflecting the high tendency of these residues to

undergo substitutions.
In order to extract more distinctive information, each MI

matrix was subjected to spectral graph bi-partitioning as

described above, and the elements were re-ordered (i.e. rows/

columns were shuffled) according to the rank of residues

indicated by the dominant eigenvector y2 (i.e. by sorting the

elements of y2 in descending order). Figure 2 displays the MI

maps as a function of the re-ordered residues for datasets

1 and 2. The exact labeling of residues following rank ordering

can be found in the Supplementary Materials. For visual

clarity, the top ranking (highest MI) pairs of amino acids (500

out of a total of 99� 99 pairs) are displayed. The bar plots refer

to the entropy at each site.
Comparison of panels A and B of Figure 2 reveals that

dataset 1 (panel A) contains two distinctive clusters of

correlated residues located at the upper right and lower left

portions of the map, while dataset 2 does not contain the

2nd cluster (at the upper right) (panel B). The identity of the

residues at these two extreme ends of the maps generated for

all datasets in Table 1 can be seen in Figure 3. Here we colored

in blue and red the first and last 12 residues rank ordered

after the spectral bi-partitioning of the MI matrix for

each dataset (labeled). Interestingly, all datasets, treated with

different regimens or untreated, exhibit similar patterns, with

the two groups of residues exhibiting most distinctive correla-

tion behavior clustered at similar sequence positions.

3.2 Examination of the two distinctive clusters

Given that the respective datasets 1 and 2 refer to treated and

untreated sequences, the cluster at the top right in Figure 2A,

which does not exist in panel B, is attributed to the substitu-

tions induced by drug treatment. We will refer to these

positions as drug resistance cluster (DRC) sites.
The 2nd cluster of residues, on the other hand, is interest-

ingly found to primarily contain positions reported to exhibit

sequence variability between different viral subtype isolates

(Gonzales et al., 2001). To verify this feature, we collected 5149

untreated non-B subtype sequences from the Stanford DB,

Fig. 1. MI map (A) and entropy profile (B) for sequences in Dataset 1.

The entries in the map are calculated using Equation (1) for the 7758

sequences compiled in Dataset 1 (Table 1). The MI varies in the range

05I(X, Y )50.25, as indicated by the gray scale on the right. Panel B

displays the entropy profile, with the peaks indicating those sites

exhibiting the largest variation among the members of this dataset.
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and calculated the variation frequency at each position with

respect to the consensus subtype B sequence (Fig. 4A). (More

detailed information on the variation for each individual non-B

subtype isolates can be found in Fig. 2 of Gonzales et al., 2001).

This suggests a phylogenetic origin for the observed covari-

ance, which can well be obtained simply based on few neutral

substitution events in the evolution of the HIV subtypes. These

residues do not necessarily possess important functional/

structural associations (Noivirt et al., 2005). We will refer to

this cluster of residues as the phylogenetic variation cluster

(PhVC).
It should be noted, however, that sequence variations

between subtypes are not necessarily functionally insignificant.

This is reflected for example by the fact that different subtypes

have different tendencies for acquisition of resistance mutations

(Kantor et al., 2005). Indeed, residues related to drug resistance

can be found in this cluster. Positions 20 and 36 exhibit

enhanced mutation rates in the presence of PIs (Wu et al., 2003,

Table 2; Hoffman et al., 2003, Fig. 1A). It is possible that the

evolution of HIV subtypes is partially related to the exposure

to natural or unnatural PIs. Residue Leu89 in the PhVC is

known, for example, as a minor drug-resistant residue (meaning

that a mutation at this position contributes to drug resistance

only in the presence of a major resistant mutation, whereas

a major resistant mutation reduces drug susceptibility by

itself; Shafer, 2002). Yet, overall, the members of the PhVC

are best characterized as those demonstrating sequence

variability between subtypes with no clear functional relation

between them.

