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ABSTRACT

It is acknowledged that the presence of positive or negative circuits
in regulatory networks such as genetic networks is linked to the
emergence of significant dynamical properties such as multistability
(involved in differentiation) and periodic oscillations (involved in
homeostasis). Rules proposed by the biologist R. Thomas assert
that these circuits are necessary for such dynamical properties.
These rules have been studied by several authors. Their obvious
interest is that they relate the rather simple information contained
in the structure of the network (signed circuits) to its much more
complex dynamical behaviour. We prove in this article a non-
trivial converse of these rules, namely that certain positive or
negative circuits in a regulatory graph are actually sufficient for
the observation of a restricted form of the corresponding dynamical
property, differentiation or homeostasis. More precisely, the crucial
property that we require is that the circuit be globally minimal. We then
apply these results to the vertebrate immune system, and show that
the 2 minimal functional positive circuits of the model indeed behave
as modules which combine to explain the presence of the 3 stable
states corresponding to the ThO, Thl and Th2 cells.
Contact: ruet@iml.univ-mrs.fr

1 INTRODUCTION

The activity of a biological cell is to a large extent contedl by
genetic regulation, an interactive process usually remtes by
graphs called genetic regulatory networks: in these gramtices
denote genes or regulatory products (e.g., RNA, proteim)edges
denote regulatory interactions between these genes opttoeiucts
[5, 23, 28]. These regulatory interactions are furtheraleéd and
signed @1 or —1) to denote activatory versus inhibitory effects.
In order to relate regulatory networks to relevant dynainica

properties, biologists often use them as a basis to generatg

dynamical models, using either a differential framework aor
discrete framework [5]. The biological pertinence of thedwsio
considered is then evaluated by comparing humerical stionks
with experimental observations, for instance biochentbakacter-
izations of cellular states, phenotypes of genetic mutants

Since the computational complexity of these simulationsns
general, exponentially increasing with the size of the woekw
some mathematical properties could fruitfully help in ¢ohiing
the space of necessary simulations. In the early 1980'4ditthegist
R. Thomas proposed two simple rules relating the structdire o
regulatory networks to their dynamical properties [30]:

1. a necessary condition for multistability (i. e., the ¢aige of
several stable fixed points in the dynamics) is the existefice
a positive circuit in the regulatory network (the sign of ecait
being defined as the product of the signs of its edges);

. a necessary condition for the existence of an attracyiete én
the dynamics is the existence of a negative circuit.

These two types of dynamical properties correspond to itapor
biological phenomena: cell differentiation processebafirst case,
homeostasis such as stable periodic behaviours (e.g.,cyd
or circadian rhythms) in the second case. Several authors ha
proposed demonstrations of these rules in a differentahéwork
[15, 25, 8, 26], and more recently in a discrete framework
[3, 20, 17], in which the expression levels of genes are diszd
and modelled as elements of a finite set suc{@d}. Discrete
approaches are indeed increasingly used in biology [9, 28, 22]
because of the qualitative nature of most experimental tzgather
with a wide occurrence of non-linear regulatory relatiopsh In
[20] in particular, the dynamics of a systemrmofenes is represented
by a mapf : {0,1}" — {0,1}", and a signed directed graph
G(f)(z) is associated to each state of the sysiesn {0, 1}". This
graph corresponds to a local notion of regulatory graphri{d26]
for instance), and is mathematically defined by means ofidwete
Jacobian matrix/ (f)(z) [21]. The required definitions are recalled
in Section 2.

