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ABSTRACT

Motivation: Cys2His2 zinc finger (ZF) proteins represent the largest
class of eukaryotic transcription factors. Their modular structure
and well-conserved protein–DNA interface allow the development
of computational approaches for predicting their DNA-binding
preferences even when no binding sites are known for a particular
protein. The ‘canonical model’ for ZF protein–DNA interaction
consists of only four amino acid nucleotide contacts per zinc finger
domain.
Results: We present an approach for predicting ZF binding based on
support vector machines (SVMs). While most previous computational
approaches have been based solely on examples of known ZF
protein–DNA interactions, ours additionally incorporates information
about protein–DNA pairs known to bind weakly or not at all.
Moreover, SVMs with a linear kernel can naturally incorporate
constraints about the relative binding affinities of protein–DNA pairs;
this type of information has not been used previously in predicting ZF
protein–DNA binding. Here, we build a high-quality literature-derived
experimental database of ZF–DNA binding examples and utilize it to
test both linear and polynomial kernels for predicting ZF protein–DNA
binding on the basis of the canonical binding model. The polynomial
SVM outperforms previously published prediction procedures as well
as the linear SVM. This may indicate the presence of dependencies
between contacts in the canonical binding model and suggests that
modification of the underlying structural model may result in further
improved performance in predicting ZF protein–DNA binding. Overall,
this work demonstrates that methods incorporating information
about non-binding and relative binding of protein–DNA pairs have
great potential for effective prediction of protein–DNA interactions.
Availability: An online tool for predicting ZF DNA binding is available
at http://compbio.cs.princeton.edu/zf/.
Contact: mona@cs.princeton.edu
Supplementary information: Supplementary data are available at
Bioinformatics online.

1 INTRODUCTION
The mapping of transcriptional networks is a key step in
understanding the regulatory mechanisms of gene expression.
While high-throughput experimental procedures have been applied
for uncovering the genome-wide DNA binding of particular
transcription factors (Harbison et al., 2004), cost-effective
computational methods are still necessary to characterize the
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regulatory networks of the increasing number of fully sequenced
genomes.

Most computational approaches for predicting the binding sites of
a particular transcription factor use experimentally determined DNA
binding sites to build a sequence representation, such as a consensus
sequence or a position-specific scoring matrix, that can then be used
to search for additional binding sites for this protein (Hannenhalli,
2008; Osada et al., 2004; Stormo, 2000). While broadly applicable
and widely used in practice, such approaches can only be applied for
proteins for which some binding sites are already known. However,
by focusing on a particular structural class of transcription factors,
and considering the contacts in its protein–DNA interfaces, it is
possible to predict the DNA binding sites for a protein within this
class even without any prior knowledge of any of its binding sites
(Benos et al., 2001; Kaplan et al., 2005; Mandel-Gutfreund and
Margalit, 1998; Suzuki et al., 1995).

Here, we focus on predicting the DNA binding sites of proteins
within the Cys2His2 zinc finger (ZF)1 structural class of transcription
factors. These proteins comprise the largest family of eukaryotic
transcription factors, with several hundred proteins known in the
human genome (Venter et al., 2001). ZFs have been extensively
studied, with crystal structures and experimental studies having
elucidated their highly conserved modular structure (Pabo et al.,
2001; Wolfe et al., 2000). Analysis of co-crystal structures of ZF
proteins bound to DNA has led to the formulation of the so-
called ‘canonical model’ which posits that ZF–DNA specificity is
explained by four essential contacts per zinc finger (Elrod-Erickson
et al., 1998), though other ZF–DNA configurations have also been
observed (Wolfe et al., 2000).

The apparent simplicity of the ZF protein binding interface in
the canonical case and the ample quantity of experimental binding
data make these proteins attractive for developing theoretical
models for protein–DNA binding prediction. Over a decade, several
computational methods based on expert knowledge, statistical,
structural and experimental binding data have been applied to this
problem (Benos et al., 2002; Kaplan et al., 2005; Liu et al., 2005;
Maeder et al., 2008; Mandel-Gutfreund and Margalit, 1998; Suzuki
et al., 1995). Despite these attempts, an accurate prediction of ZF
transcription factor binding sites remains a challenging task.

Here, we exploit support vector machines (SVMs) to predict
protein–DNA interactions mediated by ZFs. The SVM is a state-
of-the-art classification technique (Vapnik, 1995) that is known

1While there are many types of zinc finger proteins, we use ‘zinc fingers’
and ZF to refer specifically to Cys2His2 zinc finger proteins.
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for obtaining excellent generalization performance for binary
classification in high-dimensional spaces. The Cys2His2 zinc finger
protein–DNA interaction interface is modeled by the pairwise
amino acid–base interactions that make up the canonical structural
interface. By utilizing a classification framework, we incorporate
known examples of non-binding ZF–DNA pairs. Additionally, we
are able to incorporate, for the first time, information about relative
binding affinities of ZF–DNA pairs when utilizing a linear kernel;
much data of this type has been generated in previous experimental
work attempting to characterize ZF–DNA binding specificity (see
Supplementary Table S1).Alternatively, a polynomial SVM captures
dependencies among the canonical contacts and thus provides an
indirect means for testing the canonical model for interaction.
SVMs therefore provide us with a flexible means for incorporating
a wide assortment of information about ZF–DNA binding. While
it is possible to employ other kernels with SVMs, we have
used these two for predicting ZF–DNA interactions due to their
physical interpretability. In a wide-range of rigorous cross-validation
testing, as well as on testing on the TRANSFAC database, we
demonstrate that SVM-based methods are highly effective in
practice. Specifically, the SVM with a degree two polynomial kernel
outperforms previous methods. This suggests a role for pairwise
correlations between contacts in the canonical model, consistent
with the nucleotide-based analysis of Bulyk et al. (2002) and a very
recent context-dependent neural network model (Liu and Stormo,
2008). This implies that either inclusion of additional contacts or a
higher order binding model may lead to better results in predicting
ZF–DNA binding.