In contrast to the PhVC, the DRCs identified for datasets 1,

3, 4 and 6 mostly contain drug-resistant mutations (Fig. 4B).

In particular, some residues belonging to these clusters

are associated with mutations involved in multi-drug cross-

resistance, such as Leu10, Met46, Ile54, Ala71, Val82, Ile84

and Leu90 (Hertogs et al., 2000; Kozal, 2004). In a previous

study (Ohtaka et al., 2003), Leu10, Met46, Ile54, Val82, Ile84

and Leu90 were shown to exert a cooperative effect in lowering

the affinity of multiple PIs. Leu10, although not causing

Fig. 2. MI maps with residues re-ordered according to spectral graph bi-clustering (A) Re-organized MI matrix for treated data (dataset 1). Two

distinctive types of correlated mutations can be seen at the lower left and upper right portions of the map. (B) Re-organized MI matrix for untreated

data (dataset 2). One of the previous clusters is observed (lower left), while the 2nd (top right) is non-existent. The latter is attributed to correlated

substitutions induced in the presence of inhibitors, while the former (upper right) refers to evolutionary changes observed between HIV-1 protease

subtypes. See Figure 3 for the identity of residues belonging to the two clusters, and the Supplementary Material for the identity of rank-ordered

residues for each dataset listed in Table 1. The bar plots refer to the sequence entropy associated with each position. Equivalent figures for the other

four datasets can be found in the Supplementary Material.

Fig. 3. Sequence position of two most distinctive clusters of residues. Results are reported for each of the six datasets listed in Table 1. The two

clusters include the two extreme subsets of 12 residues rank ordered according to the spectral bi-partitioning of the MI matrix computed for each

dataset. The DRC residues are colored blue, the residues belonging to the PhVC are colored red.
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resistance alone (it is a minor resistance residue), plays a critical

role in eliciting the cooperative response along with Leu90

(Ohtaka et al., 2003), consistent with the high correlation

detected here among these residues in the DRC. We also note

that some major mutation sites in the DRC are not active

in MDR; or say, they are specific to one PI, like Leu24

and Asp30 (Shafer, 2002). Still, their participation in the DRC

suggests that the resistance mechanism cooperatively involves

several residues.
The DRCs for datasets 2 and 5 contain a number of sites that

depart from those shared by other datasets (Fig. 3). For dataset

2, which contains untreated isolates only, this is clear, and

even the observed level of similarity to other datasets is striking.

For dataset 5, on the other hand, the result implies that NFV

elicits unique responses at specific sites, quite different from

that of most other drugs. We note in particular that Asp30

and Asn88 exhibit extraordinarily high MI. As shown before

(Rhee et al., 2003), the double mutation D30N and N88D can

reduce nelfinavir susceptibility by 50-fold, explaining the

selection pressure for their co-variation. When NFV is used

in combination with other PIs (dataset 6), the DRC sites shared

with other datasets are observed, indicating that the coopera-

tive effect is related to cross-resistance in this case. Most of

the residues of the DRC remain unchanged in the IDV set

(dataset 3), suggesting that the correlations revealed in our

analysis are not only due to individual resistance mutations

developed against different drugs, but reflect real cooperativity.

An exhaustive search for correlated mutations among drug-

resistant sites in HIV-1 isolates was performed by Wu et al.

(2003), which yielded small groups of correlated residues,

ranging in size from three to six residues. On the other hand,

the present study yields one large cluster providing evidence for

the high cooperativity of the residues belonging to these small

groups. We also note that the presently detected positions

47 and 48 in the flap region do not appear in the study by

Wu et al. as prominent drug resistance sites, but they are known

to be major resistant mutations. Wu et al. listed other residues,

e.g. Ile62, Leu63 and Ile93, together with known drug

resistance residues. We have not detected these residues in

our DRC, and neither do they appear in the Stanford PI DB

drug resistance notes as drug-induced mutations. Note that

our study is based on a larger dataset of isolates, and a major

merit of the present work is to identify the DRC sites without

prior knowledge of drug-resistant mutation sites, while the

study of Wu et al. analyzes the mutations at 45 (out of 99)