While these results provide graphic conditions which are
necessary to observe some dynamical properties, they dgiveot
sufficient conditions at all, while biologists often ackredge
certain positive or negative circuits as responsible fomeo
dynamical behaviour [29, 31]. In the very specific case ofrdite
isolated circuits however, i. e., when the regulatory gréfif)(x)
does not depend on the statand consists in a circuit, [16] provide
an extensive analysis of the dynamics, recalled in Section 3
In the present paper, we show that the presence of certaitivpos
r negative circuits in a local grapt¥(f)(x) suffices for the
observation of the corresponding dynamical property (istalbility
or a restricted version of homeostasis). More preciseby,ctlucial
property thatC' has to meet is to bglobally minimal i. e., minimal
as a circuit in the global graplé(f) Uzegoyn G()(@)
obtained by taking the union of all local graphs. In Sectiowe!
define a restricted form of fixed points and attractive cyfdegach
set] of genes, and we show thatdf is a globally minimal positive
(resp. negative) circuit with vertex sgk1, ..., k, }, then a suitably
defined restriction off to {k1, ..., kp} has two fixed points (resp.
an attractive cycle). These results provide:

© Oxford University Press 2008.
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e a non-trivial converse to Thomas’
framework,

e a natural approach to the question of modularity of regnjato

networks, namely: given pieces of a network for which the
dynamics is known, how do they combine to produce a global

(more complex) behaviour? Our results on the effect of $jpeci
functional circuits in a network gives insights into thiadi of
research.

In Section 5, we present a biological illustration of our eggeh:
the Th-lymphocyte differentiation in the vertebrate imrawystem,
and we apply the results of Section 4. The analysis of glgball
minimal circuits enables to recover the presence of the Blesta
states, which correspond to the ThO (naive), Th1l and Th2.cell

2 BOOLEAN DYNAMICS AND DISCRETE
JACOBIAN MATRICES

2.1 Notations

Let us start with preliminary notations. Fére {0, 1}, we define3
by0 = 1 and1 = 0. Letn be a positive integer. Far € {0,1}"
andI C {1,...,n},Z" € {0,1}" is defined by:

Zi
T;
WhenI = {i} is a singletonz!"} is denoted byz'. The distance
d:{0,1}" x {0,1}" — {0,1,...,n} is the Hamming distance:
d(z,y) is the number of € {1,...,n} such thate; # y;. Suppose
0 < k < n, and[ is ak-element subset of1,...,n}. Then each

z € {0,1}" generates an affink-dimensional subspace[I] of
{0,1}™ = F% defined by:

fori ¢ I,
forieI.

z[I] = {y € {0,1}" such thay; = z; forall j & I'}.

2.2 Dynamics

In the context of genetic regulatory networks, we are irstee
in the evolution of the system consisting nfgenes, which are
denoted by the integeis . . ., n. We considef0, 1}" as the set of
statesof this dynamical system. Given a state= (z1,...,zn) €
{0,1}", z,; denotes the (discretized) expression level of géne
These expression levels are eitlte{when the gene product is
considered absent or inactive) lofwhen the gene product is present
and active).

In discrete models, a dynamics is a binary relati®nvhich we
assume to be irreflexiver gives the rule for updating a state, i. e., it
is the set of pairs of stat¢s, y) such that state can lead to statg.

In particular, sstable statés a stater such that for ngy, (z,y) € R.

In the context considered in this paper (genetic netwoikis)not
realistic to assume a simultaneous update of all varialhheked,
the Boolean dynamical systems we are interested in can beasee
discretizations of piecewise-linear differential syssdiy 30, 5, 27],
and for these systems, the set of trajectories meeting rharedne
threshold hyperplane at a time has meagsur&/e shall therefore
considerasynchronous dynamicse., relationsk such that:

(z,y) € Rimpliesd(z,y) = 1,

rules in the discrete

T i Y,
A~
(0,0) —> (1,0)
(a) (b)

Fig. 1. (a) Asynchronous dynamics: the states of a system consisting in
two variablesl (horizontal axis) and (vertical axis) are pictured; an arrow
from statex to statexz’ means thatf;(z) # ;. (b) The regulatory graph
G(f)(z), which turns out not to depend an Edges represent activations
or inhibitions and are respectively denoted by arrewsnd T-end notation

-, which are more standard in biological literature th+alr; )

i.e., y = % for somes. Clearly, the asynchronous dynamics
encompasses, among many others, the realistic trajestoaied

a more refined analysis would take into account, e.g., dedags
probabilistic issues. Such an asynchronous dynaRicgy be non-
deterministic (it needs not be a function), but even thae gbssible
and convenient to represent it by a méap{0, 1}" — {0, 1}" with
coordinate functiong, . .., f», defined by:

fi(z) # x; when(z,Z") € R. (1)

Observe that a stable state is then a fixed peiftr [ (f(z) = z).
More generally, iff C {1,...,n}, anI-fixed pointis anz such that
fi(x) = z; foralli € I,i.e., the coordinates ihare fixed undeyf.

