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ABSTRACT

Motivation: Combinatorial effects, in which several variables jointly
influence an output or response, play an important role in biological
systems. In many settings, Boolean functions provide a natural way
to describe such influences. However, biochemical data using which
we may wish to characterize such influences are usually subject to
much variability. Furthermore, in high-throughput biological settings
Boolean relationships of interest are very often sparse, in the sense
of being embedded in an overall dataset of higher dimensionality.
This motivates a need for statistical methods capable of making
inferences regarding Boolean functions under conditions of noise and
sparsity.
Results: We put forward a statistical model for sparse, noisy Boolean
functions and methods for inference under the model. We focus on
the case in which the form of the underlying Boolean function, as well
as the number and identity of its inputs are all unknown. We present
results on synthetic data and on a study of signalling proteins in
cancer biology.
Availability: go.warwick.ac.uk/sachmukherjee/sci
Contact: s.n.mukherjee@warwick.ac.uk

1 INTRODUCTION
Recent years have witnessed a growing trend towards thinking about
multiple biological components or players acting in concert, rather
than one at a time. Biological systems are rich with examples of
combinatorial regulation and influence. At the molecular level, in
systems such as protein signalling pathways or gene regulatory
networks, several components may jointly influence the state of
a downstream target. Equally, at the level of cellular or tissue-
level outcomes, complex interplay involving underlying molecular
components (such as feedback and inhibition) may induce a
combinatorial relationship between the state of such components
and an indicator of interest, such as drug sensitivity or disease status.
Finally, at the population level, multiple genetic features, such as
haplotypes, may jointly influence phenotypic status.

∗To whom correspondence should be addressed.

In many settings in which data are either binary or amenable
to binary transformation, the language of Boolean logic provides
a natural way to describe combinatorial influences. That is, we
can think of a binary output or response Y as a k-ary Boolean
function of binary arguments X1 ···Xk . In this article, we address
the question of making inferences regarding Boolean models of
combinatorial influence. In the context of high-throughput biology
this is challenging for two key reasons. First, Boolean functions
are inherently non-linear. This means that the importance of a set
of variables taken together may not be reflected in the importance
of the same variables considered one at a time. Second, in system-
wide assays, the inputs to an underlying Boolean relationship of
interest may be embedded in an overall dataset of much higher
dimensionality. Returning to the protein signalling example alluded
to above, a Boolean relationship between the activation states of a
pair of cytosolic kinases and a downstream effect may be embedded
in a dataset pertaining to dozens of other pathway components.

Motivated by these issues, in this article we place an emphasis on
sparse Boolean functions. An emphasis on sparsity plays a key role
in rendering inference tractable, in both computational and statistical
terms. The size of the space of possible Boolean functions is vast: for
p predictors there are 2p possible subsets of variables, and for any
variable subset of size k, 2k possible states of k binary arguments,
and therefore 22k

possible Boolean functions of those arguments.
Equally, from the statistical point of view, parsimonious models
can be highly advantageous, especially under conditions of small-
to-moderate sample size. Furthermore, from the point of view of
performing follow-up work, sparse models are helpful because they
focus attention on a small number of players, which in turn can help
to suggest specific experimental strategies.

Characterizing sparse Boolean functions from noisy data involves
addressing two related problems. First, we must determine which of
a possibly large number of predictors are arguments to the underlying
function; this involves selecting a subset (of unknown size) of
available predictors. Second, for a putative set of k arguments,
we must say something about possible k-ary Boolean functions.
Motivated by real-world problems in statistical bioinformatics, we
focus on the setting in which both arity k and the specific subset of
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predictors which are arguments to the underlying Boolean function
are unknown: i.e. we know neither how many variables are important
nor which ones they are. We propose a simple probability model
for Boolean functions that are subject to stochastic variation in
observed data. We then use ideas from Bayesian inference to build
on the probability model and learn Boolean relationships from
noisy data, using prior distributions to take advantage of a notion
of sparsity. A key advantage of our statistical approach is that it
allows us to account for variability in data, and also to provide a
measure of confidence in any inferences drawn. This latter point
is especially important when follow-up investigations are costly
or time-consuming. Furthermore, as discussed below, our methods
require typically no more than a few minutes of computer time.