2 METHODS

2.1 Structural model
Structural studies (Elrod-Erickson et al., 1996; Pavletich and Pabo, 1991)
have suggested that the ZF–DNA binding interface can be understood with
respect to a ‘canonical binding model’ where each finger contacts DNA in
an antiparallel manner. The α-helix in each finger fits into the major groove
of the DNA, and each consecutive finger contacts four base pairs which
overlap by one DNA position. For each zinc finger, the amino acid positions
that contact DNA are called −1, 2, 3 and 6, and are specified as such because
of their position relative to the start of the helix. Amino acids a−1, a3 and a6

are well positioned to make contacts with bases in the primary DNA strand,
while amino acid a2 can make a contact with the complementary DNA strand
(Fig. 1).

We use the canonical structural model to represent each potential protein–
DNA complex by a feature vector x = {xabc}, where xabc = 1 for every amino
acid a ∈ {Ala, Cys, …, Trp} interacting with base b ∈ {A, C, G, T} at contact
position c. This representation scheme leads to a feature space containing 320
dimensions representing all possible abc combinations (20 amino acids × 4
bases × 4 contacts).

2.2 Prediction algorithms
2.2.1 Support vector machines Our vector representation of a ZF–DNA
binding interface has a natural physical interpretation corresponding to the
potential contacts that would form for each pairing. Our goal is to deduce
how good or bad each possible amino acid–nucleotide interaction is in each
of the four canonical contacts. We apply the widely used support vector
machinery to do this. Given a dataset of training examples xi, SVMs search
for a weight vector w that best separates binding and non-binding examples
(Cristianini and Shawe-Taylor, 2000). That is, for a particular set of known

Fig. 1. Schematic representation of the canonical binding model. Amino
acids are numbered according to their sequential number with amino acid 1
as the first residue in the ZF helical domain. Bases are numbered sequentially
from 5 to 3 of the primary DNA chain, and are primed in the complementary
DNA chain.

binding interactions and non-interactions, the SVM finds w by optimizing:
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{
wi ·xi +b�1−ξi, for binding examples
wi ·xi +b�−1+ξi, for non-binding examples

(1)

where there are slack variables ξi � 0 for ∀i and C is a regularization
parameter (the tradeoff between finding a ‘least complicated’ w and fitting
of the training data). The trained weight vector w can be used to make
predictions for an unknown configuration by calculating the score w ·x + b
for the feature vector x corresponding to that configuration of protein and
DNA. A more positive score predicts stronger binding.

In our framework, we have many cases of relative binding affinities
where a particular protein–DNA pair is known to be a stronger binder when
compared with another protein–DNA pair (see Section 2.3.2). Similar to
the approach taken for predicting coiled–coil protein interactions (Fong
et al., 2004), the general SVM model presented in model (1) can be
modified so that experimental information on comparative binding affinities
(i.e. when configuration x binds more strongly than configuration y) is used to
additionally constrain the weight vector w by requiring that w ·x > w · y. We
modify the SVM by setting b = 0 and adding z = y−x as a negative example,
thereby capturing the desired relation. The modified inequalities (1) can be
rewritten as: 


w·xi �1−ξi, for binding examples
w·xi �−1+ξi, for non-binding examples
w·zi �−1+ξi, for comparative examples

(2)

We also experiment with the SVM framework utilizing polynomial kernels
K(x,y) =(x·y +1)n which capture higher order relationships between
canonical contacts in a finger. We have found that the quadratic polynomial
kernel (n = 2) performs well, while increasing the degree to cubic or higher
decreases SVM performance. Therefore, we use the quadratic polynomial
kernel function throughout this work. Polynomial kernels map each feature
vector x into a new higher dimensional space using a mapping function
Φ(x); however, the kernel function allows avoiding explicit computation
of Φ(x), as it efficiently computes the necessary inner products for SVM
optimization (the so-called kernel trick). It has to be noted, though, that
the adaptation of comparative experimental data given above [Equation (2)]
cannot be applied as it requires the explicit construction of the features in
the higher dimensional space. That is, use of the polynomial kernel as above
does not permit incorporating information about relative binding affinities.

2.2.2 Previous methods for predicting zinc finger protein–DNA binding
Several previous approaches have been developed for predicting zinc
finger interactions based on a combination of sequence and structural
knowledge. These include biophysical structure-based approaches (Endres
and Wingreen, 2006; Morozov et al., 2005), as well as primarily sequence-
based methods. Four sequence-based methods with published scoring tables
are used here for comparison to our SVM testing. Of these, the first two
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methods are general methods for predicting protein–DNA interactions, while
the last two methods have been developed specifically for the Cys2His2 ZF
protein class. Each method is denoted here using the initials of the authors
and the publication year.