Given such a mayf, the corresponding asynchronous dynamics
is defined in a straightforward way, and for eacke {0,1}" and
i =1,...,n, fi(x) denotes the value to whicty, the expression
level of genei, tends when the system is in state

For instance, the asynchronous dynamics correspondinbeto t
map f : {0,1}> — {0,1}? defined by f(x) (T2, 71) Is
illustrated in Figure 1.

A trajectoryin the dynamics is a sequence of states . .., z")
such that foreach=1,...,r — 1, (z*,2"t') € R, and acycleis
a trajectory of the form{z',...,z", ') with » > 2. We shall be
especially interested in a specific class of cycles whichesmpond
to periodic oscillations: a cycléz!,...,z",2") is said to be
attractivewhen no trajectory may leave it, i.e., foral=1,... r,
d(z*, f(z%)) = 1. More generally, ifl C {1,...,n}, a cycle
(x',...,z" 2') is said to be-attractivewhen for alli = 1, ..., r,
by considering indices modula

e the only coordinates(4) such that:'*! = 77V belongs tal,

o the setJ such thatf(z') = 2"~ ¥ = 7717 is disjoint

fromI.

Figure 2 shows an example of dynamics with two attractivéesyc
((0,0), (1,0), (0,0)) and((0,1), (1, 1), (0,1)).

We shall see examples dfattractive cycles in Section 5.




(0,1) =—> (1,1) Q Q

1 2
(0,0) =—> (1,0)

Fig. 2. A dynamics with no fixed point but a positive loop in the (c@m}
regulatory graph. The notation is the same as in Figure 1.

2.3 Discrete Jacobian matrices and signed directed
graphs

Given f : {0,1}" — {0,1}", we attach to eack € {0,1}" its

discrete Jacobian matriX(f)(x) as defined in [21]J( f)(z) is the

n X m matrix with (¢, 7)-entry

Lt fu(@) # fi(w),
J i = .
(D@ {0 otherwise
A signed directed grapis a directed graph with a sigr;1 or —1,
attached to each edge. Givgn: {0,1}" — {0,1}" andz €
{0,1}", define
G(f)(x)

to be the signed directed graph with vertex§kt. . ., n} and with
an edge frony to s whenJ(f)(x):,; = 1, with positive sign when

zj = fi(z),

and negative sign otherwise.signed edgef a signed grapl- is a
triple (¢, 7, €) such that has an edge with signfrom to j. Such
a triple will be denoted by = ;.

A circuit in a signed grapldz is a non-empty sequence

€p—1
by Skp 22,075

kp 2 ky
of signed edges afi. Thesign of a circuitC' is the product of the
signs of its edges.

For instance, in the example of Figure 1 correspondinf(to =

to the local interaction graphs considered in [26] for ins&
Consequently, in our discrete framework, a regulatoryraggon
and its sign may depend on the context, i.e., on the stateeof th
system, in particular on the values of co-regulators actinghe
same target. By taking unions of graphs on statese lose some
details on the regulatory network and recover more globtibns,
closer to the objects usually manipulated by biologistsGlef) =
Uxe{o’l}n G(f)(x) be the graph with a positive (resp. negative)
edge fromj to ¢ when there exists € {0, 1}" such thaiG(f)(z)
contains a positive (resp. negative) edge frpta i. Note thatG( f)
may have both a positive and a negative edge between two given
vertices.