Our focus is on making inferences regarding sparse, noisy
Boolean functions rather than classification per se. However,
since the range of a Boolean function is {0,1}, the task of
predicting a response value Y from predictors X is analogous to
a classification problem. Our work is similar in spirit to logic
regression (Kooperberg and Ruczinski, 2005; Ruczinski et al.,
2003); we contrast the two in Section 5 (Discussion) below. Other
related work on noisy Boolean functions includes Benjamini et al.
(1999), Shmulevich et al. (2002) and Li and Lu (2005).

The remainder of this article is organized as follows. We first
introduce the key elements of our model and associated notation,
and then discuss inference. We present experimental results on
synthetic data and on a proteomic dataset from a study in cancer
systems biology. Finally, we discuss some of the finer points and
shortcomings of our work and highlight key directions for further
research.

2 BASIC MODEL AND NOTATION

2.1 Noisy Boolean functions
A k-ary Boolean function is a function f : {0,1}k �→{0,1}which maps
each of the 2k possible states of its binary arguments X= (X1 ···Xk)
to a binary state Y . Such a function can also be represented as a truth
table.

Now, consider a function gθ : {0,1}k �→[0,1], that maps each of
the 2k possible states of its arguments to the (closed) unit interval. In
particular, when inputs X are in state x, gθ returns a value θx=gθ (x)
that represents the probability with which the output Y takes on value
1. For the moment, we do not place any restrictions on the θx’s, but
we return to these parameters in the context of inference below.
We call the function gθ a noisy Boolean function. A noisy Boolean
function can be represented by a probabilistic truth table:

X1 X2 Y
0 0 θ00
0 1 θ01
1 0 θ10
1 1 θ11

A conventional truth table can then be regarded as a special, ‘noise
free’ case of a probabilistic truth table, with parameters θx equal to 0
or 1. It is natural to assume that if a Boolean function evaluates true
for a given state x of its inputs, the response for a ‘noisy version’ of
the function should be true more often than false. Accordingly, if for
all x, I( 1

2 ,1](gθ (x))= f (x) (where IA is the indicator function for set

A), we say that gθ corresponds to Boolean function f . We can then

construct a Boolean function f from a noisy Boolean function gθ by
the following rule:

f (x)=
{

1 if gθ (x)> 1
2

0 otherwise
(1)

This defines a (many-to-one) mapping between the space of noisy
Boolean functions and the space of Boolean functions; we call this
mapping � and write f =�(gθ ).

2.2 Probability model
Let Y= (Y1 ...Yn),Yi∈{0,1} denote binary responses and X=
(X1 ...Xn),Xi∈{0,1}d corresponding d-dimensional predictors. We
denote the i-th observation of the j-th predictor by Xij , the i-th
observation of predictors A⊆{1...d} by XiA and the full set of n
observations of predictors A by X·A= (X1A ...XnA).

Suppose Y is a noisy Boolean function of a subset M⊆{1...d} of
predictors. The specification of this subset represents a model; for
notational simplicity, we will use M to denote both the subset and the
model it implies. We assume that, under model M, an observation
Yi is conditionally independent of all other predictors given XiM :

P(Yi |Xi,M) = P(Yi |XiM ) (2)

Suppose the relevant predictors XiM are in state x. Then, θx=
gθ (x) is the corresponding parameter in the probabilistic truth table,
and represents the probability of the event Yi=1 given the state of
the predictors. In other words, Yi |XiM=x is a Bernoulli random
variable with success parameter θx. We assume that, given the
state of predictors XiM , Y1 ...Yn are independent and identically
distributed. Then the joint probability of the Yi’s, given X·M , is a
product of Binomial kernels:

P(Y |X·M ,θ ) =
∏

x∈{0,1}|M|
θ
νx
x (1−θx)nx −νx (3)

where θ is a parameter vector with components θx, nx=∑
i:XiM=x 1

is the number of observations in which predictors X·M are in state
x and νx=∑

i:XiM=x Yi is the corresponding number of ‘successes’
of Yi when X·M=x.

3 INFERENCE
In this section, we discuss model selection, parameter estimation
and prediction using the model introduced above.

3.1 Model selection
Each model corresponds to a subset M⊆{1...d} of predictors.
As such, there are, unconstrained, 2d distinct models. Restricting
attention to sparse Boolean functions with maximum arity kmax ,
the number of possible models is O(dkmax ). The sheer size of
model space—even under conditions of sparsity—makes model
selection a central concern in inference regarding Boolean functions.
Furthermore, since noisy Boolean functions can give rise to
responses which depend on non-linear interplay between predictors,
variable selection using marginal statistics will not, in general,
be able to capture the joint explanatory power of a subset of
predictors. In contrast, the state-dependent model introduced above
allows us to consider all ‘Boolean’ interactions between arguments.
In this section, we exploit our probability model to develop a
Bayesian approach to model selection in this setting, using Markov
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chain Monte Carlo (MCMC) to draw samples from the posterior
distribution over models.