‘SBGY95’ is a method based on expert knowledge of biochemical
principles (Suzuki et al., 1995), and can be used to evaluate any type of
protein–DNA interaction interface. Chemical rules of protein–DNA binding
are based on the inherent chemical compatibility of amino acids and bases,
and weights are given to amino acid–base pairings. The numerical amino
acid–base compatibilities (Fig. 1a in the original publication) are used to
compute binding scores according to the canonical model for ZF proteins.

‘MGM98’ is a computational method based on hydrogen bonding patterns
extracted from co-crystal structures of various proteins in the PDB and NDB
(Mandel-Gutfreund and Margalit, 1998). The log-odd scores (from Table 2 in
original publication) used in this method represent more general trends found
in protein–DNA interactions, and can be applied to general protein–DNA
interfaces. Testing on ZF proteins uses the canonical binding model.

‘BLS02’ is a probabilistic computational model of Zif268 binding trained
on SELEX and phage display experimental data gathered from the literature
(Benos et al., 2002). The model was fit in order to maximize the specificity
of the binding zinc finger. The position-specific energy matrix (Table 2 in
original publication) is used for scoring.

‘KFM05’ is a probabilistic method trained on binding sites for properly
spaced three and four finger ZF proteins in the TRANSFAC database (Kaplan
et al., 2005). TRANSFAC does not provide exact sites, but provides a longer
sequence in which the binding site resides. Thus, in order to use this database,
expectation maximization was used to learn both the probabilities associated
with the contacts in the canonical model as well as the locations of binding
sites. Potential binding sites are scored using the canonical model position-
specific counts of amino acid–nucleotide interactions listed in Supplementary
Table S2 (Kaplan et al., 2005).

2.3 Data
2.3.1 Raw data An extensive literature search was performed to gather
examples of binding and non-binding configurations of Cys2His2 ZFs
and DNA. We collected in vitro experimental data from 25 individual
manuscripts published in 1990–2005 (see Supplementary Table S1). This
data exists primarily of zinc finger protein mutants whose specificity has been
probed by in vitro randomization experiments, such as SELEX and phage
display (Benos et al., 2002), and whose nucleotide–amino acid contacts
can be inferred. Data for Bulyk et al. (2002) were downloaded from the
Supplementary Material web site; data for Benos et al. (2001, 2002) were
taken from a public file, and all other data were entered manually. We also
utilized all the 20 Cys2His2 ZF–DNA X-ray co-crystal structures found
in the Protein Data Bank (Berman et al., 2000). The zinc finger regions
in the proteins were identified from the original manuscripts or from the
PDB structures, with the pattern CX2−6CX12HX2−6H giving the correct
positioning of the amino acids into the −1, 2, 3 and 6 positions.

2.3.2 Data processing In order to apply machine learning techniques,
the experimental database is further sorted into three categories: positive
examples (protein binds the DNA), negative examples (protein does not bind
to the DNA) and comparative examples (one protein–DNA pair represents
a stronger binding than another protein–DNA pair, when several residues
or nucleotides are substituted). ZF protein–DNA pairs determined to bind
in the literature are positive examples. In addition, every example with
experimentally determined Kd < 200 nM is considered a positive example.
Together, there are 1312 positive examples in our database.

Each case reported in the literature where a protein does not bind to a DNA
segment results in up to 10 negative examples in the database. This is because
if a protein does not bind a particular DNA with a primary sequence given,
then it does not bind to its complementary sequence either. Analogously, the
protein is not likely to bind to a DNA sequence shifted by 1 or 2 nt towards
the 3′ or the 5′ direction. Thus, for each experimental non-binding example,

there are up to 10 DNA subsequences considered (one original, plus single
and two-base shifts to the both ends, both in the primary and complementary
strand). This results in 8081 negative examples.

Some experimental results, while not containing any quantitative
information about binding affinity, provide an indication of the relative
binding affinities between two configurations, as explicitly stated by authors.
All the experimental data of this sort results in 914 comparative examples in
our database. This number is significantly increased by adding comparative
data created by comparing experimental Kd values of different examples
within individual publications. In this case, a protein–DNA pair with
disassociation constant Kd1 is considered a stronger binder than a protein–
DNA pair with disassociation constant Kd2 if Kd2/Kd1 > 2. This procedure
allows us to use experimental data that does not result in either positive or
negative examples and finally gives a total of 65 414 comparative examples.

All duplicated data are filtered out from the dataset (i.e. examples
of proteins with identical zinc fingers and identical corresponding DNA
sequences). In rare cases where the same protein–DNA pair is reported as
a positive and, alternatively, a negative binding example, the negative data
are excluded from the database as having lower confidence.

Each example is converted to the vector representation. For the linear
SVM, all examples are considered at the per-protein level (i.e. including
contacts from all fingers). For the polynomial SVM, in order to limit the
pairwise interactions to contacts within individual zinc fingers (i.e. so that
they are physically realizable), individual examples are created separately for
each finger in an interface for training the SVM (i.e. there are at most four
non-zero entries in these vectors). For training, the vectors are normalized
using the Euclidean norm. For all methods, testing is performed at the protein
level by summing over the contributions of all fingers, with no normalization.

2.3.3 Software SVM-light version 6.01 (Joachims, 1999) is used to
train the SVMs. For all experiments, the regularization parameter C is
automatically chosen by SVM-light. When training on the entire dataset,
SVM-light uses C = 0.84 with the linear kernel and learns 3170 support
vectors, and uses C = 0.33 with the polynomial kernel and learns 1865 support
vectors.