This discussion motivates the following definition of the
functionality context of a signed edgeintuitively the set of states
at whiche is effective, or functional [18]. The functionality contex
of a circuit is then a notion of particular significance (asshall see
in Section 4). Itis defined in the obvious way as follows.

DEFINITION 1 (Functionality context).Let f : {0,1}" —
{0,1}", 4,5 € {1,...,n}, e € {+1,-1}, and lete = (3,7,¢).
Thefunctionality contex®( f)(e) of e is the set ok € {0,1}" such
that G(f)(z) has an edge fromto j with signe. If C is a circuit,
then®(f)(C) = (N ®(f)(e) wheree runs over signed edges 6f.
A circuit C'is said to befunctionalwhen®(f)(C) # 2.

Clearly,z € ®(f)(C) ifand only if C' is a circuit of G(f)(x).

2.5 Globally minimal circuits

We shall be interested in a specific kind of circuits in retuia
graphs, namely circuit§’ occurring in someG(f)(z), with the
additional property that the global gragh(f) has no other edge
between vertices af’ than the edges af itself.

DEFINITION 2 (Minimal circuit). LetT" be a directed graph. The
set of circuits ofl" is (partially) ordered as follows: i, C5 are
circuits with vertex setX;, X» respectively, the; < C- if and
only if X1 € X5. A circuit C is then said to beninimal when it is
minimal for this order.

DEFINITION 3 (Globally minimal circuit). Let f : {0,1}" —
{0,1}™ andz € {0,1}" such thatG(f)(z) contains a circuitC.

(z2,71), it is easy to check that the Jacobian matrix associated tdVe shall say thaf’ is globally minimalif it is minimal as a circuit

any stater is therefore given by:

r2+72\ _ (0 1
z1+71) \1 0/’

where the sum here is the sum{e¥, 1} identified with the fieldF,.

ﬂ@:(@+@

1+ T1

Therefore, the grapti(z) at any state consists in a circuit between

1 and2, hence &1, 2}-circuit. Sincezx1 # fa(x) andz2 # fi(x),
the two edges are negative and the circuit is:

-1 -1

1—>2—> 1, orsimply 1 —2—1,

with T-end notation for inhibitions, and is positive.

2.4 Functionality
The signed directed grapli(f)(z) attached to each state

encompasses a subset of the regulatory interactions foond i
the complete regulatory network. These graphs are anatogou

inG(f).

3 ISOLATED CIRCUITS

We reformulate the following result proved in [16]. Accandito
the definition of the asynchronous dynamics, see (1), thssltre
determines the dynamics of an isolated circuit, i.e., alsgry
graph constantly equal to a circuit.

THEOREM 1. If f : {0,1}" — {0,1}" is such that for any
xz € {0,1}", G(f)(x) equals the circuit

then for anyz € {0,1}", fi(z) # z; if and only if

Tio1 7 Ti
Ti—1 = T;

When&’i_l =41,
whene;_; = —1,
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if and only if (—1)*i-17% £ ¢,_;, where indices are considered
modulon (i.e.,n + 1 = 1) and the sum in the last inequality is the
sum of the fieldF,.

4 GLOBALLY MINIMAL CIRCUITS

Let us start with some notations. #f = z[I] is a face of{0, 1}",
letm, : {0,1}" — & be the projection onto the affine subspace
(identified with {0, 1}1), i.e., 7. (y): = y; for anyi € I, and let
0w : k& — {0,1}" be inclusion map of into {0,1}", i.e.,
( ) Yi ifiel,
Ok i = .
Y x; otherwise.
It is immediate that the definition of,, does not depend on the
choice ofz such thakc = z[I], and thatr,. o o is the identity. The
folllowing Lemma, an equivalent simpler reformulation ofrbma

7" € ®(f)(C). Sincey € O(f)(C), G(f)(y) has a signed edge
(kj, kjt1,e5) foreachj € {1,...,p},i.e.

fkj+1 (y) 75 fkj+1 (yk])

and

g = (71)ykj+fkj+1 (y)7

where indices are considered modylo Now, if j = 4, itis
straightforward that the signed edgie, k;+1,¢;) is in G(f)(7*)
too; for the sign, simply observe that:

(gkj )kj + fkj+1 (gk]) = % + fkj+1 (y) = Y, + fkj+1 (y)-

On the other hand, if # i, since the circuit is globally minimal,
G(f) has no signed edge froi to k;+1, and in particular:

fkj+1(yki) = fkj+1(y) (2

1 in [17], is a commutation property between the Jacobian and

projection (or restriction).