3.1.1 Model posterior From Bayes’rule, the posterior probability
of a model M can be written up to proportionality as:

P(M |Y,X) ∝ P(Y |X·M )P(M) (4)

The term P(Y |X·M ) represents the marginal likelihood. This can
be obtained by integrating out parameters θ :

P(Y |X·M ) =
∫

P(Y |X·M ,θ )p(θ )dθ (5)

Let � represent the full parameter space, such that θ ∈�. Now, for
any Boolean function f , there exists some subset of � which maps
to f under mapping (1). Integrating out θ therefore corresponds to
averaging over all possible Boolean functions with arguments M.

3.1.2 Parameter prior We first assume prior independence of
parameters θx, such that p(θ )=∏

x p(θx). Then, from (3) and (5),
we get:

P(Y |X·M )

=
∏

x∈{0,1}|M|

∫
θ
νx
x (1−θx)nx −νx p(θx)dθx (6)

In light of the relationship between parameters θx and underlying
Boolean functions, there are two properties we would like the
parameter prior p(θx) to have. First, given a model M corresponding
to a Boolean function of arity k=|M|, we would like to assign
equal probability to all Boolean functions possible under the model.
Second, since the parameters θx represent state-dependent success
parameters for a noisy Boolean function, we would like the prior
to prefer values close to 0 or 1. Now, for any continuous prior
density symmetric about θx= 1

2 , P(θx > 1
2 )=P(θx≤ 1

2 )=c (say).
From mapping (1), the probability of a k-ary Boolean function
f , given k independent parameters θx is: P(f |θ )=P(�(gθ )= f |
θ )=∏

x:f (x)=1P(θx > 1
2 )·∏x:f (x)=0P(θx≤ 1

2 ) =∏
x∈{0,1}k c =c2k

,
which is constant over the space of k-ary Boolean functions. Thus,
under prior parameter independence, symmetry about θx= 1

2 ensures
the first of our two desiderata.

We therefore suggest a Beta prior p(θx) with identical parameters
α,β (for symmetry) and α,β <1 (to concentrate probability mass
around 0 and 1). This gives the marginal likelihood (6) in closed
form:

P(Y |X·M )

=
∏

x∈{0,1}|M|
�(α+β)

�(α)�(β)

�(νx+α)�(nx−νx+β)

�(α+β+nx)
(7)

In all our experiments, we set α,β=0.9.

3.1.3 Sparse model prior We use the model prior P(M) to express
an explicit preference for sparse models. We suggest the following
prior:

P(M)∝
{

exp(λmin(0,k0−|M|)) if |M|≤kmax
0 otherwise

(8)

where hyper-parameter k0 is a threshold on subset size |M|, below
which the prior is flat, and λ is a strength parameter. In all our

experiments, we set λ=3. Hyper-parameter kmax allows us to set a
hard upper limit on model size, if desired (otherwise, kmax should
be set to p).

A natural way to set hyper-parameters k0 and kmax is as a function
of sample size. For |M|≤k0, the prior is agnostic to model size. The
expected number of observations per input state is therefore n/2k0

for the largest model inferred without reference to the sparsity prior.
If we desire at least n∗ observations per state in this boundary case,
this gives k0=�log2(n/n∗)	. In all our experiments we set k0 in this
way with n∗ = 15. We set kmax in a similar manner, with n∗ = 1,
giving kmax=�log2(n)	. This ensures that we only consider models
sparse enough to have, on average, at least one observation per input
state.

3.1.4 Markov chain Monte Carlo The space of all possible
models is, in general, too large to permit a full description of the
posterior Equation (4). This motivates the need for approximate
inference. Here, we propose a MCMC sampler over model space.