2.4 Testing scenarios
To evaluate the binding model and to compare the SVMs with other
prediction methods, we split our dataset into several types of training and
testing subsets, each time ensuring that there is no overlap between testing
and training data at the per-protein level (i.e. no protein sequence is used as
an example in both testing and training sets). We use three types of cross-
validation testing. We also test all methods using alternative data extracted
from the TRANSFAC database.

2.4.1 New/old validation We performed this cross-validation to mimic the
situation of ‘old’and ‘newly appearing’data. In this test, we split the data into
two sets, based on whether they were published in papers appearing before
2003 or in 2003 and afterwards. Any protein in the test set that occurs in the
‘old proteins’ dataset is removed from the testing set. The test set consists of
135 positive and 1357 negative examples (no comparative data are used for
testing).

2.4.2 Holdout validation In this test, we randomly select 100 positive
and 1000 negative examples from the initial database (to conserve the
1 : 10 positive/negative ratio used in the previous test), and the remaining
observations are retained as a training set. All examples involving proteins
pulled for the test set are filtered out of the training dataset. To avoid any
possible irregularities, this procedure is repeated 1000 times and an averaged
ROC curve is created for method.

2.4.3 Testing on ANN, CNN, GNN and TNN subsets To test whether
removing data of the same type from the training set can alter the SVM’s
ability to predict protein–DNA interactions, we select four data subsets based
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on whether they bind TNN, GNN, ANN or CNN according to Barbas and
colleagues (Blancafort et al., 2003; Dreier et al., 2000, 2001, 2005; Segal
et al., 1999). We perform four cross-validation tests when all the examples
of the same type (CNN, GNN, GNN or TNN) from these papers are pulled
for testing and all duplicate proteins filtered out from the training set. These
data make a major contribution in our high-confidence database: the ANN
set includes 30 positive and 2500 negative examples; the CNN set has
84 positives and 1330 negatives; the GNN set has 83 positives and 3187
negatives; and TNN, the least studied, includes only 13 positive and 27
negative examples.

2.4.4 ROC curves For the three testing scenarios just described, receiver
operating characteristics (ROC) graphs computed as in Fawcett (2006) are
used for comparing the methods. In the holdout and ANN/CNN/GNN/TNN
validations, an individual ROC curve is computed at each iteration and these
curves are averaged for every method tested by computing an average number
of predicted true positives (TP) at every false positive (FP) rate.

2.4.5 Testing on Zif268 variants microarray data The binding affinities
of wild-type Zif268 and its four variants have been carefully studied on
microarrays containing all possible 64 3-bp binding sites (Bulyk et al.,
2001, 2002). Four proteins exhibit binding specificities, whereas one protein,
KASN, shows no preference to any specific binding site. The provided
binding affinity measurements represent a good experimental dataset to test
the ability of theoretical techniques described here to predict short-specific
DNA binding sites.

For each protein tested, according to the measured Ka values, all 64 DNA
sequences were divided into two groups: ‘positives’ having high affinity to
the target protein and ‘negatives’ with experimental fluorescence intensities
at or below the background intensity of the respective microarray (Bulyk
et al., 2001). We test whether each method can differentiate the positives from
the negatives by testing whether the assigned scores can be attributed to two
different distributions, at the P = 0.05 level according to the non-parametric
Mann–Whitney U-test.

2.4.6 Testing on the TRANSFAC database In addition to cross-validation,
the ability of SVMs to classify Cys2His2 protein–DNA binding examples
is also tested on the TRANSFAC database. The TRANSFAC database
operated by BIOBASE Corporation (Beverly, MA, USA) contains data on
transcription factors, their experimentally proven binding sites, and regulated
genes (Matys et al., 2003). The public release used here (ver 7.0, September
30, 2005) contains 244 Cys2His2 ZF proteins with corresponding DNA
binding sequences, and with the number of zinc fingers varying from
1 to 29 (Supplementary Table S4). We use a stronger selection for the
class, when exactly 12 residues must lie between the second Cys and the
first His in zinc finger sequence. Only non-overlapping sequence patterns
of the form CX2−6CX12HX2−6H are considered further as zinc finger
proteins. The TRANSFAC database gives relatively long DNA sequences
(10–240 bp) without knowledge about a specific binding site. In order to
score this DNA sequence, first the number of zinc fingers in each protein
sequence is determined. This number allows estimation of the binding site
length l (e.g. for three zinc fingers l = 3*3 + 1 = 10 bp long). For each method,
the long DNA fragment is scanned for a specific binding site using l as sliding
window. The score of the protein on this DNAfragment is taken as the highest
scoring window. To evaluate the significance of this score, the highest score
obtained for the target DNA is compared with the distribution of maximum
scores obtained for 1000 randomized DNA sequences generated by random
picking nucleotides with uniform probability. The P-value for a score by
a particular method is calculated for every protein–DNA combination as
Pi = ni/1000, where ni is the number of randomized DNA sequences scoring
higher than the original target DNA. The methods are compared by fraction of
correctly recovered protein–DNA pairs at different P-values. When scoring
a protein in TRANSFAC, we ensure that protein and its binding sites are not
in the training set for the SVM methods.