LEMMA 1. If f: {0,1}" — {0,1}", k = z[I] is a face of
{0,1}™ andy € &, then:
G(me o foa)(y) =G o)l

Proof— Leti,j € I andy € . Sincei,j € I,
(w0 f000); () = fi(on@)) = fi (7x(0) ) -
Similarly, (7« o f 0 0);(y) = fj(0x(y)). Therefore,

(m 0 fo0n);i(F') # (muo foow)i(y)

if and only if

5 (0:@)") # Fi(on()).
ox(y))s, and:

Yi + (e o fook);(y) = (0x(y))i + filox(y)).

Moreover, since € I, y; = (

Consequently, signed edges ii(m. o f o ox)(y) and
G(f)(ox(y))]; are the same. 0

Then we show that the presence of a globally minimal cir€uit
has some important consequences on the dynamics restodieel
coordinates involved ii@'. Essentially, it enables to considéras
an isolated circuit.

THEOREM 2. Let f : {0,1}" — {0,1}", = € {0,1}", and
suppose that(f)(x) contains a circuit

C=hk1 B2 k3. 5 gy, By
which is globally minimal. Letx = =z[{k1,...,kp}]. Then

®(f)(C) O k and the dynamics of. o f o o : kK — K iS given by
Theorem 1.

Proof — Let us first prove tha®(f)(C) O k. To this end, let
us considey € ®(f)(C) ands € {1,...,p} and let us show that

and
—kiki\ _ —k;
fkj+1(y ])_fkj+1(y J)7
therefore:

fkj+1 (ykl) 7’é fkj+1 (ykwkj)

andG(f)(7"*) has an edge frork; to k;+1. Moreover, by (2) and
1 # j, we have:

(gkl)kj + frjqa (ykl) = Yk; + frya (),

and the sign of this edge &s. This holds for anyj € {1,...,p},
and as a consequengg; € ®(f)(C) wheny € &(f)(C) andi €
{1,...,p}. Sincey € k N ®(f)(C), it follows that®(f)(C) 2 «.

Let us now prove that the dynamicsof o f o o, satisfies this
hypothesis of Theorem 1, i. e., that for ap¥ «, G(m.o foow)(y)
equals the circuitC. By Lemma 1, it suffices to observe that
G(mx o f o ok)(y) is the restriction ofG(f)(o.(y)) to vertices
in I, and by the previous discussion, this coincides withy.e.d.O

We are now in position to combine Theorem 1 and Theorem 2 and

delineate the dynamical properties implied by a globallyimal
circuit.

THEOREM 3. Under the hypotheses of Theorem 2,dfis
positive, thenf has two{ki,..., ky}-fixed points; and ifC is
negative, therf has a{ki, ..., kp }-attractive cycle.

Proof— If C'is positive, by Theorem 1 and Theoremi2,0 f ooy
has two fixed point$®(0) and P(1) defined by:

P(0)x, =0,
P(1), =1,
P(Oc)ki;ép(oc)ki+1<:>5i=—1, a=0,11=1,...,p—1.

Of course, P(0) and P(1) are fixed points off because, by the
positivity of C, P(a)r, # P(a)g, if and only if g,
Therefore, for eacly = 0,1, o.(P(«)) and f(o.(P(c))) have
the same projection undet.. Hence,o. (P(0)) ando,(P(1)) are
{k1, ..., kp}-fixed points.




Fig. 3. (a) A perturbation of the dynamics of Figure 1. (b) The retpria
graph.