In our approach, a model is equivalent to a subset M of predictor
indices {1...d}. Let I(M) be a set comprising all subsets which can
be obtained by either adding exactly one element to the set M, or
by removing exactly one element from it. That is,

I(M) = {A : (|A\M|=1∧M⊂A)

∨(|M \A|=1∧A⊂M)} (9)

We suggest the following proposal distribution Q:

Q(M ′;M)=
{

1
|I(M)| if M ′ ∈I(M)

0 otherwise
(10)

where, M and M ′ denote current and proposed models, respectively.
Importantly, during sampling, the unnormalized quantities P(Y |

X·M ′ )P(M ′) and P(Y |X·M )P(M), which can be obtained in closed-
form from (7) and (8), are sufficient for our purposes. Note also that
since any subset of {1...d} can be reached from an arbitrary starting
subset by some sequence of addition and removal steps, the proposal
distribution Q gives rise to an irreducible Markov chain. Standard
results (Robert and Casella, 2004) then guarantee convergence to
the desired posterior P(M |Y,X). The sampler described above is
summarized in Algorithm 1.

Algorithm 1 Metropolis-Hastings sampler for model selection

(1) Initialize model M(1), set t=1, M←M(1)

(2) Propose M ′ ∼Q(M ′;M)

(3) Accept M ′ with probability min(1,α),

α= P(M ′|Y,X)Q(M;M ′)
P(M|Y,X)Q(M ′;M)

(4) Update If M ′ is accepted, M(t+1)←M ′, M←M(t+1) else

M(t+1)←M. Set t← t+1
(5) While t <T , repeat (2)-(4).

As shown in Algorithm 1, iterating ‘propose’, ‘accept’ and
‘update’ steps gives rise to T samples M(1) ...M(T ). An important
property of these samples is that, provided the Markov chain has
converged, 1

T
∑T

t=1φ(M(t)) is an asymptotically valid estimator of
the expectation, under the posterior, of a function φ(M).

An important special case, which we shall make use of below,
concerns the posterior probability P(j∈M |Y,X) that a variable
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j∈{1...d} is part of the underlying model M. This is equivalent
to the posterior expectation E[IM (j)]P(M|Y,X), which in turn gives

Ê[IM (j)] = 1

T

T∑
t=1

IM (t) (j) (11)

as an asymptotically valid estimate of P( j∈M |Y,X).
Standard MCMC diagnostics using multiple chains with different

initializations showed rapid convergence. Posterior probabilities
over individual predictors, computed using Equation (11), were
very consistent across diagnostic runs, giving us confidence
that probabilities obtained were not simply artefacts of poor
convergence.

Finally, we note that an alternative to sampling from the posterior
over models is to estimate a single, maximum a posteriori model M̂:

M̂ = argmax
M∈M

P(M |Y,X) (12)

This can be done using, for example, greedy local optimization in
model space, with multiple, random initializations to guard against
local maxima.

3.2 Parameter estimation and prediction
From standard Bayesian results (Gelman et al., 2004), the posterior
distribution of parameter θx is easily shown to be:

p(θx |Y,X,M) = Beta(θx |νx+α,nx−νx+β) (13)

Similarly, the posterior probability that a new, unseen response
Y(n+1) will take on the value 1, given that predictors X(n+1)M
are observed in state x is obtained as follows. Let X·M=
X1M ...XnM and Y=Y1 ...Yn denote already observed data. Then,
using Equation (13) we get:

P(Yn+1=1 |X(n+1)M=x,Y,X·M ) = νx+α

α+β+nx
(14)

4 RESULTS
In this section, we present empirical results examining the ability of
our methods to make inferences regarding sparse Boolean functions.
We first show results from synthetic datasets and then present an
analysis of proteomic data pertaining to subtypes of breast cancer.

4.1 Synthetic data
We generated 10 datasets from each of three different sparse Boolean
models. Denoting the elements of the relevant subset as A,B,C, etc.,
we considered three models M1, M2 and M3 based on the following
Boolean functions:

(M1) A∧(B⇔C)

(M2) (A∧¬B)XORC

(M3) (A∧B)XOR(C∧D)

In each case, the relevant predictors formed a subset of a total of
d=100 variables. Data were generated in the following manner: (i)
for i=1...n (n=200) and j=1...d (d=100), we set Xij at random
and then generated responses by setting Yi=1 with probability 0.9
when f (A,B,...) evaluated true (and zero otherwise) and setting
Yi=1 with probability 0.1 when ¬f (and zero otherwise). In other

words, the data-generating model was a noisy Boolean function with
underlying Boolean function f and parameters θx=0.9 and θx=0.1
for f (x)=1 and f (x)=0, respectively. The sample size n=200 led us
to automatically set sparsity hyper-parameters k0=�log2n/n∗	= 3
and kmax =�log2n	= 7 (this gives on the order of 1010 possible
models of arity not exceeding kmax = 7). We used MCMC as
described above, with T = 10000 samples drawn for each analysis,
and 1000 samples discarded as ‘burn-in’.