We limit our initial analysis to ZF proteins with three C2H2 zinc fingers.
These triple C2H2 zinc fingers, as classified by Iuchi (2001), contain exactly
three zinc fingers and provide an ideal initial test case for several reasons.
First, while having less than three zinc fingers is thought not to provide
enough binding specificity; structural studies have showed that the DNA
binding model for proteins with four or more zinc fingers is significantly
more complicated. When there are more than three fingers, it is common
that the fingers bind non-sequential regions of the DNA or that some of the
fingers are involved in protein–protein or other ligand interactions (Iuchi,
2001; Nolte et al., 1998; Pavletich and Pabo, 1993; Siggers and Honig,
2007). Second, when it comes to the number of protein–DNA combinations
listed in TRANSFAC, the highest number of interacting DNAs comes from
proteins with three zinc fingers (see Supplementary Table S2). Therefore, for
our primary TRANSFAC testing, all methods are evaluated on the 305 three
finger ZF protein–DNA combinations listed in TRANSFAC. Nevertheless,
as a secondary test, we also consider Transfac proteins with four and five
zinc fingers. In this case, we assume for all methods that all fingers bind
DNA, and do so in consecutive overlapping 4-bp units.

3 RESULTS

3.1 New/old cross-validation testing
As described in Section 2, all data published in 2002 and earlier
are used for training the SVM, while more recent data are used
for testing all methods. Figure 2A compares the ROC curves for
the linear and polynomial SVM classifiers with the four previously
published methods to predict negative and positive data in the
test set.

As is clearly seen, when classifying binding and non-
binding examples obtained from high-quality experiments, SVMs
outperform all previously published methods. The polynomial
SVM exhibits exceptional performance. However, the linear SVM
classifier outperforms the polynomial SVM in predicting the top
100 TP examples (initial jump with FP< 20). The SVM curves
cross at FP = 20 and the polynomial SVM exhibits top performance
afterwards, reaching the maximum TP = 135 value at FP = 70. Note
that though we could have chosen another date with which to divide
the data, we choose this one to compare to the BLS02 method,
published in 2002, which is also based on similar experimental data
obtained from the literature.

3.2 Holdout cross-validation testing
We also perform a holdout cross-validation where a validation test
set is formed by 100 positive and 1000 negative examples pulled
randomly from the original 1312 positives and 8081 negatives.
Similar to the previous test, the polynomial SVM classifier
outperforms all other methods in this holdout validation (Fig. 2B),
despite the fact that some of the testing data were used for BLS02
training. The linear SVM shows good performance at FP rate
>0.1, but is apparently outperformed by SBGY95 at lower FP
rates (Fig. 2B). Interestingly, SBGY95, the oldest method based
on general chemical rules, outperforms some of the more modern
methods in this testing.

3.3 Cross-validation testing on ANN, CNN, GNN and
TNN subsets

SVMs show excellent performance in the previous cross-validations
where testing examples were selected independently of their protein
or DNA sequences. Though those experiments are based on
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Fig. 2. ROC curves for cross-validation analysis. (A) Testing on new data and (B) holdout cross-validation. Key: linear SVM (red), polynomial SVM (black),
BLS02 (green), MGM98 (magenta), SBGY95 (cyan) and KFM05 (blue).

Table 1. AUC values for cross validation testing on ANN, CNN, GNN and
TNN subsets

Subset SVM linear SVM polyn. SBGY95 MGM98 BLS02 KFM05

ANN 0.9819 0.9875 0.962 0.9424 0.9841 0.9153
CNN 0.9787 0.9868 0.9496 0.9358 0.9362 0.9458
GNN 0.9799 0.9856 0.9766 0.9673 0.9788 0.9856
TNN 0.9858 0.9943 0.8661 0.9202 0.9801 0.8519

Highest AUC values are shown in bold.

Table 2. Results of Mann-Whitney significance test for Bulyk microarray
data

Protein SVM linear SVM polyn. SBGY95 MGM98 BLS02 KFM05

RSDH + + +
LRHN + + +
RGPD + + + +
REDV + + + +
KASN*

*KASN protein shows no specificity in the microarrays for binding DNA.
For each protein and method, a ‘+’ indicates that the scores by the method for the DNA
binding the protein and the DNA not binding the protein are significantly different, as
judged by Mann–Whitney test at P = 0.05. The SVM with a polynomial kernel outper-
forms the other methods.

per-protein cross-validation, an even more difficult test is cross-
validation where a subset of data describing the same DNA category
is excluded from the training set. The group of Barbas III has
performed an extensive search for artificial transcription factors
recognizing the DNA sequences containing either adenine (ANN),
cytosine (CNN), guanine (GNN) or thymine (TNN) in the DNA
position interacting with the amino acid residue in position 6. Testing
results are presented in Table 1 as an area under ROC curves (AUC)
averaged over the four cross-validation tests (individual subset ROC
curves are available as Supplementary Fig. S1).

Similar to the previous cross-validation tests, the polynomial
SVM outperforms other methods (Table 1). Again, the linear SVM
outperforms the polynomial kernel on the ‘initial jump’, at FP< 0.02

when both SVM reach TP∼ 0.8. Detailed analysis discovers
differences in method performances when tested on different data
subsets (see Supplementary Fig. S1). In particular, the KFM05
method (based on TRANSFAC database) shows top performance
on the GNN set, outperforming SVMs. This may be explained by
a high number of guanine-rich DNA regions represented in the
TRANSFAC database. On the other hand, removing the GNN data
from the SVM training set may reduce the ability of the SVM for
accurate prediction.