positions that have been significantly associated with protease

inhibitor treatment.
Hoffman et al. 2003 analyzed the correlations between

31 positions in HIV-1 protease, which showed the highest

variability in their dataset of HIV-1 isolates (from 648

untreated, and 531 treated persons). These were grouped in

three clusters based on the comparison of mutation rates

between treated and untreated datasets. This criterion is

different from the one (based on MI data) adopted in our

study, but it is still tempting to compare the two sets of results.

Those residues in Class III therein are similar to those in

our DRC, while Class I resembles our phylogenetic cluster

PhVC. Notably, residues Lys20, Met36 which are part of our

phylogenetic cluster appear in cluster II and cluster III,

respectively. These residues exhibit substantial sequence varia-

bility between subtypes, and appear to be relevant to drug

resistance, but apparently not in a cooperative manner with

other residues.

3.3 k-way clustering using more eigenvectors

The results from k-way clustering of dataset 1 using k¼ 3, 4

and 5 are presented in Table 2. The most correlated residues

identified above take part in the same clusters, consistent with

results from bi-partitioning. Notably, Asp30 and Asn88, which

originally belonged to the DRC, exhibited a tendency to form

a separate cluster together with Val75. This triplet (Asp30,

Asn88, Val75) was also reported to form a cluster in previous

work (Wu et al., 2003). It has long been known that

Fig. 4. Comparison with experimental data. (A) Sequence variation

profile compiled from experimental data for the non-B subtype HIV

(from Stanford DB). Note the correspondence between peaks (most

variable sites) and the phylogenetic variation sites (red in the alignment)

identified in the present study. (B) Comparison with drug resistance

profile (based on data in Stanford DB http://hivdb.stanford.edu/cgi-

bin/PIResiNote.cgi). Dark blue lines refer to residues that exhibit major

drug resistance; light blue, to minor drug resistance sites.

Table 2. Results from k-way clustering

k Cluster

3 C1: 30, 75, 88

C2: 1– 9, 12–15, 17, 19, 20, 22, 25, 26, 28, 31, 35–42, 45, 49, 52,

56, 57, 59, 61, 65, 68–70, 77, 83, 87, 89, 96–99

4 C1: 1, 2, 9, 26, 30, 40, 45, 56, 59, 75, 81, 88, 98

C2: 13–15, 20, 35–38, 41, 42, 49, 57, 69, 70, 77, 83, 89

C3: 10, 23, 24, 27, 32–34, 43, 46–48, 50, 53–55, 58, 71, 76, 80, 82

5 C1: 30, 75, 88

C2: 1, 2, 9, 26, 40, 45, 59, 87, 98

C3: 13–15, 20, 35–38, 41, 49, 57, 69, 70, 77, 83, 89

C4: 10, 23, 24, 27, 32–34, 42, 43, 46–48, 50, 53–55, 58, 71,76, 80, 82

For clarity, the largest cluster that includes all the remaining residues in each case,

is not shown.
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co-substitutions at Asp30 and Asn88 are most effective in

reducing the susceptibility of nelfinavir; however, little atten-

tion has been given to date to their possible association with

Val75. As indicated in Figure 5, the high correlation of Val75

with Asp30 and Asn88 (Fig. 5A), consistent with their struc-

tural proximity (Fig. 5B), may originate from a cooperative

mechanism for drug resistance between these three sites.