Figure 1a–c shows, for each model, Receiver Operating
Characteristic (ROC) curves obtained by thresholding posterior
probabilities over individual predictors, following Equation (11).
For comparison we also show corresponding results obtained using
(absolute) log odds ratios and Fisher scores. The log odds ratio is
a natural measure of pairwise association for binary data (Edwards,
1963). Here we computed the log odds ratio between each predictor
and the response. The Fisher score (Duda et al., 2000) is a simple and
widely used variable selection approach; here, variables were ranked
by the ratio between the squared difference between class means and
the pooled standard deviation (classes corresponded to observations
for which the response was 0 or 1). The ROC curves shown are
averages over results obtained from the 10 datasets generated for
each model.

Our approach is effective for each of the three models. In contrast,
neither log odds ratios nor Fisher scores are able to discover the
correct variables for any of the models. This is unsurprising, because
these methods are based on marginal statistics, in effect scoring
each predictor in isolation. As noted at the outset of the paper, an
important characteristic of many Boolean functions is their non-
linearity which in turn makes it important to assess variables in
combination and not just individually. Figure 1d–f shows, for each
model, a typical posterior distribution over predictors (these are
representative of the 10 sets of results in each case), computed using
Equation (11). Posterior probabilities over individual predictors are
able to show very clearly which variables are truly inputs to the
underlying Boolean function.

Figure 2 shows an example of inferred posteriors over parameters
θx for our most challenging model (M3). The underlying function is
f (A,B,C,D)= (A∧B)XOR(C∧D) and evaluates to true when either
the first or last pair of arguments is true but not both. This pattern
can be clearly seen in the parameters: these distributions can also
be mapped automatically to a truth table representation using the
mapping � defined above.

Table 1 shows classification results obtained from simulated data,
using leave-one-out cross-validation. Our predictions are based on
the predictive probabilities given in Equation (14). For comparison,
we show also results using a ‘Naive Bayes’ classifier and logistic
regression. We show also results obtained using these two methods
in combination with variable selection using the Fisher score in
which only the top five variables under the score are retained.
Unfortunately, computational considerations meant we were unable
to perform the 200×10×3=6000 full MCMC runs required for a
true cross-validation of our approach. Instead we show (i) results
obtained using cross-validation, but with a model learned using a
single MCMC run for each dataset (‘SCI(MCMC)’) and also (ii)
a full cross-validation using a greedy model search as shown in
Equation (12) above (‘SCI(greedy)’). In this latter case, we started
from an empty model with no predictors included and added or
deleted predictors from the model until there was no further increase
in posterior model probability. This constituted a fast alternative
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Fig. 1. Simulated data, ROC curves and posterior probabilities over predictors. (a–c) are ROC curves showing true positive rates in selecting relevant inputs
plotted against corresponding false positive rates, across a range of thresholds. Results are also shown for Fisher scores and log odds ratios (computed between
each predictor and the response. (d–f) show typical posterior probabilities over individual predictors; predictors which truly form part of the underlying model
are plotted in green while other predictors are plotted in red.

Fig. 2. Posteriors over parameters, model M3.

to full MCMC-based learning, and allowed us to perform a true
cross-validation, including the model selection step.1

4.2 Proteomic data
Our second set of results concerns proteomic data obtained from
a study of signalling in breast cancer. Signalling proteins are
activated by post-translational modifications that enable highly
specific enzymatic behaviour on the part of the protein, with
typically only small quantities of activated proteins required to

1We note, however, that while ‘SCI(MCMC)’ is not a true cross-validation,
the posteriors over predictors in Figure 1, which suggest that the MCMC-
based approach is able to select the correct variables with high confidence,
and the results of full cross-validation using greedy model search suggest that
full cross-validation with MCMC would likely return comparable results.

drive downstream biochemical processes. Present/absent calls for 32
phosphorylated proteins related to epidermal growth factor receptor
(EGFR) signalling were obtained using the KinetWorks™system
(Kinexus Bioinformatics Corporation, Vancouver, Canada) for each
of 29 breast cancer cell lines, which have previously been shown
to reflect the diversity of primary tumours (Neve et al., 2006).
These cell lines were also treated with an anti-cancer agent called
Iressa, and labelled as responsive (Y=1) or unresponsive (Y=
0). There remains much to learn regarding how heterogeneity in
EGFR signalling relates to responsiveness to therapy and it is
likely that the complexity of the underlying biochemistry may
induce a combinatorial relationship between the state of pathway
proteins and drug response status. We therefore sought to use the
methods introduced above to probe the relationship between protein
phosphorylation states and response to Iressa.