Fig. 4. (a) An example of dynamics with a globally minimal circuibdp
on 2), two 2-fixed points, but a single global fixed point. (b) The regofat
graph.

Q)

/_N
STAT1 ——> TBet GATA3 «—— STAT6

]

IFNYR IFNy IL4 —> IL4R

STAT4 < IL12R

SOCs1 IL12

Fig. 5. Regulatory graph of the network controlling Th lymphocyte
differentiation. The nodes represent transcription raguy factors (Tbet,
GATA3), signaling transduction factors (STAT1, STAT4, 9B\ SOCS1),
lymphokines (IFNy, IL4, IL12) and receptors (IFNR, IL4R, IL12R).
Remark that IL12 acts as an input of the system.

5 APPLICATION

If C is negative, by Theorem 1 and Theorem 2, itis easy to checkyve present here a biological illustration and then applyréseilts

thatr,. o f o o, has an attractive cycle

1yonkp

P(0),P(0)*, P(0)"",..., P(0) = P(1),
%k17ﬁkl,k27 o 7mk1,m,kl, —~ P(0).
Hence the image
o (P(0)), 0 (PO)) ...
of this cycle under . is a{k, ..., k, }-attractive cycle off. O

The global minimality hypothesis in Theorems 2 and 3 cannot

be simply avoided. For instance, the dynamics correspgntin
the mapf : {0,1}* — {0,1}? defined byf(z) = (Zz,71)
gives rise to a globally minimal positive circuit and inde®as two
fixed points(0, 1) and (1,0) (Figure 1), whereas the perturbated
dynamics corresponding t@(z) = (T1z2,71) has a single fixed
point (1,0): the {1, 2}-circuit is no more globally minimal, it is
perturbated by the negative loop bifFigure 3).

It is not true either that the localised dynamics predictgd b
the above results leads necessarily to the correspondiviogigl
behaviour. In particular, the presence of a globally midipusitive
circuit does not imply the existence of disjoint stable @a#tes
in general. This can be seen by considering the rhap) =
(1, z1 Va2). The positive circuit consisting in a loop @ris globally
minimal and its functionality context is given by, = 0. The
dynamics, which is given in Figure 4, has tiidixed points(0, 0)
and(0, 1), but the only global fixed point of is (1, 1): the positive
loop on2 acts as a “partial separator” between the subspagces 0

proved in the previous Section.

We consider the network involved in the control of the Th-
lymphocyte differentiation. The vertebrate immune systemtains
various cell populations. Among B and T lymphocytes, CD4+
T helper lymphocytes can further differentiate into T-feeldl
(Thl) or Th2 cells, which respectively enable cell mediated
immunity and humoral responses. Thl and Th2 cells can be
distinguished according to their pattern of cytokine seécne
Immune responses biased towards the Thl phenotype result in
autoimmune diseases, while enhanced Th2 responses ogigina
allergic reactions [1, 13]. Various mathematical modelgehlaeen
proposed for the differentiation, activation and prokfieon of Th-
lymphocytes. Many of them were focusing on interactionsvieen
immunological cell populations at a macroscopic level [3, 34].
Other model analyses aim at understanding the mechanistreof t
generation of antibody and T-cell receptorsdiversity, adl\as
the dynamical properties of the large networks defined by the
interactions between cytokines [10] or between immunagiab
(see, e.g., [32]). We consider here a very simplified Boolean
modelling of this Th-lymphocyte differentiation alreadyepented
in [18], which involves 12 regulatory components (Figure@Gdher
regulatory graphs using the same discrete modelling (Boots
multivalued) have been proposed [12, 14].

It has been shown [11] that the system can reach the threle stab
states given in Table 1. The first stable statecorresponds to the
virgin Th cells (ThO), whereas the second and third osnesss
correspond respectively to Th2 and Th1l differentiated lyogytes.

andz» — 1. A natural question is therefore to understand more3-1 Functional circuits

precisely under which conditions these modules combineddyze
global separators and global differentiation.