3.4 Interpretation with respect to protein dynamics

The examination of HIV-1 protease 3D-structure reveals that

the residues participating in the DRC tend to occupy the flap

region (Met46, Ile47, Ile54), the close neighborhood of the

active site (Asp30, Val32, Val82, Ile84), and the dimerization

interface (Leu10, Leu90). Most of PhVC residues, on the other

hand, are located away from the interface, toward the exterior

of the protein (Fig. 6A). Interestingly, both groups of residues
assume regular secondary structures (helices or strands),

although their relative positions with respect to the interfacial

region differs.
We also examined the distance separation between the closest

atoms of residue pairs belonging to the two clusters. Table S2

in the Supplementary Material lists the distances between top-

ranking residue pairs in the two clusters (corresponding to the

lower left and upper right of the MI map in Fig. 2A). For each

pair two values have been considered: intra-molecular (mono-

mers A–A or B–B contacts) or intermolecular (A–B contacts).
The distances between the closest atoms for each case are

listed. These data clearly demonstrate that the correlated

pairs essentially refer to intra-molecular interactions, rather

than inter-molecular. Note that the MI method cannot detect

the correlations between the fully conserved residues at the

interface between the monomers (e.g. P1-F99 and D29-R8).
A further comparison between the results from CMA and

the mobilities of residues predicted by the GNM (Bahar et al.,

1997) elucidates the close correspondence between the global

dynamics of the enzyme and its function. The lowest frequency
GNM mode usually defines the global dynamics of the enzyme

accessible under native state conditions, and such cooperative

motions intrinsically favored by the structure have been

shown to relate to enzymatic function (Yang and Bahar,

2005). In particular, the global hinge regions (minima in the

mobility profiles driven by global modes) play a critical role

in conferring the mechanical properties of enzymes that
complement their chemical (catalytic) activities.

Fig. 6. Comparison of results from CMA and GNM dynamics. (A) The location of the two clusters identified for dataset 1 on the 3D-structure

of HIV-1 protease. The DRC is colored blue, and the PVC is colored red. We displayed the residues that have appeared at least three times (out of

six examined datasets) in the same cluster in Figure 3. (B) Ribbon diagram color-coded after the mobilities of residues in the first slow mode

predicted by the GNM. The residue mobility increases from blue to red. (C) GNM slow-mode profile as a function of residue index. Note that

calculations are performed for the dimer, but results are shown for a monomer, the curves for the two monomers being identical. The HIV-1 protease

mutant bound with IDV (PDB id: 2B7Z) was used. Ribbon diagrams were made with PyMOL (http://www.pymol.org).

Fig. 5. (A) The MI profile of Val75 with other residues in the treated

dataset (dataset1). (B) The structural vicinity of Asp30, Asn88 and

Val75. The figure was made with PyMOL (http://www.pymol.org).
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In order to examine the dynamics of residues belonging to

the DRCs and PhVCs, we performed GNM calculation for

an HIV-1 protease mutant bound to IDV (PDB file 2B7Z).

This structure contains 10 mutations, most of which belong

to the DRC presently identified for the IDV-treated dataset.

The color-coded ribbon diagram in panel B of Figure 6,

and the slow-mode profile in panel C, display the mobilities

in the lowest frequency mode predicted by the GNM for this

structure. Comparison of panels A and B shows that the

DRC residues tend to occupy positions that are highly con-

strained in the global mode, whereas PhVC residues are located

at relatively flexible positions. These distinctive dynamics of

the two groups of residues explains the fact that the PhVCs

are accommodated without altering the structure and func-

tion; whereas mutations at the DRC sites that are more

buried and spatially constrained have functional consequences.

Calculations repeated for the substrate-bound complex (PDB

id: 2FNS) confirmed that the slow-mode profile is insensitive

to structural asymmetry and yielded the almost identi-

cal profiles for the two subunits, while the 2nd mode exhib-

ited a stronger dependence on structural asymmetry (see

Supplementary Material).
Finally, we compare the global mobility profile (panel C)

with the sequence position of the two clusters (Fig. 3)

reproduced in Figure 6 to ease the visual comparison. The

residues in the DRC are seen to usually lie close to global hinge

regions (minima), while those in the PhVC are distributed in

high mobility regions. Calculations were repeated for the 2nd

and 3rd GNM modes as well. Comparison of the minima and

maxima in these modes with the PhVC (red) and DRC (blue)