Figure 3 shows inferred posterior probabilities over individual
phospho-proteins (T = 20000, burn in = 2000). Three proteins in
particular stand out: focal adhesion kinase (FAK) phosphorylated on
tyrosine # 397; insulin receptor substrate 1 (IRS1) phosphorylated on
tyrosine #612; and the SH2 domain-containing transforming protein
(SHC) phosphorylated on tyrosine #239 and #240.

Table 2 shows the inferred probabilistic truth table relating
phospho-protein status to Iressa response. The table can be read
as ‘responds to Iressa if SHC∨(FAK⇔ IRS1)’ (where ∨ and ⇔
denote the OR and EQ operators, respectively).

For comparison, we performed also stepwise logistic regression
(forward selection followed by backward elimination, using a BIC
criterion) using (i) single variables only and (ii) both single variables
and all two-way interaction terms.
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Table 1. Simulation results, leave-one-out cross-validation

Model Underlying function SCI (MCMC) SCI (greedy) NB NB (vs) LR LR(vs)
M1 A∧(B⇔C) 0.90 ± 0.02 0.84 ± 0.11 0.65 ± 0.04 0.74 ± 0.06 0.60 ± 0.04 0.75 ± 0.06
M2 (A∧¬B)XORC 0.89 ± 0.02 0.89 ± 0.02 0.60 ± 0.04 0.70 ± 0.03 ∗ 0.69 ± 0.04
M3 (A∧B)XOR(C∧D) 0.91 ± 0.03 0.79 ± 0.19 0.53 ± 0.04 0.65 ± 0.03 ∗ 0.64 ± 0.03

Ten datasets were generated under each model; results shown are mean accuracy rates ± SD. Key: SCI (MCMC)—sparse combinatorial inference using MCMC; SCI (greedy)—
sparse combinatorial inference using greedy model search; NB—Naive Bayes with all predictors; NB (vs) - Naive Bayes with variable selection; LR—logistic regression with all
predictors; LR (vs)—logistic regression with variable selection. (∗logistic regression using all predictors at once (LR) was not used in this case due to poor conditioning.)
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Fig. 3. Proteomic data, posteriors over individual predictors. Proteins
included in the single highest scoring model encountered during sampling
are plotted in green.

Table 2. Proteomic data, probabilistic truth table

SHC FAK IRS1 P(Y=1)

0 0 0 0.81
0 0 1 0.24
0 1 0 0.07
0 1 1 0.87
1 0 0 0.50
1 0 1 0.68
1 1 0 0.67
1 1 1 0.68

For each input state, the corresponding predictive probability
is shown [computed using Equation (14)].

The single-variable analysis selected c-Jun and IRS1(Y1179).
A total of 10 variables appeared in stepwise regression with
interactions; these are marked with ‘∗∗’ on the horizontal axis of
Figure 3. We note that most of these proteins have low posterior
probabilities and that neither SHC nor FAK appear in these analyses.

We assessed predictive performance using leave-one-out cross-
validation.2 Our approach had an accuracy of 83%; stepwise
regression with interactions had an accuracy of 72%; while the
single-variable analysis gave 62% accuracy.

The drug under study (Iressa) inhibits the EGF receptor itself.
The protein SHC is well-known to play a central role immediately
downstream of the EGF receptor; in particular, activation of the

2This was a true cross-validation with all learning, including model selection,
based on training data only, at each iteration.

Table 3. Proteomic data, sensitivity to prior strength parameter λ

λ=1 λ=2 λ=3 λ=4 λ=5

λ=1 – 0.99 0.987 0.975 0.988
λ=2 – – 0.994 0.992 0.991
λ=3 – – – 0.985 0.991
λ=4 – – – – 0.977

We considered five values of strength parameter λ, each of which led to a set
of posterior probabilities for individual predictors. Pearson correlations are
shown between these probabilities for all pairs of λ’s.

receptor leads to phosphorylation of SHC on tyrosine residues 239
and 240 (van der Geer et al., 1996). The prominent role of precisely
this phospho-form of SHC in our inferences accords very clearly
with known biology, and its absence from the results of stepwise
regression is striking, especially in view of the large number of
variables which appear in the stepwise analysis with interactions.