The regulatory graph represented in Figure 5 contains 1&lits
Only 4 of them are functional, in the sense of Definition 1. Argo
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- x x o2 g .2 We can do the same type of analysis for the ciréit Theorem
z < % = % ‘5 O 2 gives the structure of the states space of any faf@bet}]
Genes |= = = = = =0 v 0 ® F O with z € ®(f)(C2). Moreover, asC'2 is positive, there are two
s/0 0 0 0 0 0 0 0 0 0 0 Q {Tbeti-fixed points (Theorem 3). Here again, two of the three
Stable ! ) v _
states 210 1 0 0 1 0 0 1 0 0 0 1  global fixed points belong to the context of functionality G2:
ss|1 0 0 0O O O O O O 1 1 O 51,82 € B(f)(C2).

When Tbet is not expressed (for example by the indirect effec
a perturbation of IL4, as proposed in [12]), GATA3 can bewattd,
and the circuitC'1 is functional. Hence, the system reaches the
differentiated statesz (which represents Th2 cells). But if the
expression of Thet increases, for example because the ks
IFN~ is transiently expressed, thé€ril is no more functional, but
C2is, and this self-regulation maintains Thet expressednTtie
system reaches the differentiated state Td).(

Concerning the negative circuit'4, by Theorems 2 and 3,
we know that any face:[{IFNvyR, STAT1, SOCS1] with = €
®(f)(C4) has a{lFNyR, STAT1, SOCSZ-attractive cycle. In

_ _ fact, the dynamics restricted t@(f)(C4), i.e., the restriction
3= (GATA3 — Thet— GATAS) , of £ 10 U, ca(s)(ca z[{IFNYR,STATL, SOCS}], contains an
attractive cycle, where all the genes not dit and ®(f)(C4)
are not expressed. The negative ciralit is functional when the
lymphokine IFNy is expressed and Tbet is not expressed. This
functionality context is therefore fragile: as Tbet is atiator of
IFN~, the absence of Thet implies that the expression level ofIFN

Let f : {0,1}"* — {0,1}"* be the map corresponding to the tends ta, henceC'4 should stay functional for a short time.
asynchronous dynamics (not shown here for sake of spac@). Th ag it is proved in Section 4, when a circuit is considered in a
graphG/(f) represented Figure 5 is the union of all the local graphsgiate which belongs to its functionality context, thentitet only
G(f)(x) for z € {0,1}"2. Only C1,C2 and C4 are globally e variables of the circuit free, the structure of the dyitaris the
minimal, C3 is not because of the loop2. Let us compute the  same as the one of an isolated circuit. Hence, we have a elecis
functionality contexts of these circuits. knowledge of the dynamics.

o ) . In this application, the functionality contexts of the 3 itivs

e CircuitC'1is functional when Thet, STAT1 and SOCSL1 are not gjrcuits cover all the phase space. Each positive circeates in

expressed, therefor@(f)(C1) = {z | @Tpbet = xsTATI =

Table 1. The three stable statas, s2, s3, which represent respectively the
naive, Th2 and Th1 cells.

these functional circuits, three are positive:
1= (IL4R £ STAT6 - GATA3 & 1L4 & IL4R> ,

02 = (Tbeti> Tbet) ,

and one is negative:

4= (IFnyR * STAT1 5 SOCS1S IFN7R> .

its functionality context 2 basins of attraction, and figathe whole

zsocs1= 0}. space is divided into 3 basins corresponding to the 3 stdbtess

e Circuit C2 (self-regulation of Tbet) is functional when STAT1 (their maximal number i23 in general [3]). Therefore, one of
and GATA3 are not expressed, i.e®(f)(C2) = {z | the challenges is now to be able to describe more precisely th
xeaTA3 = TsTar1 = 0}. position of the basins of attraction, where they separatkhemw

e The non globally minimal circui€'3 is functional when STAT6  they possibly connect each other.
and STAT1 are expressed, i.@(f)(C3) = {z | zsTate =
xsTaTL = 1}

e Finally, the negative circuiC4 is functional when Thetis 6 CONCLUSION
not expressed and IFNexpressed, i.e®(f)(C4) = {z |