3.4 Zif268 variant microarray data
It is useful to evaluate the ability of different methods to classify
3-bp binding sites for the wild-type Zif268 and its four variants
as this has been carefully studied on microarrays (Bulyk et al.,
2001, 2002). Consistent with the experimentally determined poor
binding specificity of KASN protein variant (Bulyk et al., 2001),
none of the methods is able to differentiate the positives and
negatives for this protein (Table 2). For all the other four proteins,
the polynomial SVM shows the best performance in differentiating
the positive and negative groups, and rejects the null hypothesis that
these two populations come from the same distribution.

The linear SVM and the SGBY95 methods ascertained for three
variants that the experimentally preferred DNA sequences are scored
significantly higher than the negatives; this occurs twice for MGM98
and BLS02. Interestingly, KFM05 scores do not pass the significance
threshold to attribute them to two different distributions, showing
the inability of this method to predict DNA sequences recognized by
Zif268 variants in vitro; this may be due to the training of this method
on TRANSFAC data. Detailed data are available in Supplementary
Table S3.

3.5 Testing on the TRANSFAC database
Successful testing on a high-quality experimental database suggests
that the SVM methods may be useful in locating exact binding
site in experiments when only a longer DNA region, and not
the particular site, is known to be recognized by a particular
transcription factor [e.g. as in data resulting from ChIP-chip
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Table 3. The percentage of correctly predicted binding sites in Transfac
database by all methods at different P-values

P-value SVM linear SVM polyn. SBGY95 MGM98 BLS02 KFM05

0.005 25.9 63.3 45.6 48.5 59.7 (66.9)
0.01 42.3 75.7 56.7 57.4 68.9 (78.7)
0.05 76.4 87.5 82.0 80.3 86.6 (91.8)

The highest percentages are shown in bold (excluding the Transfac-trained KFM05
method which is shown in brackets for comparison).

experiments (O’Geen et al., 2007)]. We first test all methods on
the 305 three-finger ZF protein–DNA combinations listed in the
TRANSFAC database (Matys et al., 2003).

In order to test different prediction methods, the relative scores
for the TRANSFAC protein–DNA combinations are compared to
randomized DNA sequences as described in Section 2. Table 3
represents the percentage of the 305 protein–DNA pairs for which
each method finds a binding site at different P-values. Of the
methods, KFM05 most often finds significant binding sites (as
judged at P-values of 0.005, 0.01 and 0.05). This is as expected,
as the KFM05 method is trained on TRANSFAC. Excluding
KFM05, the polynomial SVM most commonly identifies binding
sites, outperforming other methods, but closely followed by BLS02
(Table 3, Supplementary Fig. S2-A). The linear SVM shows a
limited performance in this test when compared with other methods.
The advantage of the polynomial kernel over the linear SVM may
suggest the limitation of the originally used representation where
all protein–DNA interactions are constrained to the four canonical
contacts, especially when the natural protein sequences may differ
from the Zif268 canonical model. Since all methods assume the
canonical Zif268 binding model, and much of the data that the
SVM methods are trained on are based on Zif268, we also repeat
this analysis on only the non-Zif268 three-finger ZF proteins in
TRANSFAC; the relative performance of the methods stays the same
(see Supplementary Fig. S2-B). Finally, we test the performance
of all methods on three- and four-finger zinc finger proteins in
TRANSFAC. All methods perform significantly worse, and identify
a fewer fraction of proteins as containing binding sites at the P = 0.05
level. For example, KFM05 identifies only 56% of these proteins as
having a binding site at the P = 0.05 level, even though this method
uses four-finger ZF proteins in training; this number is 48% for the
SVM with the polynomial kernel (see Supplementary Fig. S2-C).
The lower performance of all methods is likely due to the more
complex binding patterns of zinc finger proteins with more than
three-fingers (Iuchi, 2001).

3.6 Learned SVM models
We release the linear and polynomial SVM models that result
from training on the entire high-confidence database. These files
are available at http://compbio.cs.princeton.edu/zf/. The explicit
calculation of the weight vector w is possible from the linear SVM
model. The linear SVM weight vector is further analyzed to find
the dimensions determining the boundaries in the classification
space. The weight vector coordinates with highest values are listed
according to their magnitudes in Supplementary Table S4. While
many of most important contacts originate from the well-known

Zif268–DNA complex, the linear SVM is able to learn many
alternative contacts positively contributing towards ZF protein–
DNA binding.

4 DISCUSSION
The Cys2His2 ZF proteins represent one of the most studied
transcription factor protein families. Their modular structure makes
them amenable to statistical and computational approaches for
predicting their DNA binding specificities given only their protein
sequences. Here, we have presented an SVM-based approach
for predicting ZF protein–DNA binding. Whereas most previous
computational methods for predicting protein–DNA interactions
have used only known binding examples, our approach additionally
utilizes examples of proteins known not to bind particular DNA
regions. In addition, with a linear SVM, we also use relative binding
data in the form of comparative examples.

The canonical binding model for ZF protein–DNAbinding (Fig. 1)
attributes the protein–DNA interaction to only four canonical amino
acid–base contacts. This simple model has served well for a number
of experimental and theoretical studies and has been confirmed by
the majority of co-crystal structures. However, zinc finger binding
can be altered by variations in the protein sequence and can result
in reorganization of the DNA-interacting interfaces (Wolfe et al.,
2001). Consistent with this, we have found that the polynomial
SVM outperforms previous methods, as well as the linear SVM, in
a wide assortment of testing. SVMs with a polynomial kernel map
feature vectors into a higher dimensional space, thereby making
possible implicit inclusion of higher order interactions not listed
in the original canonical model (Luscombe et al., 2001). It is
highly possible that certain amino acid residues are able to interact
with more than one base in the DNA sequence, thus complicating
the sequence recognition pattern. Therefore, the success of the
polynomial SVM may indicate the necessity to adjust the canonical
structural model.