On account of the small sample size (n= 29), we sought to
examine the sensitivity of our inferences to the prior strength
parameter λ. We considered five values of strength parameter (λ=
1,2,3,4,5), each of which led to a set of posterior probabilities
on individual predictors. Table 3 shows Pearson correlations for
these probabilities, for all pairs of λ’s: values close to unity indicate
posteriors which are very similar. Inferences under different values
of λ are in very close agreement (the smallest correlation coefficient
is 0.975), giving us confidence that results are not too sensitive to
the precise value of λ.

5 DISCUSSION
We presented an approach to the statistical analysis of combinatorial
influences, which can be modelled by sparse Boolean functions.
We performed model selection within a fully Bayesian framework,
with priors on parameters designed to reflect the logical nature of
underlying functions but remain agnostic otherwise, and priors on
models designed to promote sparsity. Our approach was general
enough to describe arbitrary Boolean functions yet simple enough
to allow most quantities of interest to be computed in closed form.
We evaluated models by analytically marginalizing over all Boolean
functions possible under each such model, and using an MCMC
algorithm to perform model averaging. We note, however, that
the computational burden of this procedure was in fact light: for
example, for our proteomic dataset, an MCMC run of T = 20000
samples required around one-and-a-half minutes on a standard
personal computer.

The size of the space of Boolean functions and the potential
complexity of such functions mean that issues of over-fitting and
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over-confidence in inferred results is a key concern. Our use of a
statistical model allowed us to not only rank predictors and select
a good model, but to assess our confidence in such inferences,
taking into account fit to data, model complexity and number of
observations.

It is interesting to contrast our approach with logic regression
(Ruczinski et al., 2003). Logic regression uses a set of Boolean
functions whose truth values provide inputs to a generalized linear
model. Thus, the focus is on prediction, with Boolean functions
playing a role analogous to basis functions in non-linear regression.
In contrast, we focused attention on characterizing Boolean
functions themselves, with prediction a secondary objective. Logic
regression encodes Boolean functions as logic trees, and uses search
procedures similar to those used for decision trees to discover ‘good’
functions. However, logic trees are non-unique representations of
Boolean functions, and the space of such trees is vastly larger
than the space of variable subsets in which our method operates,
using a marginal likelihood formulation to take account of evidence
in favour of all possible Boolean functions of such subsets. Our
approach gives also readily interpretable posteriors by which to
both score variable importance and capture uncertainty regarding
specific configurations of variables (corresponding to truth table
rows). Finally, taking a Bayesian approach allowed us to make use of
a ‘soft’ sparsity prior to promote parsimonious models and perform
model selection without having to resort to cross-validation, which
can be computationally expensive, and also problematic at small
sample sizes.

We note also that our approach can be formulated as a directed
graphical model (Jordan, 2004; Pearl, 1988) with covariates X
forming root nodes and the response Y a leaf node. From this point of
view, our learning procedure can be regarded as a highly-restricted
variant of the well-known MC3 algorithm (Madigan et al., 1995)
for structure learning, with priors designed for the Boolean function
setting, and a framework built on, and with an explicit link to,
conventional Boolean truth tables.

We highlight two directions for further work. First, we note that
the distributions over parameters presented above were not true
Bayesian posteriors, because they were obtained by first selecting a
model and then inferring θ ’s under the selected model. Reversible-
jump MCMC (RJ-MCMC) (Green, 1995) would provide a way in
which to sample from the joint space of models and parameters.
We hope to explore such an approach in further work but note that
a possible drawback would be the fact that RJ-MCMC typically
mixes slowly, while in the present context of exploratory analyses
in bioinformatics, the relative speed and simplicity of our approach
was appealing. Second, while we utilized a model prior P(M)
to promote sparsity, a model prior could also be used to take

account of biological knowledge during inference (Wei and Li,
2007). For example, the prior could be designed to prefer subsets
of variables which form part of a well-defined pathway. We believe
this is a promising line of investigation and are currently pursuing
strategies based on capturing the closeness of individual predictors
in a pathway sense, and utilizing this information to construct
informative model priors.
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