Even when the dynamics, i.e., the functifris known, the study
ZTiENy = 1, @1pet = 0}.

of the phase space is not easy, and often not computationally
feasible. The idea of getting as more information as possiiol
the dynamics from the structure of the regulatory graph —etvhi
is much smaller— is really attractive. The property of fuocality

of a circuit is well suited for this purpose. Indeed, the impnt

. role of the circuits on the dynamics of the systems is wetvkmn,
5.2 Analysisand comments but the number of circuits in a typical regulatory graph iselly
Let us consider the circuit'l. By Theorem 2, we know the structure quite large. Fortunately, the circuits which have a reaidecce on
of the states space of any faeg{IL4R, STAT6, GATA3, IL4}] the dynamics are the functional ones, at least the globaitynmal
with « € @(f)(C1l). Moreover, by Theorem 3, as functional ones according to Section 4, and their numberushm
C1 is positive, there are two{IL4R,STAT6, GATA3,IL4}- more accessible. For instance, in the illustration comsilen
fixed points. Here, s1 and sz belong to ®(f)(C1), and  Section 5, the model contains 18 circuits, but only 4 of them a
they differ only in the four coordinates which correspond to functional. Actually, the proportion of functional cir¢gican be

Note that the functionality contexts 6f1 and C2 are compatible
and overlap: they both require the absence of STAT1. On ther ot
hand, when STAT1 is expressed, cira(ii$ is functional.

the four genes ofC1: s;[{IL4R, STAT6 GATA3,IL4}] = often much smaller in practice.
s2[{IL4R, STAT6, GATA3, IL4}]. These two local fixed points are  An interesting current line of research is therefore to dgpose
also stable for the whole dynamics. regulatory graphs into modules. The notion of modularityndg




trivial, and the definition of a module is not straightfordaand, Networks.CMSB 2007, LNB#695:233-247, 2007.

at least, not unique. This article leads to naturally defimelutes  [15]E. Plahte, T. Mestl, and S. W. Omholt. Feedback loophikty

around the notion of globally minimal functional circuits. and multistationarity in dynamical system®urnal Biological
While the example studied in Section 5 provides a good  Systems3:409-413, 1995.

illustration of the potentiality of the method, the presermrk is [16]I'E. Remy, B. Mossé, C. Chaouiya, and D. Thieffry. A

clearly in progress, and many improvements can certaintyone. description of dynamical graphs associated to elementary
The generalisation of our results to multivalued dynanassn [19], regulatory circuits Bioinformatics 19(2):172-178, 2003.
requires a careful definition of regulatory graphs and fiametlity [17]E. Remy and P. Ruet. On differentiation and homeostatic
of circuits. The possibility of a sufficient condition on thacobian behaviours of Boolean dynamical systems.Ttansactions on
matrix of differential or piecewise-linear systems [2728] is worth Computational Systems Biolggyolume 4780 of_ecture Notes
exploring too. in Computer Scien¢gages 92—-101. Springer, 2007.

On the other hand, relaxing the minimality constraint omcwits [18]E. Remy, P. Ruet, L. Mendoza, D. Thieffry and C. Chaouiya.
in Theorems 2 and 3 seems to require further work. The presainc From logical regulatory graphs to standard Petri nets: ohyoal
a non minimal functional circuit is indeed not so rare. Fatamce, roles and functionality of feedback circuits. Tnans. Comput.
the self-regulations of “clue-genes”, involved in funci#d circuits, Systems Biglvol. 4230 ofLNCS pp. 56—72, 2006.
should create this situation. Therefore, this constraietgnts us  [19]E. Remy, P. Ruet, and D. Thieffry. Positive or negative
from analysing some important circuits. regulatory circuit inference from multilevel dynamics. In

Positive Systems: Theory and Applicatipn®lume 341 of
LNCIS pages 263-270. Springer, 2006.
[20]E. Remy, P. Ruet, and D. Thieffry. Graphic requirements
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