sites along the sequence shows that PhVC modes exhibit

relatively high mobilities in modes 2 and/or 3 as well, whereas

the confinement of DRC residues to hinge sites is characteristic

of the first (global) mode. The DRC residues located at the

flap region (residues 46–54) show a high mobility in modes 2

and 3. See the Supplementary Material for the counterpart of

Figure 6C for these two modes. Co-localization of MDR sites

with global hinge regions thus emerges as an effective means

of impacting the cooperative dynamics, and hence the function

of the enzyme (Bahar et al., 1998) and on the catalysis.

4 CONCLUSION

In the present study, we analyzed the covariance patterns in

HIV-1 protease sequences using a simple metric, MI, followed

by spectral clustering. The approach proved to discriminate

between two groups of correlated mutation sites, shortly

referred to as DRC and PhVC. Mutations in the DRC tend

to confer MDR while those in the PhVC seem to differentiate

between different HIV-1 protease subtypes. We have further

explored the biophysical basis of the observed differences

between the two clusters of correlated sites. The two clusters

were found to significantly differ with regard to their role in

the intrinsic structural dynamics of the enzyme. The DRC sites

select key mechanical regions, near the global hinges that

control the most cooperative motions of the enzyme; PhVC

residues, on the other hand, preferentially occupy flexible

regions that can easily accommodate residue substitutions.

Covariance analysis of related protein sequences is known

to be problematic in many aspects (Fodor and Aldrich, 2004;

Halperin et al., 2006). Many options exist to improve the basic

method presented here. For example, MI treats all substitutions

of amino acids equally, ignoring physicochemical preferences.

In the future, it may be worth considering different essential

covariance measures for further analysis. Methods for assigning

significant scores using the original MI scores and shuffling

of the original data (Hoffman et al., 2003; Shackelford and

Karplus, 2007) can also help in obtaining more meaningful

results.

One major goal here was, however, to draw attention to the

utility of clustering the covariance data. We utilized a relatively

less detailed, but objective and theoretically robust approach.

Significantly, this approach allowed us to separate the sequence

covariance arising from functional pressures (e.g. MDR) from

those evolutionarily selected within the examined phylogeny.

Both groups of correlations exhibit strong signals when

covariance properties are quantified in terms of MI. Yet, the

distinctive character of the two groups, confirmed by experi-

ments (Fig. 4), and rationalized by comparison with struc-

tural dynamics (Fig. 6), supports the utility of adopting a

spectral bi-clustering method for efficiently discriminating

between potential correlations of fundamentally different

nature/origin. It will be of interest to further explore the

utility of spectral bi-clustering for differentiating between

correlated mutations that reflect ‘real’ inter-residue inter-

actions and those reflecting other evolutionary signals, often

considered as noise for most analyses purposes (Noivirt et al.,

2005).

Notably, some of the sites for potential MDR, indistinguish-

able in the untreated sequences (Fig. 2B), can be detected upon

rank ordering the residues via spectral clustering of MI data;

furthermore, treated sequences subjected to different regimens

share common DRC residues (Fig. 3). These two observations

invite attention to the intrinsic tendency of the enzyme to

potentially select those effective sites to develop mutations that

confer MDR, irrespective of treatment.
A challenging, yet important task, which is a natural conti-

nuation to this work, is to detect correlations between protease

residues and residues of other mature/pre-mature proteins of

HIV-1. A recent work demonstrates how such correlations

can be detected between a protease mutation (V82A) and a

mutation at the nucleocapsid-p1 cleavage site (Prabu-Jeyabalan

et al., 2004). It remains to be seen if current methodology can

be extended to investigating the relation between the protease

and other cleavage sites as well as the correlations with other

regions in HIV-1 pre-proteins, toward shedding more light on

the late stages of the virus maturation.
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