Linear SVMs show limited performance when tested on the
TRANSFAC database. In general, most proteins from the high-
confidence database used for SVM training were designed on the
basis of Zif268. In contrast, the proteins listed in the TRANSFAC
database and used for testing are natural ZF proteins and can have
sequences significantly different from the Zif268 family. Therefore,
the binding interface of these proteins could be different from that
described by the canonical model. This fact may result in decreased
linear SVM performance, compared with the polynomial model
which implicitly considers alternative contacts. However, the good
performance of the linear SVM in cross-validation testing appears
very promising for further improving its performance. In particular,
use of the polynomial kernel does not allow the incorporation
of relative binding information through the use of comparative
examples. By modifying the canonical model to explicitly consider
higher order interactions, a linear SVM can be applied again with its
advantage of using quantitative and comparative experimental data.

For the linear SVM, it is possible to examine the learned weights
to ascertain which contacts are learned to be most important for
predicting ZF protein–DNA interactions (see Supplementary Table
S3). The contacts originating from the Zif268 protein–DNAcomplex
have large weight vector coordinates, stressing the prominence of
Zif268-derived examples in our training set and suggesting that
a likely source of improvement for the linear SVM is inclusion
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of data from a more diverse set of ZF proteins. Such data would
likely to improve the performance of all methods. Interestingly, the
Pearson correlation coefficient observed between the linear SVM
weight vector coordinates and the weights assigned to corresponding
interactions by other methods is weak; this is also true when
considering pairwise relationships between the other methods (data
not shown). This suggests that combining different theoretical
approaches may lead to better predictions where the methods
complement each other.

Significant further challenges remain in developing a complete
system for predicting ZF protein–DNA interactions. The relatively
poor performance of all methods in predicting the binding of four-
and five-finger ZF proteins suggests that for improved performance
for proteins with many zinc fingers, it will be necessary to develop
methods for predicting which fingers are binding DNA and whether
the fingers are binding in tandem along the DNA, or in several
separate regions. Furthermore, it is important to note that all the
methods tested here evaluate whether a particular ZF protein can in
principle bind a fragment of DNA; they do not evaluate whether this
binding occurs in vivo. To better assess whether interactions occur
in vivo, these predictions should be used in conjunction with other
types of information, such as expression data or cell and tissue type.

In conclusion, we present a new approach for predicting ZF
protein–DNA binding based on SVMs. Our approach allows
utilizing a wide range of experimental data, from positive to negative
to comparative binding examples. Overall, this methodology makes
substantial progress on the problem of predicting a transcription
factor’s DNA binding sites, and should provide a basis for predicting
binding sites at the genome level. While, we have described our
methodology for predicting ZF–DNA binding, in principle the
approach can be applied to any conserved structural interface.
Furthermore as more high-throughput, experimental techniques are
developed and applied for quantitatively determining DNA binding
specificity (Bulyk et al., 2001, 2002; Mukherjee et al., 2004),
approaches such as the one outlined here will become increasingly
important.

ACKNOWLEDGEMENTS
The authors would like to thank members of the Singh group for
helpful discussions.

Funding: National Institutes of Health (GM076275); NSF (IIS-
0612231 and MCB-0093399); DARPA; NIH Center of Excellence
(P50 GM071508).

Conflict of Interest: none declared.

REFERENCES
Benos,P.V. et al. (2001) SAMIE: statistical algorithm for modeling interaction energies.

Pac. Symp. Biocomput., 6, 115–126.
Benos,P.V. et al. (2002) Probabilistic code for DNA recognition by proteins of the EGR

family. J. Mol. Biol., 323, 701–727.
Berman,H.M. et al. (2000) The Protein Data Bank. Nucleic Acids Res., 28, 235–242.
Blancafort,P. et al. (2003) Scanning the human genome with combinatorial transcription

factor libraries. Nat. Biotechnol., 21, 269–274.
Bulyk,M.L. et al. (2001) Exploring the DNA-binding specificities of zinc fingers with

DNA microarrays. Proc. Natl Acad. Sci. USA, 98, 7158–7163.
Bulyk,M.L. et al. (2002) Nucleotides of transcription factor binding sites exert

interdependent effects on the binding affinities of transcription factors. Nucleic
Acids Res., 30, 1255–1261.

Cristianini,N. and Shawe-Taylor,J. (2000) An Introduction to Support Vector
Machines: And Other Kernel-based Learning Methods. Cambridge University
Press, New York.

Dreier,B. et al. (2000) Insights into the molecular recognition of the 5′-GNN-3′ family
of DNA sequences by zinc finger domains. J. Mol. Biol., 303, 489–502.

Dreier,B. et al. (2001) Development of zinc finger domains for recognition of the 5′-
ANN-3′ family of DNA sequences and their use in the construction of artificial
transcription factors. J. Biol. Chem., 276, 29466–29478.

Dreier,B. et al. (2005) Development of zinc finger domains for recognition of the
5′-CNN-3′ family DNA sequences and their use in the construction of artificial
transcription factors. J. Biol. Chem., 280, 35588–35597.

Elrod-Erickson,M. et al. (1996) Zif268 protein-DNA complex refined at 1.6 A: a model
system for understanding zinc finger–DNA interactions. Structure, 4, 1171–1180.

Elrod-Erickson,M. et al. (1998) High-resolution structures of variant Zif268-DNA
complexes: implications for understanding zinc finger-DNA recognition. Structure,
6, 451–464.

Endres,R.G. and Wingreen,N.S. (2006) Weight matrices for protein–DNA binding sites
from a single co-crystal structure. Phys. Rev. E. Stat. Nonlin. Soft Matter Phys., 73,
061921.

Fawcett,T. (2006) An introduction to ROC analysis. Pattern Recogn. Lett., 27, 861–874.
Fong,J.H. et al. (2004) Predicting specificity in bZIP coiled-coil protein interactions.

Genome Biol., 5, R11.
Hannenhalli,S. (2008) Eukaryotic transcription factor binding sites—modeling and

integrative search methods. Bioinformatics, 24, 1325–1331.
Harbison,C.T. et al. (2004) Transcriptional regulatory code of a eukaryotic genome.

Nature, 431, 99–104.
Iuchi,S. (2001) Three classes of C2H2 zinc finger proteins. Cell Mol. Life Sci., 58,

625–635.
Joachims,T. (1999) Making large-scale SVM learning practical. In Scholkopf,B.

et al. (eds) Advances in Kernel Methods : Support Vector Learning. MIT Press,
Cambridge, Mass., p. 376.

Kaplan,T. et al. (2005) Ab initio prediction of transcription factor targets using structural
knowledge. PLoS Comput. Biol., 1, e1.

Liu,J. and Stormo,G.D. (2008) Context-dependent DNA recognition code for C2H2
zinc-finger transcription factors. Bioinformatics, 24, 1850–1857.

Liu,Z. et al. (2005) Quantitative evaluation of protein-DNA interactions using an
optimized knowledge-based potential. Nucleic Acids Res., 33, 546–558.

Luscombe,N.M. et al. (2001) Amino acid-base interactions: a three-dimensional
analysis of protein–DNA interactions at an atomic level. Nucleic Acids Res., 29,
2860–2874.

Maeder,M.L. et al. (2008) Rapid ‘open-source’ engineering of customized zinc-finger
nucleases for highly efficient gene modification. Mol. Cell, 31, 294–301.

Mandel-Gutfreund,Y. and Margalit,H. (1998) Quantitative parameters for amino acid-
base interaction: implications for prediction of protein–DNA binding sites. Nucleic
Acids Res., 26, 2306–2312.

Matys,V. et al. (2003) TRANSFAC: transcriptional regulation, from patterns to profiles.
Nucleic Acids Res., 31, 374–378.

Morozov,A.V. et al. (2005) Protein-DNA binding specificity predictions with structural
models. Nucleic Acids Res., 33, 5781–5798.

Mukherjee,S. et al. (2004) Rapid analysis of the DNA-binding specificities of
transcription factors with DNA microarrays. Nat. Genet., 36, 1331–1339.

Nolte,R.T. et al. (1998) Differing roles for zinc fingers in DNA recognition: structure
of a six-finger transcription factor IIIA complex. Proc. Natl Acad. Sci. USA, 95,
2938–2943.

O’Geen,H. et al. (2007) Genome-wide analysis of KAP1 binding suggests
autoregulation of KRAB-ZNFs. PLoS Genet., 3, e89.

Osada,R. et al. (2004) Comparative analysis of methods for representing and searching
for transcription factor binding sites. Bioinformatics, 20, 3516–3525.

Pabo,C.O. et al. (2001) Design and selection of novel Cys2His2 zinc finger proteins.
Annu. Rev. Biochem., 70, 313–340.

Pavletich,N.P. and Pabo,C.O. (1991) Zinc finger-DNA recognition: crystal structure of
a Zif268–DNA complex at 2.1 A. Science, 252, 809–817.

Pavletich,N.P. and Pabo,C.O. (1993) Crystal structure of a five-finger GLI–DNA
complex: new perspectives on zinc fingers. Science, 261, 1701–1707.

Segal,D.J. et al. (1999) Toward controlling gene expression at will: selection and design
of zinc finger domains recognizing each of the 5′-GNN-3′ DNA target sequences.
Proc. Natl Acad. Sci. USA, 96, 2758–2763.

Siggers,T.W. and Honig,B. (2007) Structure-based prediction of C2H2 zinc-finger
binding specificity: sensitivity to docking geometry. Nucleic Acids Res., 35,
1085–1097.

Stormo,G.D. (2000) DNA binding sites: representation and discovery. Bioinformatics,
16, 16–23.

28



Cys2His2 zinc finger proteins

Suzuki,M. et al. (1995) DNA recognition code of transcription factors. Protein Eng., 8,
319–328.

Vapnik,V.N. (1995) The Nature of Statistical Learning Theory. Springer, New York.
Venter,J.C. et al. (2001) The sequence of the human genome. Science, 291,

1304–1351.

Wolfe,S.A. et al. (2000) DNA recognition by Cys2His2 zinc finger proteins. Annu. Rev.
Biophys. Biomol. Struct., 29, 183–212.

Wolfe,S.A. et al. (2001) Beyond the “recognition code”: structures of two Cys2His2
zinc finger/TATA box complexes. Structure, 9, 717–723.

29


